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Admin

* Assignment 4:
— Due tonight.

* Assignment 5:
— QOut early next week.



Last Time: Maximum Likelihood Estimation (MLE)

Maximum likelihood estimation (MLE):
— Define a likelihood function, probability of data given parameters: p(D | w).
— Chooose parameters ‘w’ to maximize the likelihood.

Gives naive Bayes “counting” estimates we used.

Typically easier to equivalently minimize negative log-likelihood (NLL).

— Turns product of probability over [ID examples into sum over examples.

We showed that least squares is MLE with Gaussian errors.

— Other likelihoods give other models: Laplace noise -> L1-norm loss.



Maximum Likelihood Estimation and Overfitting

In our abstract setting with data D the MLE is:
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But conceptually MLE is a bit weird:
— “Find the ‘w’ that makes ‘D’ have the highest probability given ‘w’.”

And MLE often leads to overfitting:

— Data could be very likely for some very unlikely ‘w’.
— For example, a complex model that overfits by memorizing the data.

What we really want:
— “Find the ‘w’ that has the highest probability given the data D.”



Maximum a Posteriori (MAP) Estimation

 Maximum a posteriori (MAP) estimate maximizes the reverse probability:
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— This is what we want: the probability of ‘w’ given our data.

* MLE and MAP are connected by Bayes rule:
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 So MAP maximizes the likelihood p(D|w) times the prior p(w):

— Prior is our “belief” that ‘W’ is correct before seeing data.

— Prior can reflect that complex models are likely to overfit.



MAP Estimation and Regularization

* From Bayes rule, the MAP estimate with IID examples D, is:
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* By again taking the negative of the logarithm as before we get:
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* So we can view the negative log-prior as a regularizer:

— Many regularizers are equivalent to negative log-priors.



L2-Regularization and MAP Estimation

We obtain L2-regularization under an independent Gaussian assumption:
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So we have that:

— log(p(\zv)) = = I"f} (e’(F (‘%“WNZ))"' (constaat) = %‘”w”?‘*(cwsfanf)

With this prior, the MAP estimate with |ID training examples would be
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MAP Estimation and Regularization

* MAP estimation gives link between probabilities and loss functions.
— Gaussian likelihood (o = 1) + Gaussian prior gives L2-regularized least squares.
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— Laplace likelihood (o = 1) + Gaussian prior give L2-regularized robust regression:
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— As ‘n’ goes to infinity, effect of prior/regularizer goes to zero.
— Unlike with MLE, the choice of o changes the MAP solution for these models.




Summarizing the past few slides

* Many of our loss functions and regularizers have probabilistic interpretations.
— Laplace likelihood leads to absolute error.
— Laplace prior leads to L1-regularization.

* The choice of likelihood corresponds to the choice of loss.

— Our assumptions about how the y.-values can come from the x, and ‘w’.

* The choice of prior corresponds to the choice of regularizer.

— Our assumptions about which ‘w’ values are plausible.



Regularizing Other Models

* We can view priors in other models as regularizers.

e Remember the problem with MLE for naive Bayes:
 The MLE of p(‘lactase’ = 1| ‘spam’) is: count(spam,lactase)/count(spam).
e But this caused problems if count(spam,lactase) = 0.

* QOur solution was Laplace smoothing:

— Add “+1” to our estimates: (count(spam,lactase)+1)/(counts(spam)+2).
— This corresponds to a “Beta” prior so Laplace smoothing is a regularizer.



(pause)



Previously: Identifying Important E-mails

Recall problem of identifying ‘important’ e-mails:

| »  Mark .. Issam, Ricky (10) Inbox A2, tutorials, marking = 10:41 am
COMPOSE
Holger, Jim (2) lists Intro to Computer Science 10:20 am
Inbox (3) -
» Issam Laradji Inbox  Convergence rates forcu = 9:49 am
(_ Important ) * sameh, Mark, sameh (3) Inbox  Graduation Project Dema = 8:01 am
Sent Mail » Mark __sara, Sara (11) Label propagation = 757 am
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We can do binary classificg\tion by taking sign of linear model:

)/, = S)9n(w7x,->
— Convex loss functions (hinge loss, logistic loss) let us find an appropriate ‘w’.
Global/local features in linear models give personalized prediction.
We can train on huge datasets like Gmail with stochastic gradient.

But what if we want a probabilistic classifier?
— Want a model of p(y, = “important” | x,) for use in decision theory.



Generative vs. Discriminative Models

Naive Bayes is called a generative model.

