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Last Few Lectures: Latent-Factor Models

* We’'ve been discussing latent-factor models of the form:

n d
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* We get different models under different conditions:
— K-means: each z, has one ‘1" and the rest are zero.
— Least squares: we only have one variable (d=1) and the z, are fixed.
— PCA: no restrictions on W or Z.

* Orthogonal PCA: the rows w_ have a norm of 1 and have an inner product of zero.

— NMF: all elements of W and Z are non-negative.



Beyond Squared Error

* Our objective for latent-factor models (LFM):

F(W) 2)= % % (<w")2->— )(;J')z
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* As before, there are alternatives to squared error.
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* |If X consists of +1 and -1 values, we could use logistic loss:
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Robust PCA

e Robust PCA methods use the absolute error:
n
F(W2)= 72 kier= o |
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* Will be robust to outliers in the matrix ‘X..
* Encourages “residuals” r; to be exactly zero. X )2,

— Non-zero r; are where the “outliers” are.
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Robust PCA

e Miss Korea contestants and robust PCA:

Original image Low rank Sparse error
reconstruction

http://jbhuang0604.blogspot.ca/2013/04/miss-korea-2013-contestants-face.html



Regularized Matrix Factorization

 For many PCA applications, ordering orthogonal PCs makes sense.
— Latent factors are independent of each other.
— We definitely want this for visualization.

* |n other cases, ordering orthogonal PCs doesn’t make sense.

— We might not expect a natural “ordering”.
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Regularized Matrix Factorization

* More recently people have considered L2-regularized PCA:
Fw 2= hzw-xIE + 2wl + 202l

* Replaces normalization/orthogonality/sequential-fitting.
— But requires regularization parameters A; and A,.

* Need to regularize W and Z because of scaling problem.
— |f you only regularize ‘W’ it doesn’t do anything.

* | could take unregularized solution, replace W by aW for a tiny a to
shrink | |W| | as much as | want, then multiply Z by (1/a) to get same solution.

— Similarly, if you only regularize Z’ it doesn’t do anything.



Sparse Matrix Factorization

* |nstead of non-negativity, we could use L1-regularization:

n d
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— Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).
* Disadvantage of using L1-regularization over non-negativity:
— Sparsity controlled by A; and A, so you need to set these.

* Advantage of using L1-regularization:
— Sparsity controlled by A; and A,, so you can control amount of sparsity.
— Negative coefficients often do make sense.



Sparse Matrix Factorization

* |nstead of non-negativity, we could use L1-regularization:

n d
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— Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).

* Many variations exist:
— Mixing L2-regularization and L1-regularization.

* Or normalizing ‘W’ (in L2-norm or L1-norm) and regularizing Z’.
— K-SVD constrains each z; to have at most ‘k” non-zeroes:

e K-means is special case where k = 1.
* PCA is special case where k =d.



Matrix Factorization with L1-Regularization
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Recent Work: Structured Sparsity

e “Structured sparsity” considers dependencies in sparsity patterns.
— Can enforce that “parts” are convex regions.
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Variations on Latent-Factor Models

 We can use all our tricks for linear regression in this context:
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* Absolute Ioss gives robust PCA that is less sensitive to outliers.
 We can use L2-regularization.

— Though only reduces overfitting if we regularize both ‘W’ and ‘Z’.
* We can use L1-regularization to give sparse latent factors/features.
* We can use logistic/softmax/Poisson losses for discrete X
* Can use change of basis to learn non-linear latent-factor models.



Beyond NMF: Topic Models

 For modeling data as combinations of non-negative parts,
NMF has largely replaced by “topic models”.

— A “fully-Bayesian” model where sparsity arises naturally.
— Most popular example is called “latent Dirichlet allocation” (CPSC 540).
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Recommender System Motivation: Netflix Prize

e Netflix Prize:

— 100M ratings from 0.5M users on 18k movies.

— Grand prize was $S1M for first team to reduce squared error by 10%.
— Started on October 2" 2006.

— Netflix’s system was first beat October 8t,

— 1% error reduction achieved on October 15,

— Steady improvement after that.

* ML methods soon dominated.

