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Last Time: PCA with Orthogonal/Sequential Basis

* When k=1, PCA has a scaling problem.

* When k > 1, have scaling, rotation, and label switching.
— Standard fix: use normalized orthogonal rows W_ of ‘W".
| wc”:l and w ' w, =0 for '#¢
— And fit the rows in order:

* First row “explains the most variance” or “reduces error the most”.
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Colour Opponency in the Human Eye

* Classic model of the eye is with 4 photoreceptors:
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— Rods (more sensitive to brightness). e
— L-Cones (most sensitive to red). R %’
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— M-Cones (most sensitive to green). AUf) IJLJLfﬁ:m
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— S-Cones (most sensitive to blue). : “;’ We——
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* Two problems with this system:
— Not orthogonal.

* High correlation in particular between red/green.

— We have 4 receptors for 3 colours.
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Colour Opponency in the Human Eye

* Bipolar and ganglion cells seem to code using “opponent colors”:

— 3-variable orthogonal basis: —
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* This is similar to PCA (d =4, k = 3).




Colour Opponency Representation
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Choosing ‘k’ by “Variance Explained”

e Common to choose ‘k’ based on variance of the X
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— For a given ‘k’ we compute (variance of errors)/(variance of X;;):
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— Gives a number between 0 (k=d) and 1 (k=0), giving “variance remaining”.
 If you want to “explain 90% of variance”, choose smallest ‘k” where ratio is < 0.10.




“Variance Explained” in the Doom Map

* Recall the Doom latent-factor model (where map ignores height):
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* |Interpretation of “variance remaining” formula:
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* |f we had a 3D map the “variance remaining” would be 0.



“Synthesis” View vs. “Analysis” View

* We said that PCA finds hyper-plane minimizing distance to data x..
— This is the “synthesis” view of PCA (connects to k-means and least squares).
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* “Analysis” view when we have orthogonality constraints:
— PCA finds hyper-plane maximizing variance in z, space.
— You pick W to “explain as much variance in the data” as possible.



Application: Face Detection

* Consider problem of face detection:
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[ .
* Classic methods use “eigenfaces” as basis:
— PCA applied to images of faces.



Application: Face Detection




Eigenfaces

Collect a bunch of images of faces under different conditions:

- Each row (91[ X will  be 'om/s in gng image
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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VQ vs. PCA vs. NMF

 But how should we represent faces?

— Vector quantization (k-means).
* Replace face by the average face in a cluster.
* ‘Grandmother cell’: one neuron = one face.
e Can’t distinguish between people in the same cluster (only ‘k’ possible faces).
* Almost certainly not true: too few neurons.
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VQ vs. PCA vs. NMF

 But how should we represent faces?

— Vector quantization (k-means).

— PCA (orthogonal basis).
* Global average plus linear combination of “eigenfaces”.
* “Distributed representation”.

— Coded by pattern of group of neurons: can represent infinite number of faces by changing z..

e But “eigenfaces” are not intuitive ingredients for faces.

— PCA tends to use positive/negative cancelling bases.
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VQ vs. PCA vs. NMF

 But how should we represent faces?

— Vector quantization (k-means).
— PCA (orthogonal basis).

— NMF (non-negative matrix factorization):
* |Instead of orthogonality/ordering in W, require W and Z to be non-negativity.
* Example of “sparse coding”:

— The z, are sparse so each face is coded by a small number of neurons.
— The w_ are sparse so neurons tend to be “parts” of the object.
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Representing Faces

 Why sparse coding?
— “Parts” are intuitive, and brains seem to use sparse representation.
— Energy efficiency if using sparse code.

— Increase number of concepts you can memorize?
 Some evidence in fruit fly olfactory system. wase ”o{,‘d;omd,\/“
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Warm-up to NMF: Non-Negative Least Squares

* Consider our usual least squares problem:
N
_ | 7 2
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* But assumey, and elements of x, are non-negative:
— Could be sizes (‘height’, ‘milk’, ‘lkm’) or counts (‘vicodin’, ‘likes’, ‘retweets’).
 Assume we want elements of ‘w’ to be non-negative, too:

— No physical interpretation to negative weights.
— If x;; is amount of product you produce, what does w; < 0 mean?

* Non-negativity leads to sparsity...



Sparsity and Non-Negative Least Squares

* Consider 1D non-negative least squares objective:
Ho)= 5 é(w X; "‘\/,»)2 wilh w20
* Plotting the (constrained) objective function:
7 KA Fiw)
\
77// w
O

* |n this case, non-negative solution is least squares solution.