— It models p(y, x;), we model “how the features ‘X’ are generated”.
* You can get p(y, | x;) using the rules of probability to make predictions.
* This type of approach often works well with lots of features but small ‘n’.
* A “generative” version of linear regression is “linear discriminant analysis”.

Linear (and logistic) regression are called discriminative models.

— Treat features ‘X’ as fixed, and directly model p(y; | x;).
* No need to model x,, so we can use complicated features.
* Tends to work better with large ‘n’ or when naive assumptions aren’t satisfied.

MLE for generative models maximizes p(y, X | w).

MLE for discriminative models maximizes p(y | X, w).
— So they really do “conditional” MLE.



“Parsimonious” Parameterization and Linear Models

* Challenge: p(y, | x.) might still be really complicated.
— If x. has ‘d’ binary features, need to estimate p(y; | x;) for 29 input values.

* Practical solution: assume p(y; | x;) has a “parsimonious” form.
— Model with fewer parameters so we need less “coupon collecting”.

— Typically, we transform output of a linear model to be a probability.
* So we only need to estimate the parameters of a linear model.

* Most common example is binary logistic regression:
1. The linear prediction w'x; gives us a number in (-oo, o),
2. We'll map w'x to a number in [0,1], with a map acting like a probability.



How should we transform w'x. into a probability?

* Letz, =w'x; in a binary logistic regression model:
— If sign(z,) = +1, we should have p(y,=+1 | z;) > 7.
* The linear model thinks y, = +1 is more likely.
— If sign(z,) = -1, we should have p(y.=+1 | z,) < %.
* The linear model thinks y, = -1 is more likely.
* Rememberthatp(y,=-1|z)=1-p(y,=+1 | z).
— If z, = 0, we should have p(y,=+1 | z;) = .

* Both classes are equally likely.

* And we might want size of w'x; to affect probabilities:
— As z, becomes really positive, we should have p(y, = +1 | z,) converge to 1.
— As z, becomes really negative, we should have p(y,=+1 | z)) converge to 0.



Sigmoid Function

* So we want a transformation of z. = w'x; that looks like this:
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* The most common choice is the sigmoid function:
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* Values of h(z,) match what we want:
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Sigmoid: Transforming w'x; to a Probability

* We'll define p(y, = +1 | z)) = h(z), where ‘h’ is the sigmoid function.
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* We can write both cases as p(y; | z)) = h(yz).
* So we convert z=w'x: into “probability of y.” using:
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 MLE with this likelihood is equivalent to minimizing logistic loss.



MLE Interpretation of Logistic Regression

* For lID regression problems the conditional NLL can be written:
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* Logistic regression assumes sigmoid(w'x.) conditional likelihood:

(g xow) = h(yw's)  where hi(z)=
P y

* Plugging in the sigmoid
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MLE Interpretation of Logistic Regression

* We just derived the logistic loss from the perspective of MLE.

— Instead of “smooth convex approximation of 0-1 loss”, we now have that
logistic regression is doing MLE in a probabilistic model.

— The training and prediction would be the same as before.

e We still minimize the logistic loss in terms of ‘w’.

— But MLE viewpoint gives us “probability that e-mail is important”:
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— And L2-regularized logistic loss would correspond to MAP with a Gaussian prior.



Multi-Class Logistic Regression

Previously we talked about multi-class classification:

— We want wyTxi to be the most positive among ‘k’ real numbers w_'x..

We have ‘k’ real numbers z_=w_"x,, want to map z_ to probabilities.

Most common way to do this is with softmax function:
ply=clz,z,,20= ep(z)
S exp(z.)
=

— Taking exp(z.) makes it non-negative, denominator makes it sum to 1.

— So this gives a probability for each of the ‘k’ possible values of ‘c’.
The NLL under this likelihood is the softmax loss.



(pause)



Why do we care about MLE and MAP?

e Unified way of thinking about many of our tricks?
— Probabilitic interpretation of logistic loss.
— Laplace smoothing and L2-regularization are doing the same thing.

* Remember our two ways to reduce overfitting in complicated models:
— Model averaging (ensemble methods).
— Regularization (linear models).

e “Fully”-Bayesian (CPSC 540) methods combine both of these.

— Average over all models, weighted by posterior (including regularizer).
— Can use extremely-complicated models without overfitting.



Losses for Other Discrete Labels

MLE/MAP gives loss for classification with basic labels:
— Least squares and absolute loss for regression.

)

— Logistic regression for binary labels {“spam”, “not spam”}.

1/ VA (-

— Softmax regression for multi-class {“spam”, “not spam”, “important”}.