— One obstacle was ‘Napolean Dynamite’ problem:
 Some movie ratings seem very difficult to predict.
* Should only be recommended to certain groups.



Lessons Learned from Netflix Prize

 Prize awarded in 2009:

— Ensemble method that averaged 107 models.
— Increasing diversity of models more important than improving models.
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* Winning entry (and most entries) used collaborative filtering:
— Methods that only looks at ratings, not features of movies/users.

* Asimple collaborative filtering method that does really well (7%):

— “Regularized matrix factorization”. Now adopted by many companies.



Motivation: Other Recommender Systems

e Recommender systems are now everywhere:
— Music, news, books, jokes, experts, restaurants, friends, dates, etc.

* Main types of approaches:
1. Content-based filtering.

e Supervised learning:
— Extract features x; of users and items, building model to predict rating y; given x..
— Apply model to prediction for new users/items.

’ o

* Example: G-mail’s “important messages” (personalization with “local” features).

2. Collaborative filtering.

* “Unsupervised” learning (have label matrix ‘Y’ but no features):

— We only have labels y; (rating of user i’ for movie j’).

* Example: Amazon recommendation algorithm.



Collaborative Filtering Problem

e Collaborative filtering is ‘filling in” the user-item matrix:
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* We have some ratings available with values {1,2,3,4,5}.

 We want to predict ratings “?” by looking at available ratings.



Collaborative Filtering Problem

e Collaborative filtering is ‘filling in” the user-item matrix:
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* What rating would “Ryan Reynolds” give to “Green Lantern”?

— Why is this not completely crazy? We may have similar users and movies.



Matrix Factorization for Collaborative Filtering

Our standard latent-factor model for entries in matrix ‘Y’:

Y/’V"ZW )/.\)’4'5<w’)z,‘>
nxd  nxk kxd
User ‘i’ has latent features z..

Movie ‘j’ has latent features w.
Our loss functions sums over available ratings ‘R’:

F2w) = (Zk ez yy)* + Azl + ?l_zzwwn,f

And we add L2-regularization to both types of features.
— Basically, this is regularized PCA on the available entries of .
— Typically fit with SGD.

This simple method gives you a 7% improvement on the Netflix problem.



Adding Global/User/Movie Biases

e Qur standard latent-factor model for entries in matrix ‘Y’:
N < 5
)/0 — W)Zé?

* Sometimes we don’t assume the y; have a mean of zero:
— We could add bias B reflectlng average overall rating:

}/\) ﬁ+<"")z 7

— We could also add a user-specific bias 3, and item-specific bias (3..

= _ . ..)'
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* Some users rate things higher on average, and movies are rated better on average.
* These might also be regularized.



Beyond Accuracy in Recommender Systems

* Winning system of Netflix Challenge was never adopted.

e Other issues important in recommender systems:

— Diversity: how different are the recommendations?
* If you like ‘Battle of Five Armies Extended Edition’, recommend Battle of Five Armies?
* Even if you really really like Star Wars, you might want non-Star-Wars suggestions.

— Persistence: how long should recommendations last?

* If you keep not clicking on ‘Hunger Games’, should it remain a recommendation?
— Trust: tell user why you made a recommendation.

* Quora gives explanations for recommendations.
— Social recommendation: what did your friends watch?

— Freshness: people tend to get more excited about new/surprising things.

 Collaborative filtering does not predict well for new users/movies.
— New movies don’t yet have ratings, and new users haven’t rated anything.



Content-Based vs. Collaborative Filtering

* Our latent-factor approach to collaborative filtering (Part 4):
N
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— Learns about each user/movie, but can’t predict on new users/movies.

* Alinear model approach to content-based filtering (Part 3):
N\ —
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Suf"wk‘! 'fﬁ'n"'l‘l se 7{4'0.
— Here x; is a vector of features for the movie/user.

* Usual supervised learning setup: ‘y’ would contain all the y;, X would have x; as rows.
— Can predict on new users/movies, but can’t learn about each user/movie.



Hybrid Approaches

* Hybrid approaches combine content-based/collaborative filtering:
— SVDfeature (won “KDD Cup” in 2011 and 2012).
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— Note that x; is a feature vector. Also, ‘W’ and ‘wW” are different parameters.



