
CPSC 340:
Machine Learning and Data Mining

Recommender Systems

Fall 2018

Last Few Lectures: Latent-Factor Models

• We’ve been discussing latent-factor models of the form:

• We get different models under different conditions:

– K-means: each zi has one ‘1’ and the rest are zero.

– Least squares: we only have one variable (d=1) and the zi are fixed.

– PCA: no restrictions on W or Z.

• Orthogonal PCA: the rows wc have a norm of 1 and have an inner product of zero.

– NMF: all elements of W and Z are non-negative.

Beyond Squared Error

• Our objective for latent-factor models (LFM):

• As before, there are alternatives to squared error.

• If X consists of +1 and -1 values, we could use logistic loss:

Robust PCA

• Robust PCA methods use the absolute error:

• Will be robust to outliers in the matrix ‘X’.

• Encourages “residuals” rij to be exactly zero.

– Non-zero rij are where the “outliers” are.

http://statweb.stanford.edu/~candes/papers/RobustPCA.pdf

Robust PCA

http://jbhuang0604.blogspot.ca/2013/04/miss-korea-2013-contestants-face.html

• Miss Korea contestants and robust PCA:

Regularized Matrix Factorization

• For many PCA applications, ordering orthogonal PCs makes sense.

– Latent factors are independent of each other.

– We definitely want this for visualization.

• In other cases, ordering orthogonal PCs doesn’t make sense.

– We might not expect a natural “ordering”.

http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf

Regularized Matrix Factorization

• More recently people have considered L2-regularized PCA:

• Replaces normalization/orthogonality/sequential-fitting.

– But requires regularization parameters λ1 and λ2.

• Need to regularize W and Z because of scaling problem.

– If you only regularize ‘W’ it doesn’t do anything.

• I could take unregularized solution, replace W by αW for a tiny α to
shrink ||W||F as much as I want, then multiply Z by (1/α) to get same solution.

– Similarly, if you only regularize ‘Z’ it doesn’t do anything.

Sparse Matrix Factorization

• Instead of non-negativity, we could use L1-regularization:

– Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).

• Disadvantage of using L1-regularization over non-negativity:

– Sparsity controlled by λ1 and λ2 so you need to set these.

• Advantage of using L1-regularization:

– Sparsity controlled by λ1 and λ2, so you can control amount of sparsity.

– Negative coefficients often do make sense.

Sparse Matrix Factorization

• Instead of non-negativity, we could use L1-regularization:

– Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).

• Many variations exist:

– Mixing L2-regularization and L1-regularization.

• Or normalizing ‘W’ (in L2-norm or L1-norm) and regularizing ‘Z’.

– K-SVD constrains each zi to have at most ‘k’ non-zeroes:

• K-means is special case where k = 1.

• PCA is special case where k = d.

Matrix Factorization with L1-Regularization

http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf

Recent Work: Structured Sparsity

• “Structured sparsity” considers dependencies in sparsity patterns.

– Can enforce that “parts” are convex regions.

http://jmlr.org/proceedings/papers/v9/jenatton10a/jenatton10a.pdf

Variations on Latent-Factor Models

• We can use all our tricks for linear regression in this context:

• Absolute loss gives robust PCA that is less sensitive to outliers.

• We can use L2-regularization.

– Though only reduces overfitting if we regularize both ‘W’ and ‘Z’.

• We can use L1-regularization to give sparse latent factors/features.

• We can use logistic/softmax/Poisson losses for discrete xij.

• Can use change of basis to learn non-linear latent-factor models.

Beyond NMF: Topic Models

• For modeling data as combinations of non-negative parts,
NMF has largely replaced by “topic models”.

– A “fully-Bayesian” model where sparsity arises naturally.

– Most popular example is called “latent Dirichlet allocation” (CPSC 540).

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf

(pause)

Recommender System Motivation: Netflix Prize

• Netflix Prize:

– 100M ratings from 0.5M users on 18k movies.

– Grand prize was $1M for first team to reduce squared error by 10%.

– Started on October 2nd, 2006.

– Netflix’s system was first beat October 8th.

– 1% error reduction achieved on October 15th.

– Steady improvement after that.

• ML methods soon dominated.

– One obstacle was ‘Napolean Dynamite’ problem:

• Some movie ratings seem very difficult to predict.

• Should only be recommended to certain groups.

Lessons Learned from Netflix Prize

• Prize awarded in 2009:

– Ensemble method that averaged 107 models.

– Increasing diversity of models more important than improving models.

• Winning entry (and most entries) used collaborative filtering:

– Methods that only looks at ratings, not features of movies/users.

• A simple collaborative filtering method that does really well (7%):

– “Regularized matrix factorization”. Now adopted by many companies.

http://bits.blogs.nytimes.com/2009/09/21/netflix-awards-1-million-prize-and-starts-a-new-contest/?_r=0

Motivation: Other Recommender Systems

• Recommender systems are now everywhere:

– Music, news, books, jokes, experts, restaurants, friends, dates, etc.

• Main types of approaches:

1. Content-based filtering.

• Supervised learning:
– Extract features xi of users and items, building model to predict rating yi given xi.

