CPSC 340: Machine Learning and Data Mining

More PCA Fall 2018

1. Decision trees

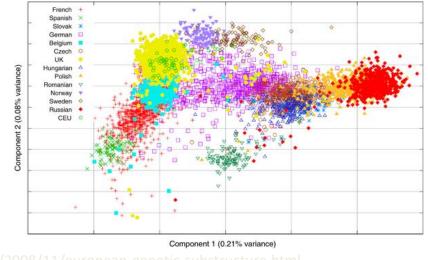
- 2. Naïve Bayes classification
- 3. Ordinary least squares regression
- 4. Logistic regression
- 5. Support vector machines
- 6. Ensemble methods
- 7. Clustering algorithms
- 8. Principal component analysis
- 9. Singular value decomposition
- 10. Independent component analysis (bonus)

The 10 Algorithms Machine Learning Engineers Need to Know

Last Time: Latent-Factor Models

• Latent-factor models take input data 'X' and output a basis 'Z':

- Usually, 'Z' has fewer features than 'X'.
- Uses: dimensionality reduction, visualization, factor discovery.



Trait	Description
Openness	Being curious, original, intellectual, creative, and open to new ideas.
Conscientiousness	Being organized, systematic, punctual, achievement- oriented, and dependable.
Extraversion	Being outgoing, talkative, sociable, and enjoying social situations.
Agreeableness	Being affable, tolerant, sensitive, trusting, kind, and warm.
Neuroticism	Being anxious, irritable, temperamental, and moody.

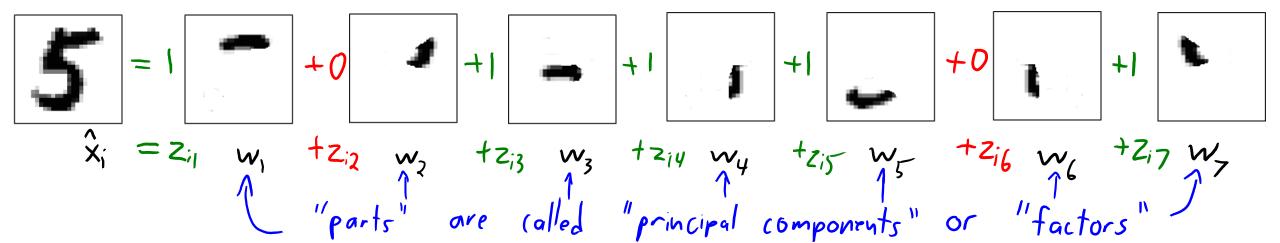
http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.htm https://new.edu/resources/big-5-personality-traits

Last Time: Principal Component Analysis

- Principal component analysis (PCA) is a linear latent-factor model:
 - These models "factorize" matrix X into matrices Z and W:

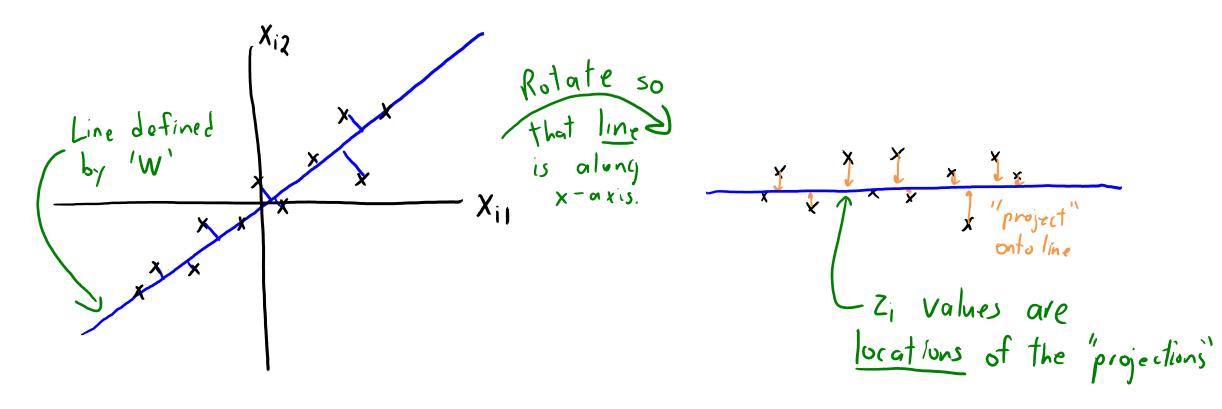
$$X \approx Z W \qquad x_i \approx W' z_i \qquad x_j \approx \langle w', z_i \rangle$$

- We can think of rows w_c of W as 'k' fixed "part" (used in all examples).
- z_i is the "part weights" for example x_i : "how much of each part w_c to use".



