CPSC 340: Machine Learning and Data Mining

Stochastic Gradient Fall 2018

Admin

- Assignment 4:
 - Due Friday.
- Midterm:
 - Can view exam during Mike or my office hours this week.
- 532M Projects:
 - "No news is good news".
- Kernel trick for Fourier transform:
 - Not needed, as Fourier transform has same size as input.
 - But, sampling Fourier basis is common to reduce cost of using kernel trick.
 - Especially elegant for Gaussian RBFs (won "test of time award" last year at NIPS).

Motivation: Big-N Problems

• Consider fitting a least squares model:

$$f(w) = \frac{1}{2} \sum_{i=1}^{2} (w^{T} y_{i} - y_{i})^{2}$$

- Gradient methods are effective when 'd' is very large.
 - O(nd) per iteration instead of $O(nd^2 + d^3)$ to solve as linear system.
- But what if number of training examples 'n' is very large?
 - All Gmails, all products on Amazon, all homepages, all images, etc.

Gradient Descent vs. Stochastic Gradient

• Recall the gradient descent algorithm:

$$W^{t+1} = W^t - \alpha^t \nabla f(W^t)$$

• For least squares, our gradient has the form:

$$\nabla f(w) = \sum_{i=1}^{n} (w x_i - y_i) x_i$$

- So the cost of computing this gradient is linear in 'n'.
 - As 'n' gets large, gradient descent iterations become expensive.

Gradient Descent vs. Stochastic Gradient

• Common solution to this problem is stochastic gradient algorithm:

$$w^{t+1} = w^t - \alpha^t \nabla f(w^t)$$

• Uses the gradient of a randomly-chosen training example:

$$\nabla f_i(w) = (w X_i - Y_i) X_i$$

- Cost of computing this one gradient is independent of 'n'.
 - Iterations are 'n' times faster than gradient descent iterations.
 - With 1 billion training examples, this iteration is 1 billion times faster.

Stochastic Gradient (SG)

- Stochastic gradient is an iterative optimization algorithm:
 - We start with some initial guess, w^0 .
 - Generate new guess by moving in the negative gradient direction:

$$w' = w^{o} - \alpha^{o} \nabla f_{i}(w^{o})$$

- For a random training example 'i'.
- Repeat to successively refine the guess:

$$W^{t+1} = w^t - x^t \nabla f_i(w^t) \quad \text{for } t = l_1 2, 3, \dots$$

• For a random training example 'i'.

Problem where we can use Stochastic Gradient

• Stochastic gradient applies when minimizing averages:

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} (squared error)$$

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + exp(-y_{i}w^{T} x_{i})) (logistic regression)$$

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} (\log(1 + exp(-y_{i}w^{T} x_{i})) + \frac{2}{2} ||u||^{2}) (l_{2} - regularized logistic)$$

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$$
 (our notation for the general case)

- Basically, all our regression losses except "brittle" regression.
 - Recall: multiplying by positive constant doesn't change location of optimal 'w'.

Why Does Stochastic Gradient Work / Not Work?

- Main problem with stochastic gradient:
 - Gradient of random example might point in the wrong direction.

- Does this have any hope of working?
 - The average of the random gradients is the full gradient.

Mean over
$$\nabla f_i(w^t)$$
 is $\frac{1}{n_{i=1}^{n}} \nabla f_i(w^t)$ which is $\nabla f(w^t)$

- The algorithm is going in the right direction on average.

Gradient Descent vs. Stochastic Gradient (SG)

- Gradient descent:
- Stochastic gradient:

Gradient Descent in Action

• We'll still make good progress if most gradients points in right direction.

Variance of the Random Gradients

• The "confusion" is captured by a kind of variance of the gradients:

$$\frac{1}{n}\sum_{i=1}^{n} \|\nabla f_i(w^t) - \nabla f(w^t)\|^2$$

- If the variance is 0, every step goes in the right direction.
 - We're outside of the region of confusion.
- If the variance is small, most steps point in the direction.
 - We're just inside region of confusion.
- If the variance is large, many steps will point in the wrong direction.
 - Middle of region of confusion, where w^{*} lives.

Effect of the Step-Size

- We can reduce the effect of the variance with the step size.
 - Variance slows progress by amount proportional to square of step-size.
 - So as the step size gets smaller, the variance has less of an effect.

• For a fixed step-size, SG makes progress until variance is too big.

- This leads to two "phases" when we use a constant step-size:
 - 1. Rapid progress when we are far from the solution.
 - Erratic behaviour confined to a "ball" around solution. (Radius of ball is proportional to the step-size.)

Stochastic Gradient with Decreasing Step Sizes

- To get convergence, we need a decreasing step size.
 - Shrinks size of ball to zero so we converge to w^* .
- But it can't shrink too quickly:
 - Otherwise, we don't move fast enough to reach the ball.
- Stochastic gradient converges to a stationary point if:
 - Ratio of sum of squared step-sizes over sum of step-sizes converges to 0.