– Apply model to prediction for new users/items.

• Example: G-mail’s “important messages” (personalization with “local” features).

2. Collaborative filtering.

• “Unsupervised” learning (have label matrix ‘Y’ but no features):
– We only have labels yij (rating of user ‘i’ for movie ‘j’).

• Example: Amazon recommendation algorithm.

Collaborative Filtering Problem

• Collaborative filtering is ‘filling in’ the user-item matrix:

• We have some ratings available with values {1,2,3,4,5}.

• We want to predict ratings “?” by looking at available ratings.

Collaborative Filtering Problem

• Collaborative filtering is ‘filling in’ the user-item matrix:

• What rating would “Ryan Reynolds” give to “Green Lantern”?

– Why is this not completely crazy? We may have similar users and movies.

Matrix Factorization for Collaborative Filtering

• Our standard latent-factor model for entries in matrix ‘Y’:

• User ‘i’ has latent features zi.

• Movie ‘j’ has latent features wj.

• Our loss functions sums over available ratings ‘R’:

• And we add L2-regularization to both types of features.
– Basically, this is regularized PCA on the available entries of Y.

– Typically fit with SGD.

• This simple method gives you a 7% improvement on the Netflix problem.

Adding Global/User/Movie Biases

• Our standard latent-factor model for entries in matrix ‘Y’:

• Sometimes we don’t assume the yij have a mean of zero:
– We could add bias β reflecting average overall rating:

– We could also add a user-specific bias βi and item-specific bias βj.

• Some users rate things higher on average, and movies are rated better on average.

• These might also be regularized.

Beyond Accuracy in Recommender Systems

• Winning system of Netflix Challenge was never adopted.

• Other issues important in recommender systems:
– Diversity: how different are the recommendations?

• If you like ‘Battle of Five Armies Extended Edition’, recommend Battle of Five Armies?

• Even if you really really like Star Wars, you might want non-Star-Wars suggestions.

– Persistence: how long should recommendations last?
• If you keep not clicking on ‘Hunger Games’, should it remain a recommendation?

– Trust: tell user why you made a recommendation.
• Quora gives explanations for recommendations.

– Social recommendation: what did your friends watch?

– Freshness: people tend to get more excited about new/surprising things.
• Collaborative filtering does not predict well for new users/movies.

– New movies don’t yet have ratings, and new users haven’t rated anything.

Content-Based vs. Collaborative Filtering

• Our latent-factor approach to collaborative filtering (Part 4):

– Learns about each user/movie, but can’t predict on new users/movies.

• A linear model approach to content-based filtering (Part 3):

– Here xij is a vector of features for the movie/user.
• Usual supervised learning setup: ‘y’ would contain all the yij, X would have xij as rows.

– Can predict on new users/movies, but can’t learn about each user/movie.

Hybrid Approaches

• Hybrid approaches combine content-based/collaborative filtering:

– SVDfeature (won “KDD Cup” in 2011 and 2012).

– Note that xij is a feature vector. Also, ‘w’ and ‘wj’ are different parameters.

Stochastic Gradient for SVDfeature

• Common approach to fitting SVDfeature is stochastic gradient.

• Previously you saw stochastic gradient for supervised learning:

• Stochastic gradient for SVDfeature (formulas as bonus):

Social Regularization

• Many recommenders are now connected to social networks.

– “Login using you Facebook account”.

• Often, people like similar movies to their friends.

• Recent recommender systems use social regularization.

– Add a “regularizer” encouraging friends’ weights to be similar:

– If we get a new user, recommendations are based on friend’s preferences.

Summary

• Robust PCA allows identifying certain types of outliers.

• L1-regularization leads to other sparse LFMs.

• Recommender systems try to recommend products.

• Collaborative filtering tries to fill in missing values in a matrix.

– Matrix factorization is a common approach.

• Next time: making a scatterplot by gradient descent.

“Whitening”

• With image data, features will be very redundant.
– Neighbouring pixels tend to have similar values.

• A standard transformation in these settings is “whitening”:
– Rotate the data so features are uncorrelated.

– Re-scale the rotated features so they have a variance of 1.

• Using SVD approach to PCA, we can do this with:
– Get ‘W’ from SVD (usually with k=d).

– Z = XWT (rotate to give uncorrelated features).

– Divide columns of ‘Z’ by corresponding singular values (unit variance).

• Details/discussion here.

http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/

Latent-Factor Models for Image Patches

• Consider building latent-factors for general image patches:

Latent-Factor Models for Image Patches

• Consider building latent-factors for general image patches:

Typical pre-processing:

1. Usual variable centering
2. “Whiten” patches.
(remove correlations)

Application: Image Restoration

http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf

Latent-Factor Models for Image Patches

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
http://stackoverflow.com/questions/16059462/comparing-textures-with-opencv-and-gabor-filters

Orthogonal bases don’t seem right:
• Few PCs do almost everything.
• Most PCs do almost nothing.