Stochastic Gradient for SVDfeature

e Common approach to fitting SVDfeature is stochastic gradient.

* Previously you saw stochastic gradient for supervised learning:
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e Stochastic gradient for SVDfeature (formulas as bonus):
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Social Regularization

* Many recommenders are now connected to social networks.
— “Login using you Facebook account”.

* Often, people like similar movies to their friends.

* Recent recommender systems use social regularization.
— Add a “regularizer” encouraging friends” weights to be similar:

A S y-»

A DE
— |f we get a new user, recommendations are based on friend’s preferences.



Summary

Robust PCA allows identifying certain types of outliers.
| 1-regularization leads to other sparse LFMs.

Recommender systems try to recommend products.
Collaborative filtering tries to fill in missing values in a matrix.

— Matrix factorization is a common approach.

Next time: making a scatterplot by gradient descent.



“Whitening”

With image data, features will be very redundant.
— Neighbouring pixels tend to have similar values.

A standard transformation in these settings is “whitening”:
— Rotate the data so features are uncorrelated.
— Re-scale the rotated features so they have a variance of 1.

Using SVD approach to PCA, we can do this with:

— Get ‘W’ from SVD (usually with k=d).

— Z = XWT (rotate to give uncorrelated features).

— Divide columns of ‘Z’ by corresponding singular values (unit variance).

Details/discussion here.


http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/

Latent-Factor Models for Image Patches

* Consider building latent-factors for general image patches:
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Latent-Factor Models for Image Patches

* Consider building latent-factors for general image patches:

)

]

Typical pre-processing:
1. Usual variable centering

2. “Whiten” patches.
@i) (remove correlations)
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Latent-Factor Models for Image Patches

Orthogonal bases don’t seem right:
* Few PCs do almost everything.
* Most PCs do almost nothing.

We believe “simple cells” in visual cortex use:
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(b) Principal components. ‘Gabor’ filters

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
http://stackoverflow.com/questions/16059462/comparing-textures-with-opencv-and-gabor-filters



Latent-Factor Models for Image Patches

e Results from a sparse (non-orthogonal) latent factor model:
e BT LT L Bl B TR

= |

|
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(a) With centering - gray. (b) With centering - RGB.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf



Latent-Factor Models for Image Patches

e Results from a “sparse” (non-orthogonal) latent-factor model:

(c) With whitening - gray. (d) With whitening - RGB.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf



Recent Work: Structured Sparsity

e Basis learned with a variant of “structured sparsity”:
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(b) With 4 x 4 neighborhood.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf



Motivation for Topic Models

 Want a model of the “factors” making up documents.
— Instead of latent-factor models, they’re called topic models.
— The canonical topic model is latent Dirichlet allocation (LDA).

Suppose you have the following set of sentences:

® | like to eat broccoli and bananas.

® | ate a banana and spinach smoothie for breakfast.

® Chinchillas and kittens are cute.

® My sister adopted a kitten yesterday.

® | ook at this cute hamster munching on a piece of broccoli.

What is latent Dirichlet allocation? It's a way of automatically discovering topics that these sentences contain. For example, given these sentences and asked for 2 topics, LDA might produce
something like

* Sentences 1 and 2: 100% Topic A

* Sentences 3 and 4: 100% Topic B

* Sentence 5. 60% Topic A, 40% Topic B

* Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching, ... (at which point, you could interpret topic A to be about food)
* Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster, ... (at which point, you could interpret topic B to be about cute animals)

— “Topics” could be useful for things like searching for relevant documents.



Term Frequency — Inverse Document Frequency

In information retrieval, classic word importance measure is TF-IDF.

First part is the term frequency tf(t,d) of term ‘t’ for document ‘d’.

— Number of times “word” ‘t” occurs in document ‘d’, divided by total words.

— E.g., 7% of words in document ‘d” are “the” and 2% of the words are “Lebron”.

Second part is document frequency df(t,D).

— Compute number of documents that have ‘t’ at least once.
— E.g., 100% of documents contain “the” and 0.01% have “LeBron”.

TF-IDF is tf(t,d) *log(1/df(t,D)).

