# CPSC 340: Machine Learning and Data Mining

More PCA Fall 2018

#### 1. Decision trees

- 2. Naïve Bayes classification
- 3. Ordinary least squares regression
- 4. Logistic regression
- 5. Support vector machines
- 6. Ensemble methods
- 7. Clustering algorithms
- 8. Principal component analysis
- 9. Singular value decomposition
- 10. Independent component analysis (bonus)

The 10 Algorithms Machine Learning Engineers Need to Know



#### Last Time: Latent-Factor Models

• Latent-factor models take input data 'X' and output a basis 'Z':

- Usually, 'Z' has fewer features than 'X'.
- Uses: dimensionality reduction, visualization, factor discovery.



| Trait             | Description                                                                      |
|-------------------|----------------------------------------------------------------------------------|
| Openness          | Being curious, original, intellectual, creative, and open to new ideas.          |
| Conscientiousness | Being organized, systematic, punctual, achievement-<br>oriented, and dependable. |
| Extraversion      | Being outgoing, talkative, sociable, and enjoying social situations.             |
| Agreeableness     | Being affable, tolerant, sensitive, trusting, kind, and warm.                    |
| Neuroticism       | Being anxious, irritable, temperamental, and moody.                              |

http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.htm https://new.edu/resources/big-5-personality-traits

# Last Time: Principal Component Analysis

- Principal component analysis (PCA) is a linear latent-factor model:
  - These models "factorize" matrix X into matrices Z and W:

$$X \approx Z W \qquad x_i \approx W' z_i \qquad x_j \approx \langle w', z_i \rangle$$

- We can think of rows  $w_c$  of W as 'k' fixed "part" (used in all examples).
- $z_i$  is the "part weights" for example  $x_i$ : "how much of each part  $w_c$  to use".



#### Last Time: PCA Geometry

- When k=1, the W matrix defines a line:
  - We choose 'W' as the line minimizing squared distance to the data.
  - Given 'W', the  $z_i$  are the coordinates of the  $x_i$  "projected" onto the line.



## Last Time: PCA Geometry

- When k=2, the W matrix defines a plane:
  - We choose 'W' as the plane minimizing squared distance to the data.
  - Given 'W', the  $z_i$  are the coordinates of the  $x_i$  "projected" onto the plane.



http://www.nlpca.org/fig\_pca\_principal\_component\_analysis.png

#### Last Time: PCA Geometry

- When k=2, the W matrix defines a plane:
  - Even if the original data is high-dimensional, we can visualize data "projected" onto this plane.



## **PCA Objective Function**

• In PCA we minimize the squared error of the approximation:

$$f(W, Z) = \hat{Z} || W^{T} z_{i} - x_{i} ||^{2}$$

- This is equivalent to the k-means objective:
  - In k-means z<sub>i</sub> only has a single '1' value and other entries are zero.
- But in PCA, z<sub>i</sub> can be any real number.
  - We approximate  $x_i$  as a linear combination of all means/factors.

## **PCA Objective Function**

• In PCA we minimize the squared error of the approximation:

$$f(W, Z) = \hat{\mathcal{Z}} \left\| |W^{\mathsf{T}}_{Z_{i}} - x_{i}||^{2} = \hat{\mathcal{Z}} = \left( \langle w_{j}^{\mathsf{T}}_{Z_{i}} - x_{ij} \right)^{2} \right\|_{\mathcal{W}_{i}} + \frac{1}{|||^{2}} = \sum_{j=1}^{n} \left( \langle w_{j}^{\mathsf{T}}_{Z_{j}} - x_{ij} \right)^{2} \right)^{2}$$

- We can also view this as solving 'd' regression problems:
  - Each  $w^j$  is trying to predict column 'j' of 'X' from the basis  $z_i$ .
    - The output "y<sub>i</sub>" we try to predict here is actually the features "x<sub>i</sub>".
    - So we have 'd' sums inside the sum over 'n'.
  - And we are also learning the features  $z_i$ .
    - Each  $z_i$  say how to mix the mean/factor  $w_c$  to approximation example 'i'.

# Principal Component Analysis (PCA)

• Different ways to write the PCA objective function:

$$f(W, Z) = \hat{z} \hat{z} (\langle w_{j}^{j} z_{i}^{j} - x_{ij} \rangle^{2} \quad (approximating \ x_{ij} \ by \ \langle w_{j}^{j} z_{i}^{j} \rangle$$

$$= \hat{z} || W^{T} z_{i} - x_{i}^{j} ||^{2} \quad (approximating \ x_{i} \ by \ W^{T} z_{i})$$

$$= || Z W - X ||_{F}^{2} \quad (approximating \ X \ by \ Z W)$$

- We're picking Z and W to approximate the original data X.
  - It won't be perfect since usually k is much smaller than d.