We believe “simple cells” in visual cortex use:

‘Gabor’ filters

Latent-Factor Models for Image Patches

• Results from a sparse (non-orthogonal) latent factor model:

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

Latent-Factor Models for Image Patches

• Results from a “sparse” (non-orthogonal) latent-factor model:

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

Recent Work: Structured Sparsity

• Basis learned with a variant of “structured sparsity”:

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

Motivation for Topic Models

• Want a model of the “factors” making up documents.

– Instead of latent-factor models, they’re called topic models.

– The canonical topic model is latent Dirichlet allocation (LDA).

– “Topics” could be useful for things like searching for relevant documents.

http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation/

Term Frequency – Inverse Document Frequency

• In information retrieval, classic word importance measure is TF-IDF.

• First part is the term frequency tf(t,d) of term ‘t’ for document ‘d’.

– Number of times “word” ‘t’ occurs in document ‘d’, divided by total words.

– E.g., 7% of words in document ‘d’ are “the” and 2% of the words are “Lebron”.

• Second part is document frequency df(t,D).

– Compute number of documents that have ‘t’ at least once.

– E.g., 100% of documents contain “the” and 0.01% have “LeBron”.

• TF-IDF is tf(t,d)*log(1/df(t,D)).

Term Frequency – Inverse Document Frequency

• The TF-IDF statistic is tf(t,d)*log(1/df(t,D)).
– It’s high if word ‘t’ happens often in document ‘d’, but isn’t common.

– E.g., seeing “LeBron” a lot it tells you something about “topic” of article.

– E.g., seeing “the” a lot tells you nothing.

• There are *many* variations on this statistic.
– E.g., avoiding dividing by zero and all types of “frequencies”.

• Summarizing ‘n’ documents into a matrix X:
– Each row corresponds to a document.

– Each column gives the TF-IDF value of a particular word in the document.

Latent Semantic Indexing

• TF-IDF features are very redundant.

– Consider TF-IDFs of “LeBron”, “Durant”, “Harden”, and “Kobe”.

– High values of these typically just indicate topic of “basketball”.

• We can probably compress this information quite a bit.

• Latent Semantic Indexing/Analysis:

– Run latent-factor model (like PCA or NMF) on TF-IDF matrix X.

– Treat the principal components as the “topics”.

– Latent Dirichlet allocation is a variant that avoids weird df(t,D) heuristic.

SVDfeature with SGD: the gory details

Tensor Factorization

• Tensors are higher-order generalizations of matrices:

• Generalization of matrix factorization is tensor factorization:

• Useful if there are other relevant variables:
• Instead of ratings based on {user,movie}, ratings based {user,movie,group}.

• Useful if you have groups of users, or if ratings change over time.

Field-Aware Matrix Factorization

• Field-aware factorization machines (FFMs):
– Matrix factorization with multiple zi or wc for each example or part.

– You choose which zi or wc to use based on the value of feature.

• Example from “click through rate” prediction:
– E.g., predict whether “male” clicks on “nike” advertising on “espn” page.

– A previous matrix factorization method for the 3 factors used:

– FFMs could use:
• wespnA is the factor we use when multiplying by a an advertiser’s latent factor.

• wespnG is the factor we use when multiplying by a group’s latent factor.

• This approach has won some Kaggle competitions (link),
and has shown to work well in production systems too (link).

https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf
https://arxiv.org/pdf/1701.04099.pdf

Warm-Starting

• We’ve used data {X,y} to fit a model.

• We now have new training data and want to fit new and old data.

• Do we need to re-fit from scratch?

• This is the warm starting problem.

– It’s easier to warm start some models than others.

Easy Case: K-Nearest Neighbours and Counting

• K-nearest neighbours:
– KNN just stores the training data, so just store the new data.

• Counting-based models:
– Models that base predictions on frequencies of events.

– E.g., naïve Bayes.

– Just update the counts:

– Decision trees with fixed rules: just update counts at the leaves.

Medium Case: L2-Regularized Least Squares

• L2-regularized least squares is obtained from linear algebra:

– Cost is O(nd2 + d3) for ‘n’ training examples and ‘d’ features.

• Given one new point, we need to compute:
– XTy with one row added, which costs O(d).

– Old XTX plus xixi
T, which costs O(d2).

– Solution of linear system, which costs O(d3).

– So cost of adding ‘t’ new data point is O(td3).

• With “matrix factorization updates”, can reduce this to O(td2).
– Cheaper than computing from scratch, particularly for large d.

Medium Case: Logistic Regression

• We fit logistic regression by gradient descent on a convex function.

• With new data, convex function f(w) changes to new function g(w).

• If we don’t have much more data, ‘f’ and ‘g’ will be “close”.

– Start gradient descent on ‘g’ with minimizer of ‘f’.

– You can show that it requires fewer iterations.

Hard Cases: Non-Convex/Greedy Models

• For decision trees:
– “Warm start”: continue splitting nodes that haven’t already been split.

– “Cold start”: re-fit everything.

• Unlike previous cases, this won’t in general give same result as re-fitting:
– New data points might lead to different splits higher up in the tree.

• Intermediate: usually do warm start but occasionally do a cold start.

• Similar heuristics/conclusions for other non-convex/greedy models:
– K-means clustering.

– Matrix factorization (though you can continue PCA algorithms).

