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1. Decision trees

2. Naïve Bayes classification

3. Ordinary least squares regression

4. Logistic regression

5. Support vector machines

6. Ensemble methods

7. Clustering algorithms

8. Principal component analysis

9. Singular value decomposition

10.Independent component analysis (bonus)

http://www.kdnuggets.com/2016/08/10-algorithms-machine-learning-engineers.html



Last Time: Latent-Factor Models

• Latent-factor models take input data ‘X’ and output a basis ‘Z’:

– Usually, ‘Z’ has fewer features than ‘X’.

• Uses: dimensionality reduction, visualization, factor discovery.

http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.html
https://new.edu/resources/big-5-personality-traits



Last Time: Principal Component Analysis

• Principal component analysis (PCA) is a linear latent-factor model:

– These models “factorize” matrix X into matrices Z and W:

– We can think of rows wc of W as ‘k’ fixed “part” (used in all examples).

– zi is the “part weights” for example xi: “how much of each part wc to use”.



Last Time: PCA Geometry

• When k=1, the W matrix defines a line: 

– We choose ‘W’ as the line minimizing squared distance to the data.

– Given ‘W’, the zi are the coordinates of the xi “projected” onto the line.



• When k=2, the W matrix defines a plane: 

– We choose ‘W’ as the plane minimizing squared distance to the data.

– Given ‘W’, the zi are the coordinates of the xi “projected” onto the plane.

Last Time: PCA Geometry

http://www.nlpca.org/fig_pca_principal_component_analysis.png



Last Time: PCA Geometry

• When k=2, the W matrix defines a plane: 

– Even if the original data is high-dimensional, 
we can visualize data “projected” onto this plane.

http://www.prismtc.co.uk/superheroes-pca/



PCA Objective Function

• In PCA we minimize the squared error of the approximation:

• This is equivalent to the k-means objective:

– In k-means zi only has a single ‘1’ value and other entries are zero.

• But in PCA, zi can be any real number.

– We approximate xi as a linear combination of all means/factors.



PCA Objective Function

• In PCA we minimize the squared error of the approximation:

• We can also view this as solving ‘d’ regression problems:

– Each wj is trying to predict column ‘j’ of ‘X’ from the basis zi.

• The output “yi” we try to predict here is actually the features “xi”. 

• So we have ‘d’ sums inside the sum over ‘n’.

– And we are also learning the features zi.

• Each zi say how to mix the mean/factor wc to approximation example ‘i’.



Principal Component Analysis (PCA)

• Different ways to write the PCA objective function:

• We’re picking Z and W to approximate the original data X.

– It won’t be perfect since usually k is much smaller than d.



Digression: Data Centering (Important)

• In PCA, we assume that the data X is “centered”.

– Each column of X has a mean of zero.

• It’s easy to center the data:

• There are PCA variations that estimate “bias in each coordinate”.

– In basic model this is equivalent to centering the data.



PCA Computation: Prediction

• At the end of training, the “model” is the µj and the W matrix.

– PCA is parametric.

• PCA prediction phase:

– Given new data ෨𝑋, we can use µj and W this to form ෨𝑍:



PCA Computation: Prediction

• At the end of training, the “model” is the µj and the W matrix.

– PCA is parametric.

• PCA prediction phase:

– Given new data ෨𝑋, we can use µj and W this to form ෨𝑍:

– The “reconstruction error” is how close approximation is to ෨𝑋:

– Our “error” from replacing the xi with the zi and W. 

– Notice that this means that PCA is parametric (don’t need ‘Z’ at test time).



(pause)



Non-Uniqueness of PCA

• Unlike k-means, we can efficiently find global optima of f(W,Z).

– Algorithms coming later.

• Unfortunately, there never a unique global optimum.

– There are actually several different sources of non-uniqueness.

• To understand these, we’ll need idea of “span” from linear algebra.

– This also helps explain the geometry of PCA.

– We’ll also see that some global optima may be better than others.



Span of 1 Vector

• Consider a single vector w1 (k=1).
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Span of 1 Vector

• Consider a single vector w1 (k=1).

• The span(w1) is all vectors of the form ziw1 for a scalar zi.

• If w1 ≠ 0, this forms a line.



• But note that the “span” of many different vectors gives same line.

– Mathematically: αw1 defines the same line as w1 for any scalar α ≠ 0.

– PCA solution can only be defined up to scalar multiplication.

• If (W,Z) is a solution, then (αW,(1/α)Z) is also a solution.

Span of 1 Vector



Span of 2 Vectors

• Consider two vector w1 and w2 (k=2).
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Span of 2 Vectors

• Consider two vector w1 and w2 (k=2).

– The span(w1,w2) is all vectors of form zi1w1 + zi2w2 for a scalars zi1 and zi2.

– For most non-zero 2d vectors, span(w1,w2) is a plane.

• In the case of two vectors in R2, the plane will be *all* of R2.



• Consider two vector w1 and w2 (k=2).

– The span(w1,w2) is all vectors of form zi1w1 + zi2w2 for a scalars zi1 and zi2.

– For most non-zero 2d vectors, span(w1,w2) is plane.

• Exception is if w2 is in span of w1 (“collinear”), then span(w1,w2) is just a line.

Span of 2 Vectors



Span of 2 Vectors

• Consider two vector w1 and w2 (k=2).

– The span(w1,w2) is all vectors of form zi1w1 + zi2w2 for a scalars zi1 and zi2.

– New issues for PCA (k >= 2):

• We have label switching: span(w1,w2) = span(w2,w1).

• We can rotate factors within the plane (if not rotated to be  collinear).