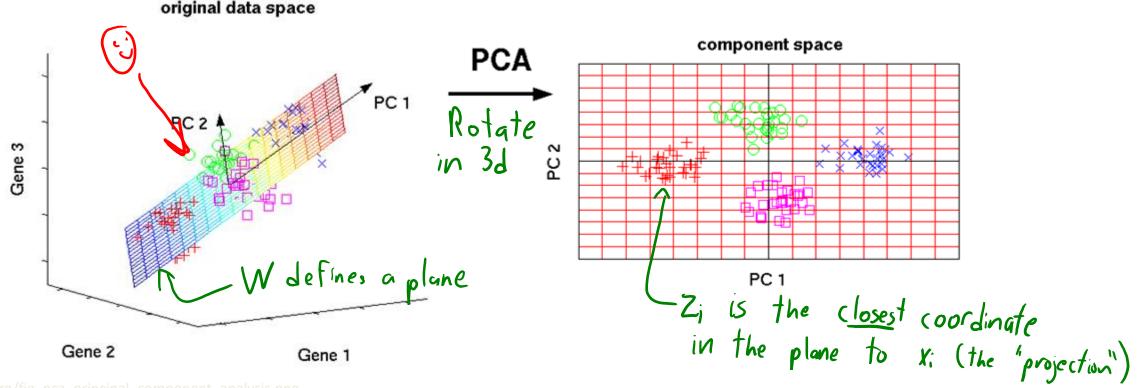
Last Time: PCA Geometry

- When k=1, the W matrix defines a line:
 - We choose 'W' as the line minimizing squared distance to the data.
 - Given 'W', the z_i are the coordinates of the x_i "projected" onto the line.



Last Time: PCA Geometry

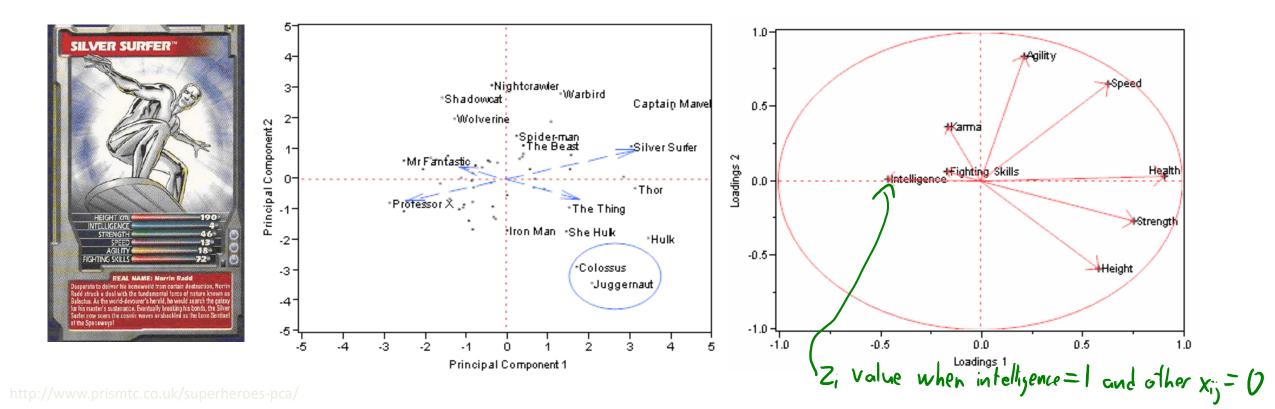
- When k=2, the W matrix defines a plane:
 - We choose 'W' as the plane minimizing squared distance to the data.
 - Given 'W', the z_i are the coordinates of the x_i "projected" onto the plane.



http://www.nlpca.org/fig_pca_principal_component_analysis.png

Last Time: PCA Geometry

- When k=2, the W matrix defines a plane:
 - Even if the original data is high-dimensional, we can visualize data "projected" onto this plane.



PCA Objective Function

• In PCA we minimize the squared error of the approximation:

$$f(W, Z) = \hat{Z} || W^{T} z_{i} - x_{i} ||^{2}$$

- This is equivalent to the k-means objective:
 - In k-means z_i only has a single '1' value and other entries are zero.
- But in PCA, z_i can be any real number.
 - We approximate x_i as a linear combination of all means/factors.

