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Admin

• Assignment 4:

– Due Friday.

• Midterm:

– Can view exam during my office hours today or Mike’s office hours Friday.

• 532M Projects:

– “No news is good news”: e-mails sent.



Last Time: Stochastic Gradient

• Stochastic gradient minimizes average of smooth functions:

– Function fi(w) is error for example ‘i’.

• Iterations perform gradient descent on one random example ‘i’:

– Cheap iterations even when ‘n’ is large, but doesn’t always decrease ‘f’.

– But solves problem if αt goes to 0 at an appropriate rate.

• Classic theory says use αt = O(1/t), new theory/practice uses O(1/√t) or constant.



A Practical Strategy for Deciding When to Stop

• In gradient descent, we can stop when gradient is close to zero.

• In stochastic gradient:

– Individual gradients don’t necessarily go to zero.

– We can’t see full gradient, so we don’t know when to stop.

• Practical trick:

– Every ‘k’ iterations (for some large ‘k’), measure validation set error.

– Stop if the validation set error “isn’t improving”.

• We don’t check the gradient, since it takes a lot longer for the gradient to get small.



Gradient Descent vs. Stochastic Gradient

• 2012: methods with cost of stochastic gradient, progress of full gradient.
– Key idea: if ‘n’ is finite, you can use a memory instead of having αt go to zero.

– First was stochastic average gradient (SAG), “low-memory” version is SVRG.
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https://www.ubyssey.ca/science/schmidt-sloan-fellowship/



Stochastic Gradient with Infinite Data

• Amazing property of stochastic gradient:

– The classic convergence analysis does not rely on ‘n’ being finite.

• Consider an infinite sequence of IID samples.

– Or any dataset that is so large we cannot even go through it once.

– Or a function you want to minimize that you can’t measure without noise.

• Approach 1 (exact optimization on finite ‘n’):

– Grab ‘n’ data points, for some really large ‘n’.

– Fit a regularized model on this fixed dataset (“empirical risk minimization”).

• Approach 2 (stochastic gradient for ‘n’ iterations):

– Run stochastic gradient iteration for ‘n’ iterations.

– Each iterations considers a new example, never re-visit any example.



Stochastic Gradient with Infinite Data

• Approach 2 only looks at a data point once:
– Each example is an unbiased approximation of test data.

• So Approach 2 is doing stochastic gradient on test error:
– It cannot overfit.

• Up to a constant, Approach 1 and 2 have same test error bound.
– This is sometimes used to justify SG as the “ultimate” learning algorithm.

• “Optimal test error by computing gradient of each example once!”

– In practice, Approach 1 usually gives lower test error.
• The constant factor matters!



(pause)



Motivation for Learning about MLE and MAP

• Next topic: maximum likelihood estimation (MLE) and MAP estimation.
– Crucial to understanding advanced methods, notation can be difficult at first.

• Why are we learning about these?
– Justifies the naïve Bayes “counting” estimates for probabilities.

– Shows the connection between least squares and the normal distribution.

– Makes connection between “robust regression” and “heavy tailed” probabilities.

– Shows that regularization and Laplace smoothing are doing the same thing.

– Gives interpretation of wTxi in logistic regression in terms of probabilities.

– Gives a way to write complicated ML problems as optimization problems.
• How do you define a loss for “number of Facebook likes” or “1-5 star rating”?

– Crucial to understanding advanced methods.



The Likelihood Function

• Suppose we have a dataset ‘D’ with parameters ‘w’.

• For example:
– We flip a coin three times and obtain D={“heads”, “heads”, “tails”}.
– The parameter ‘w’ is the probability that this coin lands “heads”.

• We define the likelihood as a probability mass function p(D | w).
– “Probability of seeing this data, given the parameters”.
– If ‘D’ is continuous it would be a probability “density” function.