# Digression: Data Centering (Important)

- In PCA, we assume that the data X is "centered".
  - Each column of X has a mean of zero.
- It's easy to center the data:

Set 
$$M_j = \frac{1}{n} \sum_{i=1}^{n} x_{ij}$$
 (mean of colum 'j')  
Replace each  $x_{ij}$  with  $(x_{ij} - M_j)$ 

There are PCA variations that estimate "bias in each coordinate".
 In basic model this is equivalent to centering the data.

## **PCA Computation: Prediction**

- At the end of training, the "model" is the  $\mu_j$  and the W matrix. – PCA is parametric.
- PCA prediction phase:

– Given new data  $\tilde{X}$ , we can use  $\mu_i$  and W this to form  $\tilde{Z}$ :

1. (enter: replace each 
$$\tilde{x}_{ij}$$
 with  $(\tilde{x}_{ij} - m_j)$   
2. Find  $\tilde{Z}$  minimizing squared error:  
 $\tilde{Z} = \tilde{X} W^{T} (WW^{T})^{T}$ 
 $data$   
(rould just store  
this dxk matrix)

# PCA Computation: Prediction

- At the end of training, the "model" is the  $\mu_j$  and the W matrix. – PCA is parametric.
- PCA prediction phase:
  - Given new data  $\tilde{X}$ , we can use  $\mu_i$  and W this to form  $\tilde{Z}$ :
  - The "reconstruction error" is how close approximation is to  $\tilde{X}$ :

$$\frac{1}{\hat{Z}} = \frac{1}{\hat{X}} = \frac{1$$

- Our "error" from replacing the  $x_i$  with the  $z_i$  and W.
- Notice that this means that PCA is parametric (don't need 'Z' at test time).

# (pause)

# Non-Uniqueness of PCA

- Unlike k-means, we can efficiently find global optima of f(W,Z).
   Algorithms coming later.
- Unfortunately, there never a unique global optimum.
  - There are actually several different sources of non-uniqueness.
- To understand these, we'll need idea of "span" from linear algebra.
  - This also helps explain the geometry of PCA.
  - We'll also see that some global optima may be better than others.

• Consider a single vector w<sub>1</sub> (k=1).



- Consider a single vector w<sub>1</sub> (k=1).
- The span( $w_1$ ) is all vectors of the form  $z_i w_1$  for a scalar  $z_i$ .



- Consider a single vector w<sub>1</sub> (k=1).
- The span( $w_1$ ) is all vectors of the form  $z_i w_1$  for a scalar  $z_i$ .



• If  $w_1 \neq 0$ , this forms a line.

- But note that the "span" of many different vectors gives same line.
  - Mathematically:  $\alpha w_1$  defines the same line as  $w_1$  for any scalar  $\alpha \neq 0$ .



- PCA solution can only be defined up to scalar multiplication.

• If (W,Z) is a solution, then  $(\alpha W,(1/\alpha)Z)$  is also a solution.  $\|(\alpha W)(\frac{1}{\alpha}Z) - \chi\|_{F}^{2} = \|WZ - \chi\|_{F}^{2}$ 

• Consider two vector w<sub>1</sub> and w<sub>2</sub> (k=2).



- Consider two vector w<sub>1</sub> and w<sub>2</sub> (k=2).
  - The span( $w_1, w_2$ ) is all vectors of form  $z_{i1}w_1 + z_{i2}w_2$  for a scalars  $z_{i1}$  and  $z_{i2}$ .



- Consider two vector w<sub>1</sub> and w<sub>2</sub> (k=2).
  - The span( $w_1, w_2$ ) is all vectors of form  $z_{i1}w_1 + z_{i2}w_2$  for a scalars  $z_{i1}$  and  $z_{i2}$ .



- Consider two vector w<sub>1</sub> and w<sub>2</sub> (k=2).
  - The span( $w_1, w_2$ ) is all vectors of form  $z_{i1}w_1 + z_{i2}w_2$  for a scalars  $z_{i1}$  and  $z_{i2}$ .



- For most non-zero 2d vectors, span( $w_1, w_2$ ) is a plane.

• In the case of two vectors in R<sup>2</sup>, the plane will be \*all\* of R<sup>2</sup>.

- Consider two vector w<sub>1</sub> and w<sub>2</sub> (k=2).
  - The span( $w_1, w_2$ ) is all vectors of form  $z_{i1}w_1 + z_{i2}w_2$  for a scalars  $z_{i1}$  and  $z_{i2}$ .