PCA Objective Function

• In PCA we minimize the squared error of the approximation:

$$f(W, Z) = \hat{\mathcal{Z}} \left\| |W^{\mathsf{T}}_{Z_{i}} - x_{i}||^{2} = \hat{\mathcal{Z}} = \left(\langle w_{j}^{\mathsf{T}}_{Z_{i}} - x_{ij} \right)^{2} \right\|_{\mathcal{W}_{i}} + \frac{1}{|||^{2}} = \sum_{j=1}^{n} \left(\langle w_{j}^{\mathsf{T}}_{Z_{j}} - x_{ij} \right)^{2} \right)^{2}$$

- We can also view this as solving 'd' regression problems:
 - Each w^j is trying to predict column 'j' of 'X' from the basis z_i .
 - The output "y_i" we try to predict here is actually the features "x_i".
 - So we have 'd' sums inside the sum over 'n'.
 - And we are also learning the features z_i .
 - Each z_i say how to mix the mean/factor w_c to approximation example 'i'.

Principal Component Analysis (PCA)

• Different ways to write the PCA objective function:

$$f(W, Z) = \hat{z} \hat{z} (\langle w_{j}^{j} z_{i}^{j} - x_{ij} \rangle^{2} \quad (approximating \ x_{ij} \ by \ \langle w_{j}^{j} z_{i}^{j} \rangle$$

$$= \hat{z} || W^{T} z_{i} - x_{i}^{j} ||^{2} \quad (approximating \ x_{i} \ by \ W^{T} z_{i})$$

$$= || Z W - X ||_{F}^{2} \quad (approximating \ X \ by \ Z W)$$

- We're picking Z and W to approximate the original data X.
 - It won't be perfect since usually k is much smaller than d.

Digression: Data Centering (Important)

- In PCA, we assume that the data X is "centered".
 - Each column of X has a mean of zero.
- It's easy to center the data:

Set
$$M_j = \frac{1}{n} \sum_{i=1}^{n} x_{ij}$$
 (mean of colum 'j')
Replace each x_{ij} with $(x_{ij} - M_j)$

There are PCA variations that estimate "bias in each coordinate".
 In basic model this is equivalent to centering the data.

PCA Computation: Prediction

- At the end of training, the "model" is the μ_j and the W matrix. – PCA is parametric.
- PCA prediction phase:

– Given new data \tilde{X} , we can use μ_i and W this to form \tilde{Z} :

1. (enter: replace each
$$\tilde{x}_{ij}$$
 with $(\tilde{x}_{ij} - m_j)$
2. Find \tilde{Z} minimizing squared error:
 $\tilde{Z} = \tilde{X} W^{T} (WW^{T})^{T}$
 $data$
(rould just store
this dxk matrix)

PCA Computation: Prediction

- At the end of training, the "model" is the μ_j and the W matrix. – PCA is parametric.
- PCA prediction phase:
 - Given new data \tilde{X} , we can use μ_i and W this to form \tilde{Z} :
 - The "reconstruction error" is how close approximation is to \tilde{X} :

$$\frac{1}{\hat{Z}} = \frac{1}{\hat{X}} = \frac{1$$

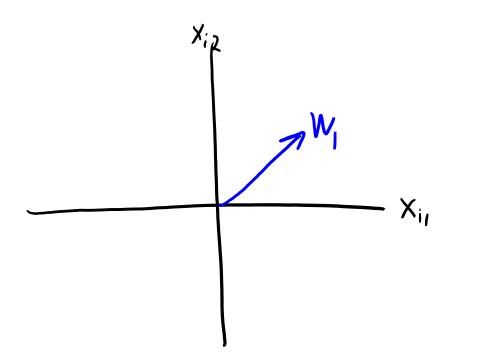
- Our "error" from replacing the x_i with the z_i and W.
- Notice that this means that PCA is parametric (don't need 'Z' at test time).

(pause)

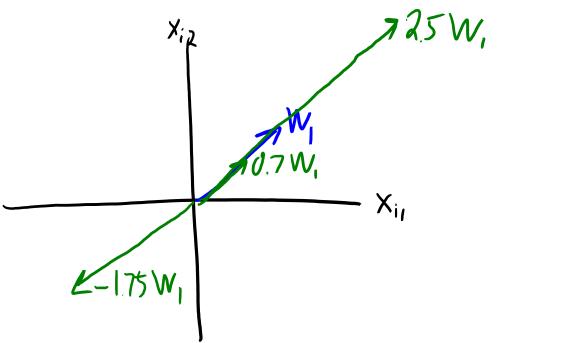
Non-Uniqueness of PCA

- Unlike k-means, we can efficiently find global optima of f(W,Z).
 Algorithms coming later.
- Unfortunately, there never a unique global optimum.
 - There are actually several different sources of non-uniqueness.
- To understand these, we'll need idea of "span" from linear algebra.
 - This also helps explain the geometry of PCA.
 - We'll also see that some global optima may be better than others.