But MLE/MAP lead to losses with other discrete labels (bonus):
— Ordinal: {1 star, 2 stars, 3 stars, 4 stars, 5 stars}.

— Counts: 602 ‘likes’.

— Survival rate: 60% of patients were still alive after 3 years.

Define likelihood of labels, and use NLL as the loss function.

We can also use ratios of probabilities to define more losses (bonus):
— Binary SVMs, multi-class SVMs, and “pairwise preferences” (ranking) models.



End of Part 3: Key Concepts

* Linear models predict based on linear combination(s) of features:
T _
WX = wx wyxa T wy Xy
* We model non-linear effects using a change of basis:

— Replace d-dimensional x; with k-dimensional z, and use v'z..
— Examples include polynomial basis and (non-parametric) RBFs.

e Regression is supervised learning with continuous labels.

— Logical error measure for regression is squared error:

((w) = ‘;”)(w’yﬂz

— Can be solved as a system of linear equations.



End of Part 3: Key Concepts

Gradient descent finds local minimum of smooth objectives.
— Converges to a global optimum for convex functions.
— Can use smooth approximations (Huber, log-sum-exp)

Stochastic gradient methods allow huge/infinite ‘n’.

— Though very sensitive to the step-size.

Kernels let us use similarity between examples, instead of features.

— Lets us use some exponential- or infinite-dimensional features.

Feature selection is a messy topic.
— Classic method is forward selection based on LO-norm.
— L1-regularization simultaneously regularizes and selects features.



End of Part 3: Key Concepts

* We can reduce over-fitting by using regularization:
() = 3 I0= I+ 22

e Squared error is not always right measure:
— Absolute error is less sensitive to outliers.
— Logistic loss and hinge loss are better for binary vy..
— Softmax loss is better for multi-class y..

 MLE/MAP perspective:

— We can view loss as log-likelihood and regularizer as log-prior.

— Allows us to define losses based on probabilities.



The Story So Far...

Part 1: Supervised Learning.
— Methods based on counting and distances.

Part 2: Unsupervised Learning.
— Methods based on counting and distances.

Part 3: Supervised Learning (just finished).
— Methods based on linear models and gradient descent.

Part 4: Unsupervised Learning (next time).
— Methods based on linear models and gradient descent.



Summary

MAP estimation directly models p(w | X, vy).
— Gives probabilistic interpretation to regularization.

Discriminative probabilistic models directly model p(y. | x).
— Unlike naive Bayes that models p(x; | v:).
— Usually, we use linear models and define “likelihood” of y, given wx..

Discrete losses for weird scenarios are possible using MLE/MAP:
— Ordinal logistic regression, Poisson regression.

Next time:
— What ‘parts’ are your personality made of?



Discussion: Least Squares and Gaussian Assumption

Classic justifications for the Gaussian assumption underlying least squares:

— Your noise might really be Gaussian. (It probably isn't, but maybe it's a good enough
approximation.)

— The central limit theorem (CLT) from probability theory. (If you add up enough IID
random variables, the estimate of their mean converges to a Gaussian distribution.)

| think the CLT justification is wrong as we've never assumed that the x; are IID across ‘J’
values. We only assumed that the examples x. are 11D across ‘i’ values, so the CLT implies
that our estimate of ‘W’ would be a Gaussian distribution under different samplings of
the data, but this says nothing about the distribution of y. given w'x..

On the other hand, there are reasons *not™* to use a Gaussian assumption, like it's
sensitivity to outliers. This was (apparently) what lead Laplace to propose the Laplace
distribution as a more robust model of the noise.

The "student t" distribution (published anonymously by Gosset while working at the
Guiness beer company) is even more robust, but doesn't lead to a convex objective.



Binary vs. Multi-Class Logistic

» How does multi-class logistic generalize the binary logistic model?
* We can re-parameterize softmax in terms of (k-1) values of z_:
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— This is due to the “sum to 1” property (one of the z_values is redundant).

— So if k=2, we don’t need a z, and only need a single ‘7".
— Further, when k=2 the probabilities can be written as:
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— Renaming ‘2" as *-1’, we get the binary logistic regression probabilities.



Ordinal Labels

* Ordinal data: categorical data where the order matters:

— Rating hotels as {‘1 star’, ‘2 stars’, ‘3 stars’, ‘4 stars’, ‘5 stars’}.

— Softmax would ignore order.

* Can use ‘ordinal logistic regression’.
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Count Labels

Count data: predict the number of times something happens.