- For most non-zero 2d vectors, span( $w_1, w_2$ ) is plane.
  - Exception is if  $w_2$  is in span of  $w_1$  ("collinear"), then span( $w_1, w_2$ ) is just a line.

- Consider two vector w<sub>1</sub> and w<sub>2</sub> (k=2).
  - The span( $w_1, w_2$ ) is all vectors of form  $z_{i1}w_1 + z_{i2}w_2$  for a scalars  $z_{i1}$  and  $z_{i2}$ .



- We have label switching: span(w<sub>1</sub>,w<sub>2</sub>) = span(w<sub>2</sub>,w<sub>1</sub>).
- We can rotate factors within the plane (if not rotated to be collinear).

- 2 tricks to make vectors defining a plane "more unique":
  - Normalization: enforce that  $||w_1|| = 1$  and  $||w_2|| = 1$ .



• 2 tricks to make vectors defining a plane "more unique":

- Normalization: enforce that  $||w_1|| = 1$  and  $||w_2|| = 1$ .



- 2 tricks to make vectors defining a plane "more unique":
  - Normalization: enforce that  $||w_1|| = 1$  and  $||w_2|| = 1$ .
  - Orthogonality: enforce that  $w_1^T w_2 = 0$  ("perpendicular").



- Now I can't grow/shrink vectors (though I can still reflect).
- Now I can't rotate one vector (but I can still rotate \*both\*).

# Digression: PCA only makes sense for $k \le d$

• Remember our clustering dataset with 4 clusters:



- It doesn't make sense to use PCA with k=4 on this dataset.
  - We only need two vectors [1 0] and [0 1] to exactly represent all 2d points.
    - With k=2, I could just set Z=X and W=I to get ZW=X (error of 0).

# Span in Higher Dimensions

- In higher-dimensional spaces:
  - Span of 1 non-zero vector  $w_1$  is a line.
  - Span of 2 non-zero vectors  $w_1$  and  $w_2$  is a plane (if not collinear).
    - Can be visualized as a 2D plot.

— …

- Span of 3 non-zeros vectors  $\{w_1, w_2, w_3\}$  is a 3d space (if not "coplanar").

- This is how the W matrix in PCA defines lines, planes, spaces, etc.
  - Each time we increase 'k', we add an extra "dimension" to the "subspace".

# Making PCA Unique

- We've identified several reasons that optimal W is non-unique:
  - I can multiply any  $w_c$  by any non-zero  $\alpha$ .
  - I can rotate any w<sub>c</sub> almost arbitrarily within the span.
  - I can switch any  $w_c$  with any other  $w_{c'}$ .
- PCA implementations add constraints to make solution unique:
  - Normalization: we enforce that  $||w_c|| = 1$ .
  - Orthogonality: we enforce that  $w_c^T w_{c'} = 0$  for all  $c \neq c'$ .
  - Sequential fitting: We first fit  $w_1$  ("first principal component") giving a line.
    - Then fit w<sub>2</sub> given w<sub>1</sub> ("second principal component") giving a plane.
    - Then we fit  $w_3$  given  $w_1$  and  $w_2$  ("third principal component") giving a space.

- optimal solution with one PC Xiz  $X_{i1}$ Λ







http://setosa.io/ev/principal-component-analysis

# PCA Computation: SVD

- How do we fit with normalization/orthogonality/sequential-fitting?
  - It can be done with the "singular value decomposition" (SVD).
  - Take CPSC 302.
- 4 lines of Python code:
  - mu = np.mean(X,axis=0)
  - X -= mu
  - U,s,Vh = np.linalg.svd(X)
  - -W = Vh[:k]

• Computing Z is cheaper now:

$$Z = X W^{T} (WW^{T})^{T} = X W^{T} 
WW^{T} = \begin{bmatrix} -W_{1} - & \\ -W_{2} - & \\ \vdots & \\ -W_{K} - & \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ W_{1}^{T} W_{2}^{T} \cdots W_{K}^{T} \\ 1 & 1 & 1 \end{bmatrix} 
= \begin{bmatrix} 1000 - 0 \\ 610 & 0 \\ 0 & - 0 \end{bmatrix} = I 
37$$

# PCA Computation: other methods

- With linear regression, we had the normal equations
  - But we also could do it with gradient descent, SGD, etc.
- With PCA we have the SVD
  - But we can also do it with gradient descent, SGD, etc.
  - These other methods typically don't enforce the uniqueness "constraints".
    - Sensitive to initialization, don't enforce normalization, orthogonality, ordered PCs.
       But you can do this in post-processing if you want.
  - Why would we want this? We use our tricks from Part 3 of the course:
    - We can do things like "robust" PCA, "regularized" PCA, "sparse" PCA, "binary" PCA.
    - We can fit huge datasets where SVD is too expensive.