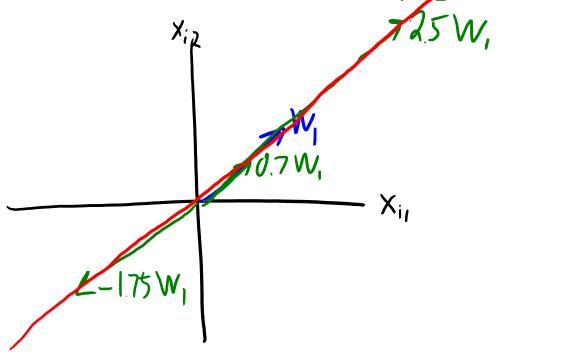
• Consider a single vector w₁ (k=1).



- Consider a single vector w₁ (k=1).
- The span(w_1) is all vectors of the form $z_i w_1$ for a scalar z_i .

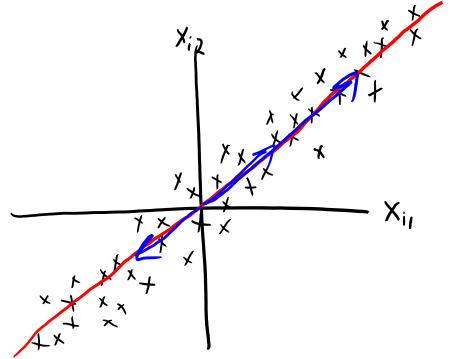


- Consider a single vector w₁ (k=1).
- The span(w_1) is all vectors of the form $z_i w_1$ for a scalar z_i .



• If $w_1 \neq 0$, this forms a line.

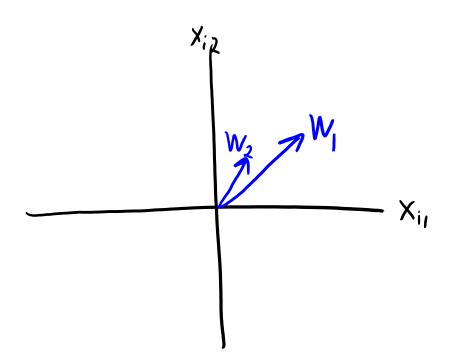
- But note that the "span" of many different vectors gives same line.
 - Mathematically: αw_1 defines the same line as w_1 for any scalar $\alpha \neq 0$.



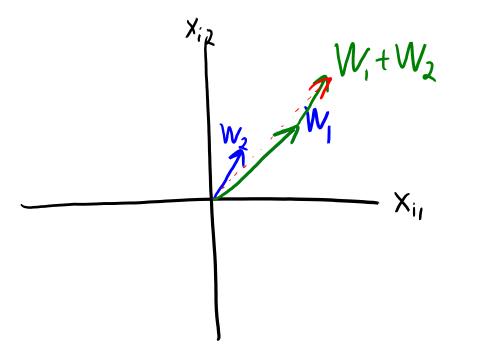
- PCA solution can only be defined up to scalar multiplication.

• If (W,Z) is a solution, then $(\alpha W,(1/\alpha)Z)$ is also a solution. $\|(\alpha W)(\frac{1}{\alpha}Z) - \chi\|_{F}^{2} = \|WZ - \chi\|_{F}^{2}$

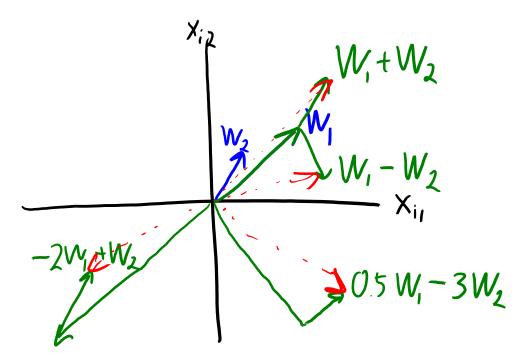
• Consider two vector w₁ and w₂ (k=2).



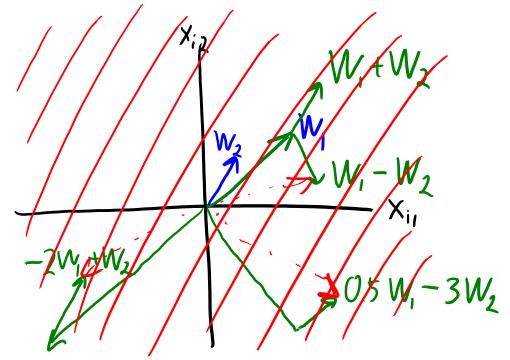
- Consider two vector w₁ and w₂ (k=2).
 - The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .



- Consider two vector w₁ and w₂ (k=2).
 - The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .



