CPSC 340: Machine Learning and Data Mining

Recommender Systems Fall 2018

Last Few Lectures: Latent-Factor Models

• We've been discussing latent-factor models of the form:

$$f(W_{2}Z) = \sum_{j=1}^{n} \sum_{j=1}^{d} (\langle w_{j}^{j} z_{i} \rangle - \chi_{ij})^{2}$$

- We get different models under different conditions:
 - K-means: each z_i has one '1' and the rest are zero.
 - Least squares: we only have one variable (d=1) and the z_i are fixed.
 - PCA: no restrictions on W or Z.
 - Orthogonal PCA: the rows w_c have a norm of 1 and have an inner product of zero.
 - NMF: all elements of W and Z are non-negative.

Beyond Squared Error

• Our objective for latent-factor models (LFM):

$$f(W_{2}Z) = \sum_{j=1}^{n} \sum_{j=1}^{d} (\langle w_{j}^{j} z_{i} \rangle - \chi_{ij})^{2}$$

• As before, there are alternatives to squared error.

• If X consists of +1 and -1 values, we could use logistic loss:

$$f(w, Z) = \sum_{i=1}^{d} \sum_{j=1}^{d} \log(|+exp(-x_{ij} < w_{j}^{j} z_{i}^{j})))$$

Robust PCA

• Robust PCA methods use the absolute error:

$$f(W,Z) = \sum_{i=1}^{n} \sum_{j=1}^{d} |\langle w_{j}z_{i}\rangle - \chi_{ij}|$$

- Will be robust to outliers in the matrix 'X'.
- Encourages "residuals" r_{ij} to be exactly zero. χ_{ij}

- Non-zero r_{ii} are where the "outliers" are.

 $(w^{i})^{T} 2_{i}$

 f_{ij}

Robust PCA

• Miss Korea contestants and robust PCA:

Original image

Low rank reconstruction

Sparse error

http://jbhuang0604.blogspot.ca/2013/04/miss-korea-2013-contestants-face.html

Regularized Matrix Factorization

- For many PCA applications, ordering orthogonal PCs makes sense.
 - Latent factors are independent of each other.
 - We definitely want this for visualization.
- In other cases, ordering orthogonal PCs doesn't make sense.

Usual

Orthogonal

eigen faces

- We might not expect a natural "ordering".

A with Non-orthogonal basis

Regularized Matrix Factorization

• More recently people have considered L2-regularized PCA:

$$f(W, Z) = \frac{1}{2} ||ZW - X||_{F}^{2} + \frac{3}{2} ||W||_{F}^{2} + \frac{3}{2} ||Z||_{F}^{2}$$

- Replaces normalization/orthogonality/sequential-fitting.
 But requires regularization parameters λ₁ and λ₂.
- Need to regularize W and Z because of scaling problem.
 - If you only regularize 'W' it doesn't do anything.
 - I could take unregularized solution, replace W by αW for a tiny α to shrink ||W||_F as much as I want, then multiply Z by (1/α) to get same solution.
 - Similarly, if you only regularize 'Z' it doesn't do anything.

Sparse Matrix Factorization

• Instead of non-negativity, we could use L1-regularization:

$$f(W_{j}Z) = \frac{1}{2} ||ZW - X||_{F}^{2} + \frac{\lambda_{j}}{2} \sum_{i=1}^{2} ||Z_{i}||_{i} + \frac{\lambda_{j}}{2} \sum_{j=1}^{d} ||w_{j}||_{i}$$

- Called sparse coding (L1 on 'Z') or sparse dictionary learning (L1 on 'W').
- Disadvantage of using L1-regularization over non-negativity:
 Sparsity controlled by λ₁ and λ₂ so you need to set these.
- Advantage of using L1-regularization:
 - Sparsity controlled by λ_1 and λ_2 , so you can control amount of sparsity.
 - Negative coefficients often do make sense.

