CPSC 340:
Machine Learning and Data Mining
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Last Time: Latent-Factor Models

e Latent-factor models take input data ‘X’ and output a basis ‘Z’:
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— Usually, ‘2’ has fewer features than ‘X

e Uses: dimensionality reduction, visualization, factor discovery.
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Spanisn > =y 5 _ Trait | Description

Being curious, original, intellectual, creative, and open to

Openness >
2 new ideas.

Being organized, systematic, punctual, achievement-

Conscientiousness oriented, and dependable.

Component 2 (0.08% variance)

Being outgoing, talkative, sociable, and enjoying

Extraversion social situations.

Being affable, tolerant, sensitive, trusting, kind,
and warm.

Agreeableness

Component 1 (0.21% variance)
Neuroticism Being anxious, irritable, temperamental, and moody.




Last Time: Principal Component Analysis

* Principal component analysis (PCA) is a linear latent-factor model:
— These models “factorize” matrix X into matrices Z and W:

Y~ 7 W x> W'z, W)Y
nXd nxlk kxd

— We can think of rows w_ of W as ‘k’ fixed “part” (used in all examples).
— z;is the “part weights” for example x.: “how much of each part w_ to use”.
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Last Time: PCA Geometry

e When k=1, the W matrix defines a line:

— We choose ‘W’ as the line minimizing squared distance to the data.
— Given ‘W’, the z, are the coordinates of the x;, “projected” onto the line.
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Last Time: PCA Geometry

* When k=2, the W matrix defines a plane:

— We choose ‘W’ as the plane minimizing squared distance to the data.
— Given ‘W', the z, are the coordinates of the x; “projected” onto the plane.
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Last Time: PCA Geometry

When k=2, the W matrix defines a plane:

— Even if the original data is high-dimensional,

we can visualize data “projected” onto this plane.
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PCA Objective Function

* In PCA we minimize the squared error of the approximation:
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* This is equivalent to the k-means objective:

— In k-means z, only has a single ‘1" value and other entries are zero.

* Butin PCA, z. can be any real number.
— We approximate x; as a linear combination of all means/factors.



PCA Objective Function

* In PCA we minimize the squared error of the approximation:

F(W2)=2 (W - Zf (w27 = x, )"
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We can also view this as solving ‘d’ regression problems:

!

— Each w! is trying to predict column ‘j of X’ from the basis z..

o, . ”n

* The output “y,” we try to predict here is actually the features “x

o II

 So we have ‘d’ sums inside the sum over ‘n’.

— And we are also learning the features z..

* Each z say how to mix the mean/factor w_to approximation example ‘i".



Principal Component Analysis (PCA)

e Different ways to write the PCA objective function:
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 We're picking Zand W to approximate the original data X.
— It won’t be perfect since usually k is much smaller than d.



Digression: Data Centering (Important)

 In PCA, we assume that the data X is “centered”.

— Each column of X has a mean of zero.

* |t's easy to center the data:
' n
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e There are PCA variations that estimate “bias in each coordinate”.
— In basic model this is equivalent to centering the data.



PCA Computation: Prediction

|”

* At the end of training, the “model” is the |, and the W matrix.

— PCA is parametric.

* PCA prediction phase:

— Given new data X, we can use p; and W this to form Z:
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PCA Computation: Prediction

* At the end of training, the “model” is the |, and the W matrix.
— PCA is parametric.
* PCA prediction phase:

— Given new data X, we can use 1 and W this to form 7

— The “reconstruction error” is how close approximation is to X:

IZw =Yl

X ﬂ’CPﬂfp/pi version

— Our “error” from replacing the x. with the z.and W.
— Notice that this means that PCA is parametric (don’t need Z’ at test time).



(pause)



Non-Uniqueness of PCA

* Unlike k-means, we can efficiently find global optima of f(W,Z).
— Algorithms coming later.

* Unfortunately, there never a unique global optimum.

— There are actually several different sources of non-uniqueness.

* To understand these, we’ll need idea of “span” from linear algebra.
— This also helps explain the geometry of PCA.
— WEe'll also see that some global optima may be better than others.