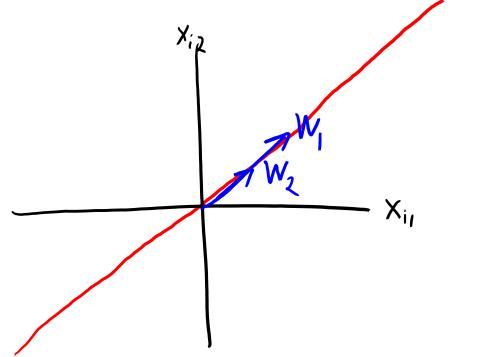
- Consider two vector w₁ and w₂ (k=2).
 - The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .



- For most non-zero 2d vectors, span(w_1, w_2) is a plane.

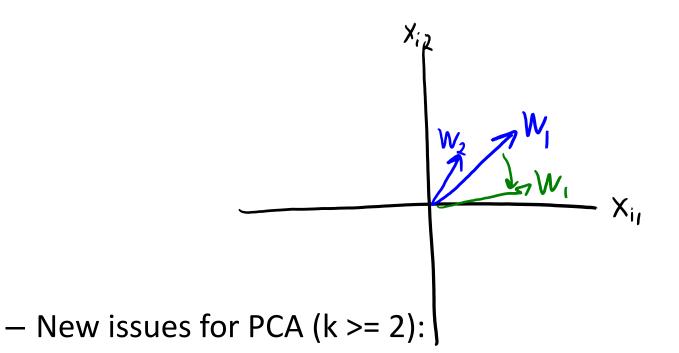
• In the case of two vectors in R², the plane will be *all* of R².

- Consider two vector w₁ and w₂ (k=2).
 - The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .



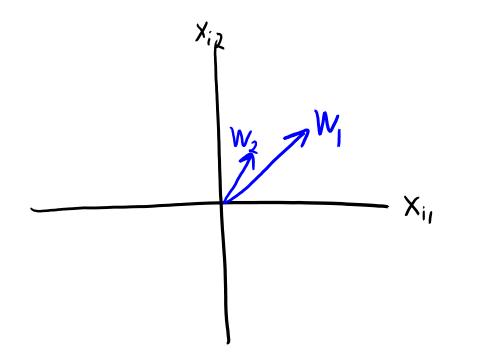
- For most non-zero 2d vectors, span(w_1, w_2) is plane.
 - Exception is if w_2 is in span of w_1 ("collinear"), then span(w_1, w_2) is just a line.

- Consider two vector w₁ and w₂ (k=2).
 - The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .



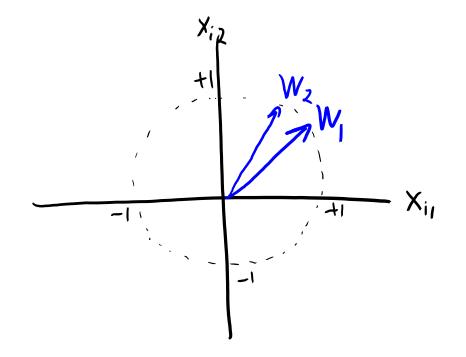
- We have label switching: span(w₁,w₂) = span(w₂,w₁).
- We can rotate factors within the plane (if not rotated to be collinear).

- 2 tricks to make vectors defining a plane "more unique":
 - Normalization: enforce that $||w_1|| = 1$ and $||w_2|| = 1$.

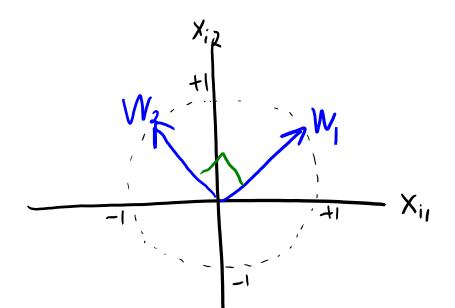


• 2 tricks to make vectors defining a plane "more unique":

- Normalization: enforce that $||w_1|| = 1$ and $||w_2|| = 1$.



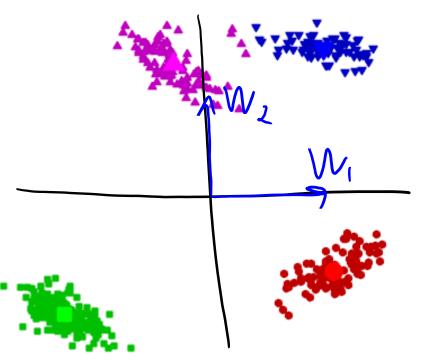
- 2 tricks to make vectors defining a plane "more unique":
 - Normalization: enforce that $||w_1|| = 1$ and $||w_2|| = 1$.
 - Orthogonality: enforce that $w_1^T w_2 = 0$ ("perpendicular").