Span of 2 Vectors

• 2 tricks to make vectors defining a plane “more unique”:

– Normalization: enforce that ||w1|| = 1 and ||w2|| = 1.
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Span of 2 Vectors

• 2 tricks to make vectors defining a plane “more unique”:

– Normalization: enforce that ||w1|| = 1 and ||w2|| = 1.

– Orthogonality: enforce that w1
Tw2 = 0 (“perpendicular”).

– Now I can’t grow/shrink vectors (though I can still reflect).

– Now I can’t rotate one vector (but I can still rotate *both*).



Digression: PCA only makes sense for k ≤ d

• Remember our clustering dataset with 4 clusters:

• It doesn’t make sense to use PCA with k=4 on this dataset.
– We only need two vectors [1 0] and [0 1] to exactly represent all 2d points.

• With k=2, I could just set Z=X and W=I to get ZW=X (error of 0).



Span in Higher Dimensions

• In higher-dimensional spaces:

– Span of 1 non-zero vector w1 is a line.

– Span of 2 non-zero vectors w1 and w2 is a plane (if not collinear).

• Can be visualized as a 2D plot.

– Span of 3 non-zeros vectors {w1, w2, w3} is a 3d space (if not “coplanar”).

– …

• This is how the W matrix in PCA defines lines, planes, spaces, etc.

– Each time we increase ‘k’, we add an extra “dimension” to the “subspace”.



Making PCA Unique

• We’ve identified several reasons that optimal W is non-unique:

– I can multiply any wc by any non-zero α.

– I can rotate any wc almost arbitrarily within the span.

– I can switch any wc with any other wc’.

• PCA implementations add constraints to make solution unique:

– Normalization: we enforce that ||wc|| = 1.

– Orthogonality: we enforce that wc
Twc’ = 0 for all c ≠ c’.

– Sequential fitting: We first fit w1 (“first principal component”) giving a line.

• Then fit w2 given w1 (“second principal component”) giving a plane.

• Then we fit w3 given w1 and w2 (“third principal component”) giving a space.



Basis, Orthogonality, Sequential Fitting
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Basis, Orthogonality, Sequential Fitting

http://setosa.io/ev/principal-component-analysis

http://setosa.io/ev/principal-component-analysis


PCA Computation: SVD

• How do we fit with normalization/orthogonality/sequential-fitting?

– It can be done with the “singular value decomposition” (SVD).

– Take CPSC 302.

• 4 lines of Python code:

– mu = np.mean(X,axis=0)

– X -= mu

– U,s,Vh = np.linalg.svd(X)

– W = Vh[:k]

37

• Computing Z is cheaper now:



PCA Computation: other methods

• With linear regression, we had the normal equations

– But we also could do it with gradient descent, SGD, etc.

• With PCA we have the SVD

– But we can also do it with gradient descent, SGD, etc.

– These other methods typically don’t enforce the uniqueness “constraints”.

• Sensitive to initialization, don’t enforce normalization, orthogonality, ordered PCs.
– But you can do this in post-processing if you want.

– Why would we want this? We use our tricks from Part 3 of the course:

• We can do things like “robust” PCA, “regularized” PCA, “sparse” PCA, “binary” PCA.

• We can fit huge datasets where SVD is too expensive.
38



PCA Computation: Alternating Minimization

• With centered data, the PCA objective is:

• In k-means we tried to optimize this with alternating minimization:

– Fix “cluster assignments” Z and find the optimal “means” W.

– Fix “means” W and find the optimal “cluster assignments” Z.

• Converges to a local optimum.

– But may not find a global optimum (sensitive to initialization).



PCA Computation: Alternating Minimization

• With centered data, the PCA objective is:

• In PCA we can also use alternating minimization:

– Fix “part weights” Z and find the optimal “parts” W.

– Fix “parts” W and find the optimal “part weights” Z.

• Converges to a local optimum.

– Which will be a global optimum (if we randomly initialize W and Z).



PCA Computation: Alternating Minimization

• With centered data, the PCA objective is:

• Alternating minimization steps:

– If we fix Z, this is a quadratic function of W (least squares column-wise):

– If we fix W, this is a quadratic function of Z (transpose due to dimensions):



PCA Computation: Alternating Minimization

• With centered data, the PCA objective is:

• This objective is not jointly convex in W and Z.

– You will find different W and Z depending on the initialization.

• For example, if you initialize with W1 = 0, then they will stay at zero.

– But it’s possible to show that all “stable” local optima are global optima.

• You will converge to a global optimum in practice if you initialize randomly.
– Randomization means you don’t start on one of the unstable non-global critical points.

• E.g., sample each initial zij from a normal distribution.



PCA Computation: Stochastic Gradient

• For big X matrices, you can also use stochastic gradient:

• Other variables stay the same, cost per iteration is only O(k).



Summary

• PCA objective:

– Minimizes squared error between elements of X and elements of ZW.

• PCA non-uniqueness:

– Due to scaling, rotation, and label switching.

• Orthogonal basis and sequential fitting of PCs (via SVD):

– Leads to non-redundant PCs with unique directions.

• Alternating minimization and stochastic gradient:

– Iterative algorithms for minimizing PCA objective.

• Next time: cancer signatures and NBA shot charts.



Making PCA Unique

• PCA implementations add constraints to make solution unique:

– Normalization: we enforce that ||wc|| = 1.

– Orthogonality: we enforce that wc
Twc’ = 0 for all c ≠ c’.

– Sequential fitting: We first fit w1 (“first principal component”) giving a line.

• Then fit w2 given w1 (“second principal component”) giving a plane.

• Then we fit w3 given w1 and w2 (“third principal component”) giving a space.

• …

• Even with all this, the solution is only unique up to sign changes:

– I can still replace any wc by –wc:

• -wc is normalized, is orthogonal to the other wc’, and spans the same space.

– Possible fix: require that first non-zero element of each wc is positive.