• With centered data, the PCA objective is:

$$f(W_{j}z) = \hat{s}_{j=1}^{2} \hat{s}_{j=1}^{d} (\langle w_{j}z_{i}\rangle - x_{ij})^{2}$$

- In k-means we tried to optimize this with alternating minimization:
  - Fix "cluster assignments" Z and find the optimal "means" W.
  - Fix "means" W and find the optimal "cluster assignments" Z.
- Converges to a local optimum.
  - But may not find a global optimum (sensitive to initialization).

• With centered data, the PCA objective is:

$$f(W_{j}z) = \hat{z}_{j=1}^{2} \hat{z}_{j=1}^{d} (\langle w_{j}^{i}z_{i}\rangle - x_{ij})^{2}$$

- In PCA we can also use alternating minimization:
  - Fix "part weights" Z and find the optimal "parts" W.
  - Fix "parts" W and find the optimal "part weights" Z.
- Converges to a local optimum.
  - Which will be a global optimum (if we randomly initialize W and Z).

• With centered data, the PCA objective is:

$$f(W_{z}) = \hat{z}_{j=1}^{2} \hat{z}_{j=1}^{d} (\langle w_{j}^{i} z_{i} \rangle - x_{ij})^{2}$$

- Alternating minimization steps:
  - If we fix Z, this is a quadratic function of W (least squares column-wise):

$$\nabla_{W} f(W,Z) = Z^{T}ZW - Z^{T}X \quad 50 \quad W = (Z^{T}Z)^{T}(Z^{T}X)$$
(writing gradient as a matrix)

— If we fix W, this is a quadratic function of Z (transpose due to dimensions):

$$\nabla_z f(w, z) = ZWW^T - XW^T$$
 so  $Z = XW'(WW')$ 

• With centered data, the PCA objective is:

$$f(W_{j}z) = \hat{z} = \hat{z} = (\langle w_{j}^{i}z_{i}\rangle - x_{ij})^{2}$$

1

- This objective is not jointly convex in W and Z.
  - You will find different W and Z depending on the initialization.
    - For example, if you initialize with  $W_1 = 0$ , then they will stay at zero.
  - But it's possible to show that all "stable" local optima are global optima.
    - You will converge to a global optimum in practice if you initialize randomly.
      - Randomization means you don't start on one of the unstable non-global critical points.
    - E.g., sample each initial z<sub>ij</sub> from a normal distribution.

#### PCA Computation: Stochastic Gradient

• For big X matrices, you can also use stochastic gradient:

$$f(W_{j}z) = \sum_{i=1}^{n} \sum_{j=1}^{d} (\langle w_{j}^{i}z_{i}^{j}\rangle - \chi_{ij})^{2} = \sum_{\substack{(i,j) \ (i,j)}} (\langle w_{j}^{i}z_{i}^{j}\rangle - \chi_{ij})^{2} f(w_{j}^{j}z_{i}^{j}\chi_{ij})$$

On each iteration, pick a random example 'i' and feature 'j'  

$$\rightarrow$$
 Set w to w' -  $x^t \nabla_{w} f(w, z, x_{ij})$   
 $\rightarrow$  Set z; to  $z_i - x^t \nabla_{z_i} f(w, z_i, x_{ij})$ 

• Other variables stay the same, cost per iteration is only O(k).

# Summary

- PCA objective:
  - Minimizes squared error between elements of X and elements of ZW.
- PCA non-uniqueness:
  - Due to scaling, rotation, and label switching.
- Orthogonal basis and sequential fitting of PCs (via SVD):
  - Leads to non-redundant PCs with unique directions.
- Alternating minimization and stochastic gradient:
  - Iterative algorithms for minimizing PCA objective.
- Next time: cancer signatures and NBA shot charts.

# Making PCA Unique

- PCA implementations add constraints to make solution unique:
  - Normalization: we enforce that  $||w_c|| = 1$ .
  - Orthogonality: we enforce that  $w_c^T w_{c'} = 0$  for all  $c \neq c'$ .
  - Sequential fitting: We first fit  $w_1$  ("first principal component") giving a line.
    - Then fit w<sub>2</sub> given w<sub>1</sub> ("second principal component") giving a plane.
    - Then we fit  $w_3$  given  $w_1$  and  $w_2$  ("third principal component") giving a space.
    - ...
- Even with all this, the solution is only unique up to sign changes:
  - I can still replace any  $w_c by w_c$ :
    - $w_c$  is normalized, is orthogonal to the other  $w_{c'}$ , and spans the same space.
  - Possible fix: require that first non-zero element of each  $w_c$  is positive.