- Now I can't grow/shrink vectors (though I can still reflect).
- Now I can't rotate one vector (but I can still rotate *both*).

Digression: PCA only makes sense for $k \le d$

• Remember our clustering dataset with 4 clusters:



- It doesn't make sense to use PCA with k=4 on this dataset.
 - We only need two vectors [1 0] and [0 1] to exactly represent all 2d points.
 - With k=2, I could just set Z=X and W=I to get ZW=X (error of 0).

Span in Higher Dimensions

- In higher-dimensional spaces:
 - Span of 1 non-zero vector w_1 is a line.
 - Span of 2 non-zero vectors w_1 and w_2 is a plane (if not collinear).
 - Can be visualized as a 2D plot.

— …

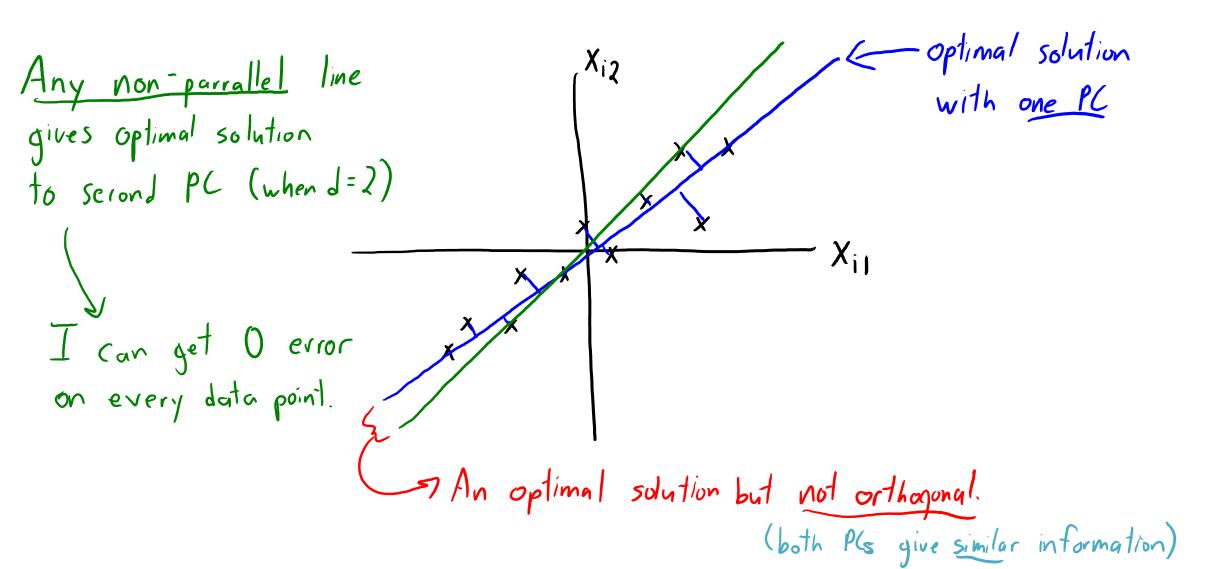
- Span of 3 non-zeros vectors $\{w_1, w_2, w_3\}$ is a 3d space (if not "coplanar").

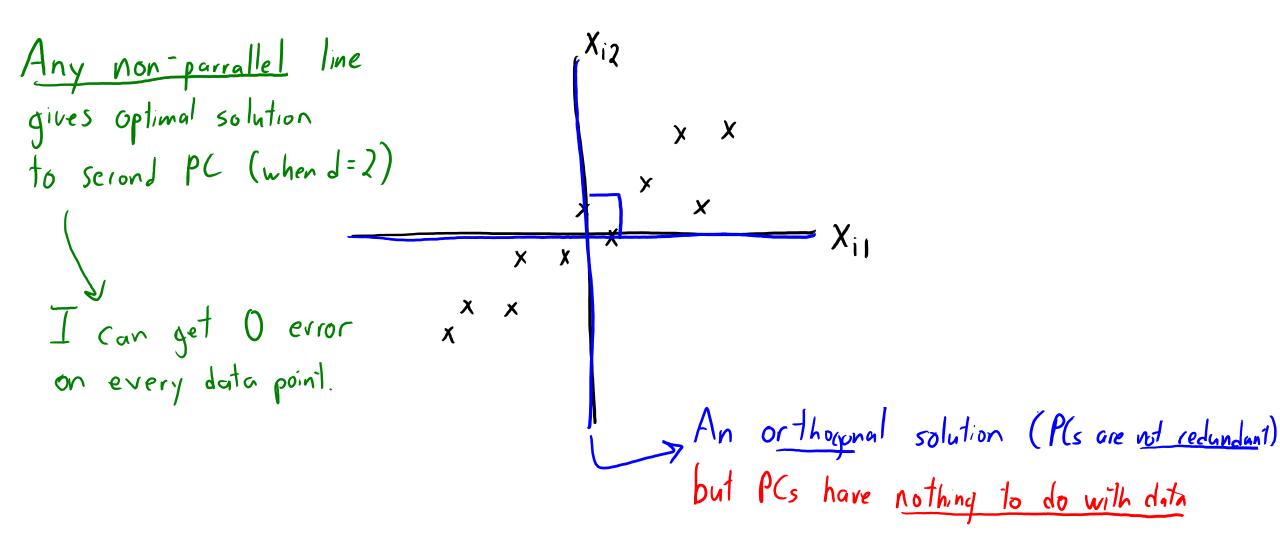
- This is how the W matrix in PCA defines lines, planes, spaces, etc.
 - Each time we increase 'k', we add an extra "dimension" to the "subspace".