Sparsity and Non-Negative Least Squares

* Consider 1D non-negative least squares objective:
ﬂw): 2' Z(w X; “‘\/,—)2 wilh w ZO
* Plotting the (constrained) objective function:
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* |n this case, non-negative solution is w = 0.



Sparsity and Non-Negativity

* Similar to L1-regularization, non-negativity leads to sparsity.
— Also regularizes: w; are smaller since can’t “cancel” negative values.

— Sparsity leads to cheaper predictions and often to more interpretability.
* Non-negative weights are often also more interpretable.

* How can we minimize f(w) with non-negative constraints?
— Naive approach: solve least squares problem, set negative w; to 0.
Comrnfe w - ()(7)()\()(1\/)
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— This is correct when d = 1.
— Can be worse than setting w = 0 when d > 2.



Sparsity and Non-Negativity

e Similar to L1-regularization, non-negativity leads to sparsity.

— Also regularizes: w; are smaller since can’t “cancel” out negative values.

* How can we minimize f(w) with non-negative constraints?

— A correct approach is projected gradient algorithm:
* Run a gradient descent iteration:

t+'4

.
W = Wt % Vf(wt)
* After each step, set negative values to O.
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* Repeat.



Sparsity and Non-Negativity

e Similar to L1-regularization, non-negativity leads to sparsity.

— Also regularizes: w; are smaller since can’t “cancel” out negative values.

* How can we minimize f(w) with non-negative constraints?

— A correct approach is projected gradient algorithm:
{:-H/J _64, _ t'”[z
W2 b = EYE) Wt = max 20, Wy

— Similar properties to gradient descent:
* Guaranteed decrease of ‘f’ if a, is small enough.
e Reaches local minimum under weak assumptions (global minimum for convex ‘f’).

— Least squares objective is still convex when restricted to non-negative variables.

* Generalizations allow things like L1-regularization instead of non-negativity.
(“findMinL1”)



Projected-Gradient for NMF

* Back to the non-negative matrix factorization (NMF) objective:

n ( _
F(W,2)= 22 Kapp—x,)? with w70
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— Different ways to use projected gradient:
* Alternate between projected gradient steps on ‘W’ and on ‘Z’.
e Or run projected gradient on both at once.
 Or sample arandom ‘i’ and ‘j” and do stochastic projected gradient.
v ¢

St 272~ L EW2) and (00— FW2) for seleded i and

L] L] L] L] L] L] L] L] L] r /M
— Non-convex and (unlike PCA) is sensitive to initialization. (kedp other v g !
W ad 2 ﬂml)

 Hard to find the global optimum. \’_\‘/\/
* Typically use random initialization.
values +5 0



Application: Sports Analytics

e NBA shot charts:

 NMF (using “KL divergence” loss with k=10 anc

Stephen Curry (940 shots)

LeBron James (315 shots)

smoothed data).

— Negative 2D)| 2O) 30O) HO)| B)| 2@)| > c_) >O) PO)| 2O
i

va I ues wou I d LeBron James  0.21 0.16 0.12 0.09 0.04 0.07 0.00 0.07 0.08 0.17
Brook Lopez 0.06 0.27 0.43 0.09 0.01 0.03 0.08 0.03 0.00 0.01

not ma ke Tyson Chandler 0.26 0.65 0.03 0.00 0.01 0.02 0.01 0.01 0.02 0.01
Marc Gasol 0.19 0.02 0.17 0.01 0.33 0.25 0.00 0.01 0.00 0.03

SENse h ere. Tony Parker 0.12 0.22 0.17 0.07 0.21 0.07 0.08 0.06 0.00 0.00
Kyrie Irving 0.13 0.10 0.09 0.13 0.16 0.02 0.13 0.00 0.10 0.14

Stephen Curry ~ 0.08 0.03 0.07 0.01 0.10 0.08 0.22 0.05 0.10 0.24

James Harden 0.34 0.00 0.11 0.00 0.03 0.02 0.13 0.00 0.11 0.26

Steve Novak 0.00 0.01 0.00 0.02 0.00 0.00 0.01 0.27 0.35 0.34




Application: Cancer “Signatures”

e What are common sets of mutations in different cancers?