Sparse Matrix Factorization

• Instead of non-negativity, we could use L1-regularization:

$$f(W_{j}Z) = \frac{1}{2} ||ZW - X||_{F}^{2} + \frac{1}{2} \sum_{i=1}^{2} ||Z_{i}||_{i} + \frac{1}{2} \sum_{j=1}^{d} ||w_{j}||_{i}$$

- Called sparse coding (L1 on 'Z') or sparse dictionary learning (L1 on 'W').
- Many variations exist:
 - Mixing L2-regularization and L1-regularization.
 - Or normalizing 'W' (in L2-norm or L1-norm) and regularizing 'Z'.
 - K-SVD constrains each z_i to have at most 'k' non-zeroes:
 - K-means is special case where k = 1.
 - PCA is special case where k = d.

http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pd

Recent Work: Structured Sparsity

- "Structured sparsity" considers dependencies in sparsity patterns.
 - Can enforce that "parts" are convex regions.

Variations on Latent-Factor Models

• We can use all our tricks for linear regression in this context:

$$f(W_{j}Z) = \sum_{i=1}^{n} \sum_{j=1}^{d} |\langle w_{j}z_{i}\rangle - \chi_{ij}| + \frac{1}{2} \sum_{i=1}^{n} \sum_{c=1}^{k} z_{ic}^{2} + \frac{1}{2} \sum_{j=1}^{d} \sum_{c=1}^{k} |w_{cj}|$$

- Absolute loss gives robust PCA that is less sensitive to outliers.
- We can use L2-regularization.
 - Though only reduces overfitting if we regularize both 'W' and 'Z'.
- We can use L1-regularization to give sparse latent factors/features.
- We can use logistic/softmax/Poisson losses for discrete x_{ii}.
- Can use change of basis to learn non-linear latent-factor models.

Beyond NMF: Topic Models

- For modeling data as combinations of non-negative parts, NMF has largely replaced by "topic models".
 - A "fully-Bayesian" model where sparsity arises naturally.
 - Most popular example is called "latent Dirichlet allocation" (CPSC 540).

(pause)

Recommender System Motivation: Netflix Prize

- Netflix Prize:
 - 100M ratings from 0.5M users on 18k movies.
 - Grand prize was \$1M for first team to reduce squared error by 10%.
 - Started on October 2nd, 2006.
 - Netflix's system was first beat October 8th.
 - 1% error reduction achieved on October 15th.
 - Steady improvement after that.
 - ML methods soon dominated.
 - One obstacle was 'Napolean Dynamite' problem:
 - Some movie ratings seem very difficult to predict.
 - Should only be recommended to certain groups.

Lessons Learned from Netflix Prize

- Prize awarded in 2009:
 - Ensemble method that averaged 107 models.
 - Increasing diversity of models more important than improving models.

- Winning entry (and most entries) used collaborative filtering:
 - Methods that only looks at ratings, not features of movies/users.
- A simple collaborative filtering method that does really well (7%):
 - "Regularized matrix factorization". Now adopted by many companies.

Motivation: Other Recommender Systems

- Recommender systems are now everywhere:
 - Music, news, books, jokes, experts, restaurants, friends, dates, etc.
- Main types of approaches:
 - 1. Content-based filtering.
 - Supervised learning:
 - Extract features x_i of users and items, building model to predict rating y_i given x_i.
 - Apply model to prediction for new users/items.
 - Example: G-mail's "important messages" (personalization with "local" features).
 - 2. Collaborative filtering.
 - "Unsupervised" learning (have label matrix 'Y' but no features):
 - We only have labels y_{ij} (rating of user 'i' for movie 'j').
 - Example: Amazon recommendation algorithm.

Collaborative Filtering Problem

• Collaborative filtering is 'filling in' the user-item matrix:

- We have some ratings available with values {1,2,3,4,5}.
- We want to predict ratings "?" by looking at available ratings.