• If this is a “fair” coin (meaning it lands “heads” with probability 0.5):
– The likelihood is p(HHT | w=0.5) = (1/2)(1/2)(1/2) = 0.125.
– If w = 0 (“always lands tails”), then p(HHT | w = 0) = 0 (data is less likely for this ‘w’).
– If w = 0.75, then p(HHT | w = 0.75) = (3/4)(3/4)(1/4) ≈ 0.14 (data is more likely).



Maximum Likelihood Estimation (MLE)

• We can plot the likelihood p(HHT | w) as a function of ‘w’:

• Notice:
– Data has probability 0 if w=0 or w=1 (since we have ‘H’ and ‘T’ in data).

– Data doesn’t have highest probability at 0.5 (we have more ‘H’ than ‘T’).

– This is a probability distribution over ‘D’, not ‘w’ (area isn’t 1).

• Maximum likelihood estimation (MLE):
– Choose parameters that maximize the likelihood:

• In this example, MLE is 2/3.



MLE for Binary Variables (General Case)

• Consider a binary feature:

• Using ‘w’ as “probability of 1”, the maximum likelihood estimate is:

• This is the “estimate” for the probabilities we used in naïve Bayes.

– The conditional probabilities we used in naïve Bayes are also MLEs.

• The derivation is tedious, but if you’re interested I put it here.

https://www.cs.ubc.ca/~schmidtm/Courses/540-F14/naiveBayes.pdf


(pause)



Maximum Likelihood Estimation (MLE)

• Maximum likelihood estimation (MLE) for fitting probabilistic models.

– We have a dataset D.

– We want to pick parameters ‘w’.

– We define the likelihood as a probability mass/density function p(D | w).

– We choose the model ෝ𝑤 that maximizes the likelihood:

• Appealing “consistency” properties as n goes to infinity (take STAT 4XX).

– “This is a reasonable thing to do for large data sets”.



Least Squares is Gaussian MLE

• It turns out that most objectives have an MLE interpretation:

– For example, consider minimizing the squared error:

– This is MLE of a linear model under the assumption of IID Gaussian noise:

• “Gaussian” is another name for the “normal” distribution.

– Remember that least squares solution is called the “normal equations”.



Minimizing the Negative Log-Likelihood (NLL)

• To maximize likelihood, usually we equivalently
minimize the negative “log-likelihood” (NLL):
• “Log-likelihood” is short for “logarithm of the likelihood”.

• Why are these equivalent?
– Logarithm is monotonic: if α > β, then log(α) > log(β).

• So location of maximum doesn’t change if we take logarithm.

– Changing sign flips max to min.

• See Max and Argmax notes if this seems strange.

http://www.cs.ubc.ca/~schmidtm/Courses/540-W16/max.pdf


Minimizing the Negative Log-Likelihood (NLL)

• We use logarithm because it turns multiplication into addition:

• More generally:



Least Squares is Gaussian MLE (Gory Details)

• Let’s assume that yi = wTxi + εi, with εi following standard normal:

• This leads to a Gaussian likelihood for example ‘i’ of the form:

• Finding MLE (minimizing NLL) is least squares:



Loss Functions and Maximum Likelihood Estimation

• So least squares is MLE under Gaussian likelihood.

• With a Laplace likelihood you would get absolute error.

• Other likelihoods lead to different errors (“sigmoid” -> logistic loss).



“Heavy” Tails vs. “Light” Tails

• We know that L1-norm is more robust than L2-norm.

– What does this mean in terms of probabilities?

– Gaussian has “light tails”: assumes everything is close to mean.

– Laplace has “heavy tails”: assumes some data is far from mean.

– Student ‘t’ is even more heavy-tailed/robust, but NLL is non-convex.
http://austinrochford.com/posts/2013-09-02-prior-distributions-for-bayesian-regression-using-pymc.html



Summary

• SAG and other methods fix SG convergence for finite datasets.

• Infinite datasets can be used with SG and do not overfit.

• Maximum likelihood estimate viewpoint of common models.

– Objective functions are equivalent to maximizing p(y, X | w) or p(y | X, w).

• Next time: 

– How does regularization fit it?