— May lead to new treatment options.
A . Q

C>A C>G C>T T>A T>C T>G C>A C>G C>T T>A T>C T>G Other
30% - 300, W S— = w——
- Signature 1 Signature 5 _
20% DC;IP 20% CoCpG  TPCPA kataegis
ApCpG GpCpG \ ToCoT
‘. Joco s |
10% | 10% \ /
l v r Loy
1 1 I
0% Tt T e e ) VTYIT"]'""--: ------- PYE0 L SRR L S N —— 0% B e Bl e _.._.y.tkvh"f,hﬂ P R P
30% ToCoA C Indels
T - TpCpC i
perC S [TPEPC o6 Signature 2

TpCpA
20% \
ToCpT || _-TpCoT
TpCpA - . e
10% \. ToCpT v
4

0% e v R | B —
30%
Signature 3
20% ignature 1
Repetitive regions Microhomologies HZignmm 2
10% Eisignature 3
Elsignature 4
(VLR 00 S TT05 T { TR S g S0 DR PR 1 S S 0 S N —— ESIgna!uro 5
30%
ToCpC Signature 4
20% phep 9
TpCpA ToCoT
10% g _Tolp
iv F
0% v rnes?T e Tretve 1I|. O ST S S At SOt S — z
O N — Kataegis Dinucleotides
C>A C>G C>T T>A T>C T>G

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3588146/



Summary

Biological motivation for orthogonal and/or sparse latent factors.
Choosing ‘k’:
— We can choose ‘k’ to explain “percentage of variance” in the data.

Non-negative matrix factorization leads to sparse LFM.

Non-negativity constraints lead to sparse solution.
— Projected gradient adds constraints to gradient descent.
— Non-orthogonal LFMs make sense in many applications.

L1-regularization leads to other sparse LFMs.

Next time: the million-dollar NetFlix challenge.



Proof: “Synthesis” View = “Analysis” View (WW' = |)

. The variance ofthez (maximized in “analysis” view):
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\_’—\—\
L 2w XIE = 1YW W= XIE = T ( ow™w =X (i =X)) Soled Ly

IAll=TH) ) T (W WX XWW) - 2T (WWX X)+Tf()(’)() Same "y
T

o = Ir(w WW’WX'X) 2T (Wwx7x)+ Tl ’X)j
= T(\/\/ W)( )()4' ((omsfwﬂ)




Canonical Correlation Analysis (CCA)

Suppose we have two matrices, X’ and ‘Y".
Want to find matrices W, and W, that maximize correlation.

— “What are the latent factors in common between these datasets?”
Define the correlation matrices:
S noo 2
2" 7" g"i" Z‘rv: ’;‘g‘/f/: 2){3 " ’Z’ )r;y,.7
Canonical correlation analysis (CCA) maximizes
u /4 3
TWW, 5,2, 2%)
— Subject to W, and W, having orthogonal rows.

Computationally, equivalent to PCA with a different matrix.
— Using the “analysis” view that PCA maximizes Tr(WTWXTX).



Kernel PCA

From the “analysis” view (with orthogonal PCs) PCA maximizes:
o T T
F(WWXX)
It can be shown that the solution has the form (see here):
. vV
lcxd I nx |

Re-parameterizing in terms of ‘U’ gives a kernelized PCA:
I-CXTUTUNXX) = T- (VTUXK KT
\ v

It’s hard to initially center data in ‘Z’ space, }( K
but you can form the centered kernel matrix (see here).


https://www.ics.uci.edu/~welling/classnotes/papers_class/Kernel-PCA.pdf
https://www.ics.uci.edu/~welling/classnotes/papers_class/Kernel-PCA.pdf

Probabilistic PCA

With zero-mean (“centered”) data, in PCA we assume that
x, % W'z,
In probabilistic PCA we assume that
X, v /\/(WTZ,)(;»’I ) z, v /\/(07I>
Integrating over ‘Z’ the marginal likelihood given ‘W’ is Gaussian,

. | W "//\/(07 WW + 62T )

Regular PCA is obtained as the limit of 62 going to 0.



Generalizations of Probabilistic PCA

Probabilistic PCA model:
. | W A//\/(07 W'W + 62T )

Why do we need a probabilistic interpretation?

Shows that PCA fits a Gaussian with restricted covariance.
— Hope is that WTW + 62l is a good approximation of X'X.

Gives precise connection between PCA and factor analysis.



Factor Analysis

e Factor analysis is a method for discovering latent factors.
e Historical applications are measures of intelligence and personality.

Trait Description

Being curious, original, intellectual, creative, and open to

Openness ;
P new ideas.