Collaborative Filtering Problem

• Collaborative filtering is 'filling in' the user-item matrix:

What rating would "Ryan Reynolds" give to "Green Lantern"?
 Why is this not completely crazy? We may have similar users and movies.

Matrix Factorization for Collaborative Filtering

• Our standard latent-factor model for entries in matrix 'Y':

 $\begin{array}{l} \bigvee_{n \neq j} & \bigvee_{n \neq k} &$

- And we add L2-regularization to both types of features.
 - Basically, this is regularized PCA on the available entries of Y.
 - Typically fit with SGD.
- This simple method gives you a 7% improvement on the Netflix problem.

Adding Global/User/Movie Biases

• Our standard latent-factor model for entries in matrix 'Y':

$$\dot{y}_{ij} = \langle w_j z_i \rangle$$

- Sometimes we don't assume the y_{ii} have a mean of zero:
 - We could add bias β reflecting average overall rating: $\gamma_{ij} = \beta + \langle w_{j}, Z_{i} \rangle$

– We could also add a user-specific bias
$$\beta_i$$
 and item-specific bias

$$\hat{y}_{ij} = \beta + \beta_i + \beta_j + \langle w', z_i \rangle$$

β_i.

- Some users rate things higher on average, and movies are rated better on average.
- These might also be regularized.

Beyond Accuracy in Recommender Systems

- Winning system of Netflix Challenge was never adopted.
- Other issues important in recommender systems:
 - Diversity: how different are the recommendations?
 - If you like 'Battle of Five Armies Extended Edition', recommend Battle of Five Armies?
 - Even if you really really like Star Wars, you might want non-Star-Wars suggestions.
 - Persistence: how long should recommendations last?
 - If you keep not clicking on 'Hunger Games', should it remain a recommendation?
 - Trust: tell user why you made a recommendation.
 - Quora gives explanations for recommendations.
 - Social recommendation: what did your friends watch?
 - Freshness: people tend to get more excited about *new/surprising* things.
 - Collaborative filtering does not predict well for new users/movies.
 - New movies don't yet have ratings, and new users haven't rated anything.

Content-Based vs. Collaborative Filtering

• Our latent-factor approach to collaborative filtering (Part 4):

Learns about each user/movie, but can't predict on new users/movies.

• A linear model approach to content-based filtering (Part 3):

- Here x_{ii} is a vector of features for the movie/user.
 - Usual supervised learning setup: 'y' would contain all the y_{ij}, X would have x_{ij} as rows.
- Can predict on new users/movies, but can't learn about each user/movie.

Hybrid Approaches

Hybrid approaches combine content-based/collaborative filtering:
 – SVDfeature (won "KDD Cup" in 2011 and 2012).

Stochastic Gradient for SVDfeature

- Common approach to fitting SVDfeature is stochastic gradient.
- Previously you saw stochastic gradient for supervised learning:

 — Choose a random example 'i'

• Stochastic gradient for SVDfeature (formulas as bonus):

Social Regularization

- Many recommenders are now connected to social networks.
 "Login using you Facebook account".
- Often, people like similar movies to their friends.

- Recent recommender systems use social regularization.
 - Add a "regularizer" encouraging friends' weights to be similar:

$$\frac{\lambda}{\lambda} \sum_{(i,j) \in friends''} ||z_i - z_j||^2$$

- If we get a new user, recommendations are based on friend's preferences.

Summary

- Robust PCA allows identifying certain types of outliers.
- L1-regularization leads to other sparse LFMs.
- Recommender systems try to recommend products.
- Collaborative filtering tries to fill in missing values in a matrix.
 - Matrix factorization is a common approach.

• Next time: making a scatterplot by gradient descent.

"Whitening"

- With image data, features will be very redundant.
 - Neighbouring pixels tend to have similar values.
- A standard transformation in these settings is "whitening":
 - Rotate the data so features are uncorrelated.
 - Re-scale the rotated features so they have a variance of 1.
- Using SVD approach to PCA, we can do this with:
 - Get 'W' from SVD (usually with k=d).
 - $Z = XW^{T}$ (rotate to give uncorrelated features).
 - Divide columns of 'Z' by corresponding singular values (unit variance).
- Details/discussion here.

