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Admin

Assignment 4.
— Due Friday.

Midterm:
— Can view exam during Mike or my office hours this week.

532M Projects:

— “No news is good news”.

Kernel trick for Fourier transform:
— Not needed, as Fourier transform has same size as input.

— But, sampling Fourier basis is common to reduce cost of using kernel trick.
* Especially elegant for Gaussian RBFs (won “test of time award” last year at NIPS).



Motivation: Big-N Problems
* Consider fitting a least squares model:
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* Gradient methods are effective when ‘d’ is very large.
— O(nd) per iteration instead of O(nd? + d3) to solve as linear system.

 But what if number of training examples ‘n’ is very large?
— All Gmails, all products on Amazon, all homepages, all images, etc.



Gradient Descent vs. Stochastic Gradient

* Recall the gradient descent algorithm:

Wt”:: wb = OJVF(WQ

* For least squares, our gradient has the form:
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* So the cost of computing this gradient is linear in ‘n’.

— As ‘n’ gets large, gradient descent iterations become expensive.



Gradient Descent vs. Stochastic Gradient

 Common solution to this problem is stochastic gradient algorithm:
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* Uses the gradient of a randomly-chosen training example:
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e Cost of computing this one gradient is independent of ‘n’.

— lterations are ‘n’ times faster than gradient descent iterations.
— With 1 billion training examples, this iteration is 1 billion times faster.



Stochastic Gradient (SG)

e Stochastic gradient is an iterative optimization algorithm:
— We start with some initial guess, wV.
— Generate new guess by moving in the negative gradient direction:
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* For a random training example ‘i’.

— Repeat to successively refine the guess:
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* For a random training example ‘i’.



Problem where we can use Stochastic Gradient

e Stochastic gradient applies when minimizing averages:
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* Basically, all our regression losses except “brittle” regression.
— Recall: multiplying by positive constant doesn’t change location of optimal ‘w’



Why Does Stochastic Gradient Work / Not Work?

 Main problem with stochastic gradient:

— Gradient of random example might point in the wrong direction.

* Does this have any hope of working?
— The average of the random gradients is the full gradient.
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— The algorithm is going in the right direction on average.



Gradient Descent vs. Stochastic Gradient (SG)

e Gradient descent:

* Stochastic gradlent
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Gradient Descent in Action




Stochastic Gradient in Action
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Stochastic Gradient in Action
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Stochastic Gradient in Action
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Stochastic Gradient in Action
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Stochastic Gradient in Action
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Effect of ‘w’ Location on Progress
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 We'll still make good progress if most gradients points in right direction.



Variance of the Random Gradients

The “confusion” is captured by a kind of variance of the gradients:
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—
If the variance is O, every step goes in the right direction.
— We're outside of the region of confusion.

If the variance is small, most steps point in the direction.

— We’'re just inside region of confusion.

If the variance is large, many steps will point in the wrong direction.
— Middle of region of confusion, where w™ lives.



Effect of the Step-Size

* We can reduce the effect of the variance with the step size.
— Variance slows progress by amount proportional to square of step-size.
— So as the step size gets smaller, the variance has less of an effect.

* For a fixed step-size, SG makes progress until variance is too big.

* This leads to two “phases” when we use a constant step-size:
1. Rapid progress when we are far from the solution.

2. Erratic behaviour confined to a “ball” around solution.
(Radius of ball is proportional to the step-size.)



Stochastic Gradient with Constant Step Size




Stochastic Gradient with Constant Step Size
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Stochastic Gradient with Constant Step Size
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Stochastic Gradient with Constant Step Size
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Stochastic Gradient with Decreasing Step Sizes

* To get convergence, we need a decreasing step size.
— Shrinks size of ball to zero so we converge to w".

* Butit can’t shrink too quickly:
— Otherwise, we don’t move fast enough to reach the ball.

* Stochastic gradient converges to a stationary point if:
— Ratio of sum of squared step-sizes over sum of step-sizes converges to O.
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Stochastic Gradient with Decreasing Step Sizes

* For convergence step-sizes need to satisfy: f(‘x /20( =)

 Classic solution is to use a step-size sequence like at= O(1/t).
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— E.g., at=.001/t.
* Unfortunately, this often works badly in practice:
— Steps get really small really fast.
— Some authors add extra parameters like at = y/(t + A), which helps a bit.

— One of the only cases where this works well: binary SVMs with ot = 1/At.
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Stochastic Gradient with Decreasing Step Sizes

* How do we pick step-sizes satisfying f(o( /20( —

e Better solution is to use a step-size sequence like a'= O(1/Vt).
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— E.g., use at =.001/Vt

— Both sequences diverge, but denominator diverges faster.

e This approach (roughly) optimizes rate that it goes to zero.
— Better worst-case theoretical properties (and more robust to step-size).
— Often better in practice too.



Stochastic Gradient with Constant Step Sizes?

Alternately, could we just use a constant step-size.
— E.g., use at =.001 for all ‘t’".

This will not converge to a stationary point in general.
— However, do we need it to converge?

What if you only care about the first 2-3 digits of the test error?
— Who cares if you aren’t able to get 10 digits of optimization accuracy?

There is a step-size small enough to achieve any fixed accuracy.
— Just need radius of “ball” to be small enough.



Mini-batches: Using more than 1 example

* Does it make sense to use more than 1 random example?
— Yes, you can use a “mini-batch” B! of examples.
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— Radius of ball is inversely proportional to the mini-batch size.

* If you double the batch size, you half the radius of the ball.
— Big gains for going from 1 to 2, less big gains from going from 100 to 101.

* You can use a bigger step size as the batch size increases.
— Gets you to the ball faster (though diverges if step-size is too big).

— Useful for vectorizing/parallelizing code.

e Evaluate one gradient on each core.



Polyak-Ruppert lterate Averaging

* Another practical/theoretical trick is averaging of the iterations.

1. Run the stochastic gradient algorithm with a! = O(1/\/t) or o constant.
2. Take some weighted average of the w! values. P
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* Average does not affect the algorithm, it’s just “watching”.
* Surprising result shown by Polyak and by Ruppert in the 1980s:

— Asymptotically achieves the same rate as stochastic Newton’s method.



Stochastic Gradient with Averaging
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Summary

e Stochastic gradient methods let us use huge datasets.
e Step-size in stochastic gradient is a huge pain:
— Needs to go to zero to get convergence, but classic O(1/t) steps are bad.

— O(1/\/t) works better, but still pretty slow.
— Constant step-size is fast, but only up to a certain point.

e Nexttime:

— What do regression and regularization have to do with probabilities?



A Practical Strategy For Choosing the Step-Size

* All these step-sizes have a constant factor in the “O” notation.
- Eg, O(t: Z <'- How Jo Y d cl'\aaje TA?) (oy\;{‘am‘{?
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* We don’t know how to set step size as we go in the stochastic case.
— And choosing wrong y can destroy performance.

e Common practical trick:
— Take a small amount of data (maybe 5% of the original data).
— Do a binary search for y that most improves objective on this subset.