Being organized, systematic, punctual, achievement-

Conscientiousness oriented, and dependable.

Being outgoing, talkative, sociable, and enjoying

Extraversion social situations.

Being affable, tolerant, sensitive, trusting, kind,

Agreeableness ardl watin,

Neuroticism Being anxious, irritable, temperamental, and moody.

* A standard tool and widely-used across science and engineering.



PCA vs. Factor Analysis

e PCA and FA both write the matrix ‘X’ as

XxZW

 PCA and FA are both based on a Gaussian assumption.

e Are PCA and FA the same?

— Both are more than 100 years old.

— People are still arguing about whether they are the same:
 Doesn’t help that some packages run PCA when you call their FA method.



GO gle pca vs. factor analysis

Al Images Videos Mews Maps More = Search tools

About 358,000 results (0.17 seconds)

[FBFl Principal Component Analysis versus Exploratory Factor .
www2.sas.com/proceedings/sugi30/203-30 pdf ~

oy DD Suhr - Cited by 118 - Related articles

1. Paper 203-30. Principal Component Analysis vs. Exploratory Factor Analysis.
Diana D. Suhr, Ph.D. University of Morthern Colorado. Abstract. Principal ...

pca - What are the differences between Factor Analysis and ...
stats_stackexchange.com/.._fwhat-are-the-differences-between-factor-anal .. ~
Aug 12, 2010 - Principal Component Analysis (PCA) and Common Factor Analysis
(CFA) ... differently one has to interpret the strength of loadings in PCA vs.

What are the differences between principal components ...
support.minitab.com/.__factor-analysis/differences-between-pca-and-facto...
Principal Components Analysis and Factor Analysis are similar because both
procedures are used to simplify the structure of a set ofvariables. However, the ...

FOFl Principal Components Analysis - UNT

https:/fwww.unt edu/rssiclass/ _/Principal%20Components%20Analysis p... =
PCA vs. Factor Analysis. = It is easy to make the mistake in assuming thatthese are
the same techniques, though in some ways exploratory factor analysis and ...

Factor analysis versus Principal Components Analysis (PCA)
psych.wisc.edu/henrigues/pca.html ~

Jun 19, 2010 - Factor analysis versus PCA. These techniques are typically used to
analyze groups of correlated variables representing one or more commaon ...

ORI Principal Component Analysis and Factor Analysis
www.stats.ox.ac.uk/~ripley/MultAnal_HT2007/PC-FA_ pdf =

where D is diagonal with non-negative and decreasing values and U and 'V ...
Factor analysis and PCA are often confused, and indeed SPSS has PCA as.

How can | decide between using principal components ..
https:/fwww.researchgate_net/.._/How_can_|_decide_between_using_prin... =
Factor analysis (FA) is a group of statistical methods used to understand and
simplify patterns ... Retrieved from hitp:/ipareonline.net/getvn.asp?v=108&n=7 ...
Principal component analysis (PCA) is a method of factor extraction (the second
step ..

[FoFl Exploratory Factor Analysis and Principal Component An...
www lesahoffman.com/948/948 L ecture2 EFA_PCA pdf

2 very different schools of thought on exploratory factor analysis (EFA) vs. principal
components analysis (PCA); > EFA and PCA are TWO ENTIRELY ...

Factor analysis - Wikipedia, the free encyclopedia

https:/fen wikipedia_org/wiki/Factor_analysis =

Jump to Exploratory factor analysis versus principal components ... - [edit]. See
also: Principal component analysis and Exploratory factor analysis.

ORI The Truth about PCA and Factor Analysis
www.stat.cmu.edu/~cshalizif350/lectures/13/lecture-13.pdf ~
Sep 28, 2009 - nents and factor analysis, we'll wrap up by looking at their uses and



PCA vs. Factor Analysis ///j\\

In probabilistic PCA we assume: \\_’y =
1 2
X, 7V /V(W Z,')ﬁ l>

In FA we assume for a diagonal matrix D that: /ﬁ
X /V/V(W"Z() D) —

The posterior in this case is: X, W~ /V( 07 W +D) W
| S

The difference is you have a noise variance for each dimension
— FA has extra degrees of freedom.




PCA vs. Factor Analysis

In practice there often isn’t a huge difference:

Principal component analyzis Factor analysis
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Factor Analysis Discussion

e Differences with PCA:

— Unlike PCA, FA is not affected by scaling individual features.
— But unlike PCA, it’s affected by rotation of the data.
— No nice “SVD” approach for FA, you can get different local optima.