• Consider building latent-factors for general image patches:

• Consider building latent-factors for general image patches:

Typical pre-processing:

Usual variable centering
 "Whiten" patches.
 (remove correlations)

Application: Image Restoration

(b) Principal components.

Orthogonal bases don't seem right:

- Few PCs do almost everything.
- Most PCs do almost nothing.

We believe "simple cells" in visual cortex use:

'Gabor' filters

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf http://stackoverflow.com/questions/16059462/comparing-textures-with-opencv-and-gabor-filters

• Results from a sparse (non-orthogonal) latent factor model:

(a) With centering - gray.

(b) With centering - RGB.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

• Results from a "sparse" (non-orthogonal) latent-factor model:

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

Recent Work: Structured Sparsity

• Basis learned with a variant of "structured sparsity":

Similar to "cortical columns" theory in visual cortex.

(b) With 4×4 neighborhood.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

Motivation for Topic Models

- Want a model of the "factors" making up documents.
 - Instead of latent-factor models, they're called topic models.
 - The canonical topic model is latent Dirichlet allocation (LDA).

Suppose you have the following set of sentences:

- I like to eat broccoli and bananas.
- I ate a banana and spinach smoothie for breakfast.
- Chinchillas and kittens are cute.
- My sister adopted a kitten yesterday.
- Look at this cute hamster munching on a piece of broccoli.

What is latent Dirichlet allocation? It's a way of automatically discovering **topics** that these sentences contain. For example, given these sentences and asked for 2 topics, LDA might produce something like

- Sentences 1 and 2: 100% Topic A
- Sentences 3 and 4: 100% Topic B
- Sentence 5: 60% Topic A, 40% Topic B
- Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching, ... (at which point, you could interpret topic A to be about food)
- Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster, ... (at which point, you could interpret topic B to be about cute animals)

"Topics" could be useful for things like searching for relevant documents.

Term Frequency – Inverse Document Frequency

- In information retrieval, classic word importance measure is TF-IDF.
- First part is the term frequency tf(t,d) of term 't' for document 'd'.
 - Number of times "word" 't' occurs in document 'd', divided by total words.
 - E.g., 7% of words in document 'd' are "the" and 2% of the words are "Lebron".
- Second part is document frequency df(t,D).
 - Compute number of documents that have 't' at least once.
 - E.g., 100% of documents contain "the" and 0.01% have "LeBron".
- TF-IDF is tf(t,d)*log(1/df(t,D)).

Term Frequency – Inverse Document Frequency

- The TF-IDF statistic is tf(t,d)*log(1/df(t,D)).
 - It's high if word 't' happens often in document 'd', but isn't common.
 - E.g., seeing "LeBron" a lot it tells you something about "topic" of article.
 - E.g., seeing "the" a lot tells you nothing.
- There are *many* variations on this statistic.
 - E.g., avoiding dividing by zero and all types of "frequencies".
- Summarizing 'n' documents into a matrix X:
 - Each row corresponds to a document.
 - Each column gives the TF-IDF value of a particular word in the document.

Latent Semantic Indexing

- **TF-IDF** features are very redundant.
 - Consider TF-IDFs of "LeBron", "Durant", "Harden", and "Kobe".
 - High values of these typically just indicate topic of "basketball".
- We can probably compress this information quite a bit.

- Latent Semantic Indexing/Analysis:
 - Run latent-factor model (like PCA or NMF) on TF-IDF matrix X.
 - Treat the principal components as the "topics".
 - Latent Dirichlet allocation is a variant that avoids weird df(t,D) heuristic.