Span of 1 Vector

* Consider a single vector w, (k=1).




Span of 1 Vector

* Consider a single vector w, (k=1).

* The span(w,) is all vectors of the form zw, for a scalar z..
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Span of 1 Vector

* Consider a single vector w, (k=1).
* The span(w,) is all vectors of the form zw, for a scalar z..

* If w, #0, this forms a line.



Span of 1 Vector

* But note that the “span” of many different vectors gives same line.
— Mathematically: aw, defines the same line as w, for any scalar a # 0.

— PCA solution can only be defined up to scalar multiplication.
* If (W,Z) is a solution, then (aW,(1/a)Z) is also a solution. ” (o(W)(;'(Z)'X”FZ - ” WZ’lez



Span of 2 Vectors

* Consider two vector w, and w, (k=2).
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Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,w, + z,w, for a scalars z; and z,.
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Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,w, + z,w, for a scalars z; and z,.
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Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,w, + z,w, for a scalars z; and z,.

N

— For most non-zero 2d vectors, span(w,,w,) is a plane.
* |n the case of two vectors in R?, the plane will be *all* of R2.




Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,w, + z,w, for a scalars z;, and z,.

— For most non-zero 2d vectors, span(w,,w,) is plane.

* Exceptionis if w, is in span of w, (“collinear”), then span(w,,w,) is just a line.



Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,w, + z,w, for a scalars z; and z,.

Xia

— New issues for PCA (k >= 2):

* We have label switching: span(w,,w,) = span(w,,w,).

—

* We can rotate factors within the plane (if not rotated to be collinear).



Span of 2 Vectors

e 2 tricks to make vectors defining a plane “more unique”:
— Normalization: enforce that | |w,|| =1and | |w,]|]| = 1.




Span of 2 Vectors

e 2 tricks to make vectors defining a plane “more unique”:
— Normalization: enforce that | |w,|| =1and | |w,]|]| = 1.
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Span of 2 Vectors

e 2 tricks to make vectors defining a plane “more unique”:
— Normalization: enforce that | |w,|| =1and | |w,]|]| = 1.
— Orthogonality: enforce that w,'w, = 0 (“perpendicular”).
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— Now | can’t grow/shrink vectoﬁs (though | can still reflect).

— Now | can’t rotate one vector (but | can still rotate *both*).



Digression: PCA only makes sense for k< d

* Remember our clustering dataset with 4 clusters:

* |t doesn’t make sense to use PCA with k=4 on this dataset.

— We only need two vectors [1 0] and [0 1] to exactly represent all 2d points.
* With k=2, | could just set Z=X and W=l to get ZW=X (error of 0).



Span in Higher Dimensions

* |n higher-dimensional spaces:
— Span of 1 non-zero vector w, is a line.

— Span of 2 non-zero vectors w, and w, is a plane (if not collinear).
* Can be visualized as a 2D plot.

— Span of 3 non-zeros vectors {w,, w,, w,} is a 3d space (if not “coplanar”).

* This is how the W matrix in PCA defines lines, planes, spaces, etc.

— Each time we increase ‘k’, we add an extra “dimension” to the “subspace”.



Making PCA Unique

 We've identified several reasons that optimal W is non-unique:
— | can multiply any w, by any non-zero a.
— | can rotate any w, almost arbitrarily within the span.

— | can switch any w_ with any other w_.

 PCA implementations add constraints to make solution unique:
— Normalization: we enforce that | |w_| | = 1.
— Orthogonality: we enforce that w_.'w_ = 0 for all c # c’.
— Sequential fitting: We first fit w, (“first principal component”) giving a line.
* Then fit w, given w, (“second principal component”) giving a plane.
* Then we fit w, given w, and w,, (“third principal component”) giving a space.



Basis, Orthogonality, Sequential Fitting
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Basis, Orthogonality, Sequential Fitting
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Basis, Orthogonality, Sequential Fitting
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Basis, Orthogonality, Sequential Fitting
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http://setosa.io/ev/principal-component-analysis

PCA Computation: SVD

* How do we fit with normalization/orthogonality/sequential-fitting?
— |t can be done with the “singular value decomposition” (SVD).