 Similar to PCA, FA is invariant to rotation of ‘W’.

— So as with PCA you can’t interpret multiple factors as being unique.



Motivation for ICA

* Factor analysis has found an enormous number of applications.
— People really want to find the “hidden factors” that make up their data.

 But PCA and FA can’t identify the factors.

15[

-2 =15 =1 -0.5 0 0.5 1 1.5

Latent data is sampled from the prior p(x;) cc exp(—5 v|x;]) with the mixing matrix A
shown in green to create the observed two dimensional vectors y = Ax. The red lines are
the mixing matrix estimated by ica.m based on the observations. For comparison, PCA
produces the blue (dashed) components. Note that the components have been scaled to
improve visualisation. As expected, PCA finds the orthogonal directions of maximal
variation. ICA however, correctly estimates the directions in which the components were
independently generated.



Motivation for ICA

Factor analysis has found an enormous number of applications.
— People really want to find the “hidden factors” that make up their data.

But PCA and FA can’t identify the factors.
— We can rotate W and obtain the same model.

Independent component analysis (ICA) is a more recent approach.
— Around 30 years old instead of > 100.
— Under certain assumptions it can identify factors.

The canonical application of ICA is blind source separation.



Blind Source Separation

* |nput to blind source separation:
— Multiple microphones recording multiple sources.

= I Source 1 Source 2
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* Each microphone gets different mixture of the sources.
— Goal is reconstruct sources (factors) from the measurements.



Independent Component Analysis Applications

* |CA s replacing PCA and FA in many applications:

Some ICA applications are listed below: !

« optical Imaging of neuronst!?!

« neuronal spike sortingl'®!

. face recognition!®]

» modeling receptive fields of primary visual neurons©!

. predicting stock market prices(®]

» mobile phone communications [22]

. color based detection of the ripeness of tomatoes(="]

« removing artifacts, such as eye blinks, from EEG data.[#*]

* Recent work shows that ICA can often resolve direction of causality.



Limitations of Matrix Factorization

* |CA is a matrix factorization method like PCA/FA,

e Let’s assume that X = ZW for a “true” W with k = d.
— Different from PCA where we assume k < d.

* There are only 3 issues stopping us from finding “true” W.



3 Sources of Matrix Factorization Non-Uniquness

Label switching: get same model if we permute rows of W.
— We can exchange row 1 and 2 of W (and same columns of Z).
— Not a problem because we don’t care about order of factors.

Scaling: get same model if you scale a row.
— If we mutiply row 1 of W by a, could multiply column 1 of Z by 1/a.
— Can’t identify sign/scale, but might hope to identify direction.

Rotation: get same model if we rotate W.

— Rotations correspond to orthogonal matrices Q, such matrices have Q'Q = |.
— If we rotate W with Q, then we have (QW)'™QW = W'Q'QW = WTW.

If we could address rotation, we could identify the “true” directions.



A Unigue Gaussian Property

* Consider an independent prior on each latent features z..
— E.g., in PPCA and FA we use N(0,1) for each z_.

 If prior p(z) is independent and rotation-invariant (p(Qz) = p(z)),
then it must be Gaussian (only Gaussians have this property).

* The (non-intuitive) magic behind ICA:
— If the priors are all non-Gaussian, it isn’t rotationally symmetric.
— In this case, we can identify factors W (up to permutations and scalings).



PCA vs. ICA

2 45 185 0 05 1 15

Figure : Latent data is sampled from the prior p(x;) cc exp(—5 Vix;|) with the mixing matrix A
shown in green to create the observed two dimensional vectors y = Ax. The red lines are
the mixing matrix estimated by ica.m based on the observations. For comparison, PCA
produces the blue (dashed) components. Mote that the components have been scaled to
improve visualisation. As expected, PCA finds the orthogonal directions of maximal
variation. ICA however, correctly estimates the directions in which the components were
independently generated.



Independent Component Analysis

In ICA we approximate X with ZW,
assuming p(z,.) are non-Gaussian.

Usually we “center” and “whiten” the data before applying ICA.

There are several penalties that encourage non-Gaussianity:
— Penalize low kurtosis, since kurtosis is minimized by Gaussians.
— Penalize high entropy, since entropy is maximized by Gaussians.

The fastICA is a popular method maximizing kurtosis.



ICA on Retail Purchase Data

* Cash flow from 5 stores over 3 years:
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ICA on Retail Purchase Data

Factors found using ICA:
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