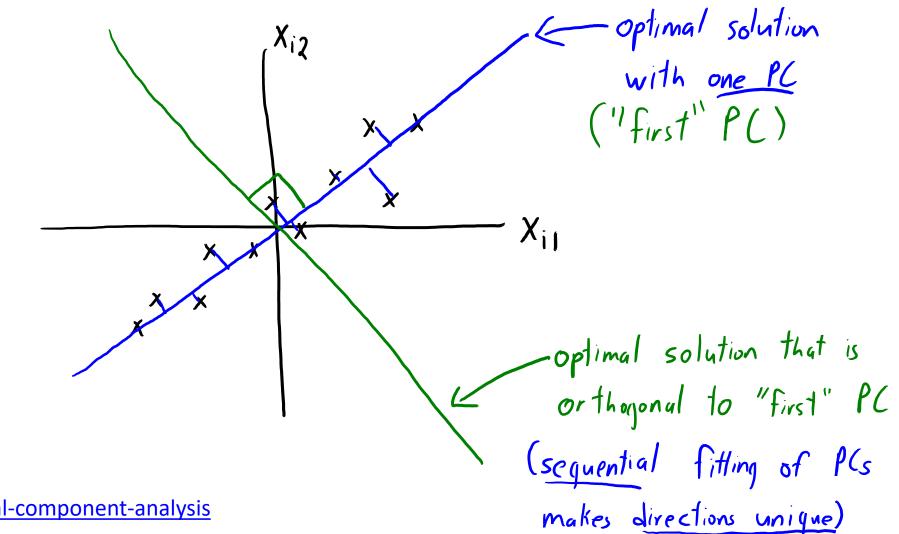
Making PCA Unique

- We've identified several reasons that optimal W is non-unique:
 - I can multiply any w_c by any non-zero α .
 - I can rotate any w_c almost arbitrarily within the span.
 - I can switch any w_c with any other $w_{c'}$.
- PCA implementations add constraints to make solution unique:
 - Normalization: we enforce that $||w_c|| = 1$.
 - Orthogonality: we enforce that $w_c^T w_{c'} = 0$ for all $c \neq c'$.
 - Sequential fitting: We first fit w_1 ("first principal component") giving a line.
 - Then fit w₂ given w₁ ("second principal component") giving a plane.
 - Then we fit w_3 given w_1 and w_2 ("third principal component") giving a space.

- optimal solution with one PC Xiz X_{i1} Λ







http://setosa.io/ev/principal-component-analysis

PCA Computation: SVD

- How do we fit with normalization/orthogonality/sequential-fitting?
 - It can be done with the "singular value decomposition" (SVD).
 - Take CPSC 302.
- 4 lines of Python code:
 - mu = np.mean(X,axis=0)
 - X -= mu
 - U,s,Vh = np.linalg.svd(X)
 - -W = Vh[:k]

• Computing Z is cheaper now:

$$Z = X W^{T} (WW^{T})^{T} = X W^{T}
WW^{T} = \begin{bmatrix} -W_{1} - & \\ -W_{2} - & \\ \vdots & \\ -W_{K} - & \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ W_{1}^{T} W_{2}^{T} \cdots W_{K}^{T} \\ 1 & 1 & 1 \end{bmatrix}
= \begin{bmatrix} 1000 - 0 \\ 610 & 0 \\ 0 & - 0 \end{bmatrix} = I
37$$

PCA Computation: other methods

- With linear regression, we had the normal equations
 - But we also could do it with gradient descent, SGD, etc.
- With PCA we have the SVD
 - But we can also do it with gradient descent, SGD, etc.
 - These other methods typically don't enforce the uniqueness "constraints".
 - Sensitive to initialization, don't enforce normalization, orthogonality, ordered PCs.
 But you can do this in post-processing if you want.
 - Why would we want this? We use our tricks from Part 3 of the course:
 - We can do things like "robust" PCA, "regularized" PCA, "sparse" PCA, "binary" PCA.
 - We can fit huge datasets where SVD is too expensive.