SVDfeature with SGD: the gory details $(b)_{je} \text{ctive} : \frac{1}{2} \sum_{(i,j) \in R} (\hat{y}_{ij} - y_{ij})^2 \text{ with } \hat{y}_{ij} = \beta + \beta_j + \beta_j + w^T x_{ij} + (w^j)^T z_j$ Vpdate based on random (i,j): $\beta = \beta - \alpha r_{ij}$ $\beta_i = \beta_i - \alpha r_{ij}$ $\beta_j = \beta_j - \alpha r_{ij}$ Updates are the sume, but 'p' is always update while Bi and B; are Vydated for Specific user only updated for the specific user + product and product. (Adding regularization adds an extru term)

Tensor Factorization

• Tensors are higher-order generalizations of matrices:

• Generalization of matrix factorization is tensor factorization:

$$\gamma_{ijm} \approx \sum_{c=1}^{k} W_{jc} z_{ic} v_{mc}$$

- Useful if there are other relevant variables:
 - Instead of ratings based on {user,movie}, ratings based {user,movie,group}.
 - Useful if you have groups of users, or if ratings change over time.

Field-Aware Matrix Factorization

- Field-aware factorization machines (FFMs):
 - Matrix factorization with multiple z_i or w_c for each example or part.
 - You choose which z_i or w_c to use based on the value of feature.
- Example from "click through rate" prediction:
 - E.g., predict whether "male" clicks on "nike" advertising on "espn" page.
 - A previous matrix factorization method for the 3 factors used:
 - FFMs could use:
 - wespnA is the factor we use when multiplying by a an advertiser's latent factor.

Wespr Wnike + Wespn Whale + Wnike Whale WA P + WE P + WE A Wespr Wnike + Wespn Whale + White Whate

- wespnG is the factor we use when multiplying by a group's latent factor.
- This approach has won some Kaggle competitions (<u>link</u>), and has shown to work well in production systems too (<u>link</u>).

Warm-Starting

- We've used data {X,y} to fit a model.
- We now have new training data and want to fit new and old data.

• Do we need to re-fit from scratch?

- This is the warm starting problem.
 - It's easier to warm start some models than others.

Easy Case: K-Nearest Neighbours and Counting

- K-nearest neighbours:
 - KNN just stores the training data, so just store the new data.
- Counting-based models:
 - Models that base predictions on frequencies of events.
 - E.g., naïve Bayes.

- Decision trees with fixed rules: just update counts at the leaves.

Medium Case: L2-Regularized Least Squares

• L2-regularized least squares is obtained from linear algebra:

$$W = (\chi^{T}\chi + \lambda I)^{-\prime}(\chi^{T}\chi)$$

- Cost is $O(nd^2 + d^3)$ for 'n' training examples and 'd' features.
- Given one new point, we need to compute:
 - $X^{T}y$ with one row added, which costs O(d).
 - Old $X^T X$ plus $x_i x_i^T$, which costs O(d²).
 - Solution of linear system, which costs O(d³).
 - So cost of adding 't' new data point is O(td³).
- With "matrix factorization updates", can reduce this to O(td²).
 - Cheaper than computing from scratch, particularly for large d.

Medium Case: Logistic Regression

- We fit logistic regression by gradient descent on a convex function.
- With new data, convex function f(w) changes to new function g(w).

$$f(u) = \sum_{i=1}^{n} f_i(u)$$
 $g(u) = \sum_{i=1}^{n+1} f_i(u)$

- If we don't have much more data, 'f' and 'g' will be "close".
 - Start gradient descent on 'g' with minimizer of 'f'.
 - You can show that it requires fewer iterations.

Hard Cases: Non-Convex/Greedy Models

- For decision trees:
 - "Warm start": continue splitting nodes that haven't already been split.
 - "Cold start": re-fit everything.
- Unlike previous cases, this won't in general give same result as re-fitting:
 New data points might lead to different splits higher up in the tree.
- Intermediate: usually do warm start but occasionally do a cold start.
- Similar heuristics/conclusions for other non-convex/greedy models:
 - K-means clustering.
 - Matrix factorization (though you can continue PCA algorithms).