4



Term Frequency — Inverse Document Frequency

* The TF-IDF statistic is tf(t,d)*log(1/df(t,D)).
— It’s high if word ‘t” happens often in document ‘d’, but isn’t common.
— E.g., seeing “LeBron” a lot it tells you something about “topic” of article.
— E.g., seeing “the” a lot tells you nothing.

 There are *many™ variations on this statistic.
— E.g., avoiding dividing by zero and all types of “frequencies”.

e Summarizing ‘n” documents into a matrix X:
— Each row corresponds to a document.
— Each column gives the TF-IDF value of a particular word in the document.



Latent Semantic Indexing

* TF-IDF features are very redundant.
— Consider TF-IDFs of “LeBron”, “Durant”, “Harden”, and “Kobe”.

— High values of these typically just indicate topic of “basketball”.

 We can probably compress this information quite a bit.

* Latent Semantic Indexing/Analysis:
— Run latent-factor model (like PCA or NMF) on TF-IDF matrix X.
— Treat the principal components as the “topics”.
— Latent Dirichlet allocation is a variant that avoids weird df(t,D) heuristic.



SVDfeature with SGD: the gory details
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Tensor Factorization

* Tensors are higher-order generalizations of matrices: ./7' ’
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e Generalization of matrix factorization is tensor factorization:
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e Useful if there are other relevant variables:

* Instead of ratings based on {user,movie}, ratings based {user,movie,group}.
» Useful if you have groups of users, or if ratings change over time.



Field-Aware Matrix Factorization

* Field-aware factorization machines (FFMs):
— Matrix factorization with multiple z, or w, for each example or part.
— You choose which z, or w_ to use based on the value of feature.

 Example from “click through rate” prediction:
— E.g., predict whether “male” clicks on “nike” advertising on “espn” page.

— A previous matrix factorization method for the 3 factors used:
W.. . W +k/(.< WM/c{'VV'/W/P
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— FFMs could use: m’,’;, o, ¥ wfr, Wige ¥ Wity e
* wespnA is the factor we use when multiplying by a an advertiser’s latent factor.

* wespnG is the factor we use when multiplying by a group’s latent factor.

* This approach has won some Kaggle competitions (link),
and has shown to work well in production systems too (link).


https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf
https://arxiv.org/pdf/1701.04099.pdf

Warm-Starting

We've used data {X,y} to fit a model.
We now have new training data and want to fit new and old data.

Do we need to re-fit from scratch?

This is the warm starting problem.

— It’s easier to warm start some models than others.



Easy Case: K-Nearest Neighbours and Counting

e K-nearest neighbours:
— KNN just stores the training data, so just store the new data.

* Counting-based models:
— Models that base predictions on frequencies of events.
— E.g., naive Bayes.
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— Decision trees with fixed rules: just update counts at the leaves.



Medium Case: L2-Regularized Least Squares

e |L2-regularized least squares is obtained from linear algebra:
w= X + A7 (X))

— Cost is O(nd? + d3) for ‘n’ training examples and ‘d’ features.

* Given one new point, we need to compute:
— X'y with one row added, which costs O(d).
— Old X™X plus x.x.", which costs O(d?).
— Solution of linear system, which costs O(d3).
— So cost of adding ‘t” new data point is O(td3).

e With “matrix factorization updates”, can reduce this to O(td?).
— Cheaper than computing from scratch, particularly for large d.



Medium Case: Logistic Regression

* We fit logistic regression by gradient descent on a convex function.

* With new data, convex function f(w) changes to new function g(w).

n+¥ |

f=240) )= 2 fe
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* If we don’t have much more data, ‘t" and ‘g’ will be “close”.

— Start gradient descent on ‘g” with minimizer of ‘.
— You can show that it requires fewer iterations.
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Hard Cases: Non-Convex/Greedy Models

For decision trees:
— “Warm start”: continue splitting nodes that haven’t already been split.
— “Cold start”: re-fit everything.

Unlike previous cases, this won’t in general give same result as re-fitting:
— New data points might lead to different splits higher up in the tree.

Intermediate: usually do warm start but occasionally do a cold start.

Similar heuristics/conclusions for other non-convex/greedy models:
— K-means clustering.
— Matrix factorization (though you can continue PCA algorithms).