• With centered data, the PCA objective is:

$$f(W_{j}z) = \hat{s}_{j=1}^{2} \hat{s}_{j=1}^{d} (\langle w_{j}z_{i}\rangle - x_{ij})^{2}$$

- In k-means we tried to optimize this with alternating minimization:
 - Fix "cluster assignments" Z and find the optimal "means" W.
 - Fix "means" W and find the optimal "cluster assignments" Z.
- Converges to a local optimum.
 - But may not find a global optimum (sensitive to initialization).

• With centered data, the PCA objective is:

$$f(W_{j}z) = \hat{z}_{j=1}^{2} \hat{z}_{j=1}^{d} (\langle w_{j}^{i}z_{i}\rangle - x_{ij})^{2}$$

- In PCA we can also use alternating minimization:
 - Fix "part weights" Z and find the optimal "parts" W.
 - Fix "parts" W and find the optimal "part weights" Z.
- Converges to a local optimum.
 - Which will be a global optimum (if we randomly initialize W and Z).

• With centered data, the PCA objective is:

$$f(W_{z}) = \hat{z}_{j=1}^{2} \hat{z}_{j=1}^{d} (\langle w_{j}^{i} z_{i} \rangle - x_{ij})^{2}$$

- Alternating minimization steps:
 - If we fix Z, this is a quadratic function of W (least squares column-wise):

$$\nabla_{W} f(W,Z) = Z^{T}ZW - Z^{T}X \quad 50 \quad W = (Z^{T}Z)^{T}(Z^{T}X)$$
(writing gradient as a matrix)

— If we fix W, this is a quadratic function of Z (transpose due to dimensions):

$$\nabla_z f(w, z) = ZWW^T - XW^T$$
 so $Z = XW'(WW')$

• With centered data, the PCA objective is:

$$f(W_{j}z) = \hat{z} = \hat{z} = (\langle w_{j}^{i}z_{i}\rangle - x_{ij})^{2}$$

1

- This objective is not jointly convex in W and Z.
 - You will find different W and Z depending on the initialization.
 - For example, if you initialize with $W_1 = 0$, then they will stay at zero.
 - But it's possible to show that all "stable" local optima are global optima.
 - You will converge to a global optimum in practice if you initialize randomly.
 - Randomization means you don't start on one of the unstable non-global critical points.
 - E.g., sample each initial z_{ij} from a normal distribution.

PCA Computation: Stochastic Gradient

• For big X matrices, you can also use stochastic gradient:

$$f(W_{j}z) = \sum_{i=1}^{n} \sum_{j=1}^{d} (\langle w_{j}^{i}z_{i}^{j}\rangle - \chi_{ij})^{2} = \sum_{\substack{(i,j) \ (i,j)}} (\langle w_{j}^{i}z_{i}^{j}\rangle - \chi_{ij})^{2} f(w_{j}^{j}z_{i}^{j}\chi_{ij})$$

On each iteration, pick a random example 'i' and feature 'j'

$$\rightarrow$$
 Set w to w' - $x^t \nabla_{w} f(w, z, x_{ij})$
 \rightarrow Set z; to $z_i - x^t \nabla_{z_i} f(w, z_i, x_{ij})$

• Other variables stay the same, cost per iteration is only O(k).

Summary

- PCA objective:
 - Minimizes squared error between elements of X and elements of ZW.
- PCA non-uniqueness:
 - Due to scaling, rotation, and label switching.
- Orthogonal basis and sequential fitting of PCs (via SVD):
 - Leads to non-redundant PCs with unique directions.
- Alternating minimization and stochastic gradient:
 - Iterative algorithms for minimizing PCA objective.
- Next time: cancer signatures and NBA shot charts.

Making PCA Unique

- PCA implementations add constraints to make solution unique:
 - Normalization: we enforce that $||w_c|| = 1$.
 - Orthogonality: we enforce that $w_c^T w_{c'} = 0$ for all $c \neq c'$.
 - Sequential fitting: We first fit w_1 ("first principal component") giving a line.
 - Then fit w₂ given w₁ ("second principal component") giving a plane.
 - Then we fit w_3 given w_1 and w_2 ("third principal component") giving a space.
 - ...
- Even with all this, the solution is only unique up to sign changes:
 - I can still replace any $w_c by w_c$:
 - w_c is normalized, is orthogonal to the other $w_{c'}$, and spans the same space.
 - Possible fix: require that first non-zero element of each w_c is positive.