— For example, y, = “602” Facebook likes.
Softmax requires finite number of possible labels.
We probably don’t want separate parameter for ‘654’ and ‘655’.

Poisson regression: use probability from Poisson count distribution.
— Many variations exist, a lot of people think this isn’t the best likelihood.



Censored Survival Analysis (Cox Partial Likelihood)

Censored survival analysis:

— Target y, is last time at which we know person is alive.
* But some people are still alive (so they have the same y. values).
* They, values (time at which they die) are “censored”.

— We use v;=0 is they are still alive and otherwise we set v, = 1.

Cox partial likelihood assumes “instantaneous” rate of dying depends on
X but not on total time they’ve been alive (not that realistic). Leads to
likelihood of the “censored” data of the form:

ply,, 1, w) = exp Luw x Jexp(:~ yep (k)

There are many extensions and alternative likelihoods.



Other Parsimonious Parameterizations

* Sigmoid isn’t the only parsimonious p(y; | x,, w):
— Probit (uses CDF of normal distribution, very similar to logistic).
— Noisy-Or (simpler to specify probabilities by hand).
— Extreme-value loss (good with class imbalance).
— Cauchit, Gosset, and many others exist...



Unbalanced Training Sets

e Consider the case of binary classification where your training set has
99% class -1 and only 1% class +1.

— This is called an “unbalanced” training set
 Question: is this a problem?

 Answer: it depends!

— If these proportions are representative of the test set proportions, and you care
about both types of errors equally, then “no” it’s not a problem.
* You can get 99% accuracy by just always predicting -1, so ML can really help with the 1%.

— But it’s a problem if the test set is not like the training set (e.g. your data
collection process was biased because it was easier to get -1’s)

— It’s also a problem if you care more about one type of error, e.g. if mislabeling a
+1 as a -1 is much more of a problem than the opposite
* For example if +1 represents “tumor” and -1 is “no tumor”



Unbalanced Training Sets

* This issue comes up a lot in practice!

 How to fix the problem of unbalanced training sets?

— One way is to build a “weighted” model, like you did with weighted least
squares in your assignment (put higher weight on the training examples
with y.=+1)

* This is equivalent to replicating those examples in the training set.
* You could also subsample the majority class to make things more balanced.
— Another approach is to try to make “fake” data to fill in minority class.

— Another option is to change to an asymmetric loss function that penalizes
one type of error more than the other.

— There is some discussion of different methods here.


https://www.quora.com/In-a-supervised-learning-problem-what-are-some-effective-techniques-that-can-deal-with-highly-imbalanced-datasets

Unbalanced Data and Extreme-Value Loss

e Consider binary case where:
— One class overwhelms the other class (‘unbalanced’ data).
— Really important to find the minority class (e.g., minority class is tumor).
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Unbalanced Data and Extreme-Value Loss

e Extreme-value distribution:

F( >/,Z +1,9,>: } - 6)(/0(' éxp(;,>> ["” /S Mm')omfy C/ﬂssj \ZSWWR
A Ay S
TO VVW\/\L” /7L a },WOIOLD ) P(\/[ }j\/‘> _ QX%{“g)(/o(\/;»

<
F()/ cje# 46)
S-W\I(U To / pAInOr f/
fogtﬁ 4 ¢ lass
f(j\f thqé)ufét},é / WFO/‘CJ'
clas




Unbalanced Data and Extreme-Value Loss

e Extreme-value distribution:
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Loss Functions from Probability Ratios

 We've seen that loss functions can come from probabilities:
— Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.

* Most other loss functions can be derived from probability ratios.
— Example: sigmoid => hinge.
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Loss Functions from Probability Ratios

 We've seen that loss functions can come from probabilities:
— Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.

* Most other loss functions can be derived from probability ratios.
— Example: sigmoid => hinge.
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Loss Functions from Probability Ratios

 We've seen that loss functions can come from probabilities:
— Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.

* Most other loss functions can be derived from probability ratios.
— Example: sigmoid => hinge.
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Loss Functions from Probability Ratios

 We've seen that loss functions can come from probabilities:
— Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.

* Most other loss functions can be derived from probability ratios.
— Example: sigmoid => hinge.
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Loss Functions from Probability Ratios

* General approach for defining losses using probability ratios:
1. Define constraint based on probability ratios.
2. Minimize violation of logarithm of constraint.

 Example: softmax => multi-class SVMs.
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Supervised Ranking with Pairwise Preferences

 Ranking with pairwise preferences:
— We aren’t given any explicit y, values.
— Instead we're given list of objects (i,j) where y; > y..
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