— Take CPSC 302.
e 4 lines of Python code: * Computing Z is cheaper now:
— mu = np.mean(X,axis=0) 7 = Twi) ! = T
XW’QJ&) X W

— U,s,Vh = np.linalg.svd(X)

— X -= — W —

mu W\/\/':[__\Av‘//' - [J/I‘;v{/f,_,\ql/‘;}
) I K

— W = Vh[:K] I




PCA Computation: other methods

* With linear regression, we had the normal equations
— But we also could do it with gradient descent, SGD, etc.

 With PCA we have the SVD
— But we can also do it with gradient descent, SGD, etc.

— These other methods typically don’t enforce the uniqueness “constraints”.
 Sensitive to initialization, don’t enforce normalization, orthogonality, ordered PCs.

— But you can do this in post-processing if you want.

— Why would we want this? We use our tricks from Part 3 of the course:
* We can do things like “robust” PCA, “regularized” PCA, “sparse” PCA, “binary” PCA.
* We can fit huge datasets where SVD is too expensive.



PCA Computation: Alternating Minimization

* With centered data, the PCA objective is:
n A . 2
F(W2)= 2 2 (<wpe>= x,)
1Ty '

* |n k-means we tried to optimize this with alternating minimization:
— Fix “cluster assignments” Z and find the optimal “means” W.
— Fix “means” W and find the optimal “cluster assignments” Z.

* Converges to a local optimum.

— But may not find a global optimum (sensitive to initialization).



PCA Computation: Alternating Minimization

* With centered data, the PCA objective is:
n A . 2
F(W2)= 2 2 (<wpe>= x,)
1Ty '

* |n PCA we can also use alternating minimization:
— Fix “part weights” Z and find the optimal “parts” W.
— Fix “parts” W and find the optimal “part weights” Z.

* Converges to a local optimum.
— Which will be a global optimum (if we randomly initialize W and Z).



PCA Computation: Alternating Minimization

* With centered data, the PCA objective is:

n 4
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* Alternating minimization steps:
— If we fix Z, this is a quadratic function of W (least squares column-wise):
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— If we fix W, this is a quadratic function of Z (transpose due to dlmen5|ons)
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PCA Computation: Alternating Minimization

* With centered data, the PCA objective is:

n d
jy\( W>27 :g Z (<w3)2;7_ X’j )2 ,
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* This objective is not jointly convex in W and Z.

— You will find different W and Z depending on the initialization.
* For example, if you initialize with W, = 0, then they will stay at zero.

— But it’s possible to show that all “stable” local optima are global optima.

* You will converge to a global optimum in practice if you initialize randomly.

— Randomization means you don’t start on one of the unstable non-global critical points.

* E.g., sample each initial z; from a normal distribution.



PCA Computation: Stochastic Gradient

* For big X matrices, you can also use stochastic gradient:

{(\/\/27 ZZ (Kwy27— X, )2 = Z<<\v,z> ‘>Z
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e Other variables stay the same, cost per iteration is only O(k).



Summary

PCA objective:
— Minimizes squared error between elements of X and elements of ZW.

PCA non-uniqueness:
— Due to scaling, rotation, and label switching.
Orthogonal basis and sequential fitting of PCs (via SVD):

— Leads to non-redundant PCs with unique directions.

Alternating minimization and stochastic gradient:
— lterative algorithms for minimizing PCA objective.

Next time: cancer signhatures and NBA shot charts.



Making PCA Unique

 PCA implementations add constraints to make solution unique:
— Normalization: we enforce that | |w_| | = 1.
— Orthogonality: we enforce that w_.'w_ = 0 for all c # c’.
— Sequential fitting: We first fit w, (“first principal component”) giving a line.
* Then fit w, given w, (“second principal component”) giving a plane.
* Then we fit w, given w, and w,, (“third principal component”) giving a space.

* Even with all this, the solution is only unique up to sign changes:
— | can still replace any w_ by —w_:
* -w_is normalized, is orthogonal to the other w_, and spans the same space.

— Possible fix: require that first non-zero element of each w_ is positive.