"how much nuise affects you
$$\neg \sum_{t=1}^{\infty} (x^t)^2 = 0$$

"how far you ran $2^{t} \xrightarrow{t} \qquad \sum_{t=1}^{\infty} x^t = 0$

Stochastic Gradient with Decreasing Step Sizes

- For convergence step-sizes need to satisfy: $\frac{2}{\xi} \left(\frac{c}{\chi}^{c} \right)^{2} / \frac{2}{\xi} \frac{c}{\xi} \frac{c}{\xi} = 0$
- Classic solution is to use a step-size sequence like $\alpha^t = O(1/t)$.

- E.g., $\alpha^{t} = .001/t$.

- Unfortunately, this often works badly in practice:
 - Steps get really small really fast.
 - Some authors add extra parameters like $\alpha^t = \gamma/(t + \Delta)$, which helps a bit.
 - One of the only cases where this works well: binary SVMs with $\alpha^t = 1/\lambda t$.

Stochastic Gradient with Decreasing Step Sizes

• How do we pick step-sizes satisfying

$$\frac{2}{\tilde{\xi}(\alpha^{c})^{2}}/\frac{2}{\tilde{\xi}} = 0$$

• Better solution is to use a step-size sequence like $\alpha^{t} = O(1/\sqrt{t})$.

- E.g., use $\alpha^t = .001/\sqrt{t}$
- Both sequences diverge, but denominator diverges faster.
- This approach (roughly) optimizes rate that it goes to zero.
 - Better worst-case theoretical properties (and more robust to step-size).
 - Often better in practice too.

- Alternately, could we just use a constant step-size.
 - E.g., use α^{t} = .001 for all 't'.
- This will not converge to a stationary point in general.
 However, do we need it to converge?
- What if you only care about the first 2-3 digits of the test error? — Who cares if you aren't able to get 10 digits of optimization accuracy?
- There is a step-size small enough to achieve any fixed accuracy.
 Just need radius of "ball" to be small enough.

Mini-batches: Using more than 1 example

- Does it make sense to use more than 1 random example?
 - Yes, you can use a "mini-batch" B^t of examples.

$$W^{t+1} = W^{t} - \chi^{t} \frac{1}{|B^{t}|} \sum_{i \in B^{t}} \nabla f_{i}(u^{t}) \xrightarrow{\text{Random "batch"}} of examples.$$

- Radius of ball is inversely proportional to the mini-batch size.
 - If you double the batch size, you half the radius of the ball.
 - Big gains for going from 1 to 2, less big gains from going from 100 to 101.
 - You can use a bigger step size as the batch size increases.
 - Gets you to the ball faster (though diverges if step-size is too big).
- Useful for vectorizing/parallelizing code.
 - Evaluate one gradient on each core.

Polyak-Ruppert Iterate Averaging

- Another practical/theoretical trick is averaging of the iterations.
 - 1. Run the stochastic gradient algorithm with $\alpha^t = O(1/\sqrt{t})$ or α^t constant.

K=1

2. Take some weighted average of the w^t values.

$$\overline{W}^{t} = \sum_{k=1}^{t} \sqrt{W}^{k} W^{k} \text{ flere, } \sqrt{W}^{k} \text{ is a scalar } \sum_{k=1}^{t} \sqrt{W}^{k} W^{k} \text{ flere, } \sqrt{W}^{k} \text{ is a scalar } \sum_{k=1}^{t} \sqrt{W}^{k} W^{k} \text{ flere, } \sqrt{W}^{k} \text{ is a scalar } \sum_{k=1}^{t} \sqrt{W}^{k} W^{k} \text{ flere, } \sqrt{W}^{k} \text{ is a scalar } \sum_{k=1}^{t} \sqrt{W}^{k} W^{k} \text{ flere, } \sqrt{W}^{k} \text{ is a scalar } \sum_{k=1}^{t} \sqrt{W}^{k} W^{k} \text{ flere, } \sqrt{W}^{k} \text{ is a scalar } \sum_{k=1}^{t} \sqrt{W}^{k} W^{k} \text{ flere, } \sqrt{W}^{k} \text{ is a scalar } \sum_{k=1}^{t} \sqrt{W}^{k} W^{k} \text{ flere, } \sqrt{W}^{k} \text{ flere, } \sqrt{W}^{$$

- Average does not affect the algorithm, it's just "watching".
- Surprising result shown by Polyak and by Ruppert in the 1980s:
 - Asymptotically achieves the same rate as stochastic Newton's method.

Stochastic Gradient with Averaging

Summary

- Stochastic gradient methods let us use huge datasets.
- Step-size in stochastic gradient is a huge pain:
 - Needs to go to zero to get convergence, but classic O(1/t) steps are bad.
 - $O(1/\sqrt{t})$ works better, but still pretty slow.
 - Constant step-size is fast, but only up to a certain point.
- Next time:
 - What do regression and regularization have to do with probabilities?

A Practical Strategy For Choosing the Step-Size

• All these step-sizes have a constant factor in the "O" notation.

- E.g.,
$$\alpha^{t} = \frac{\gamma}{\sqrt{t}} \leftarrow H_{on} do no choose this constant?$$

- We don't know how to set step size as we go in the stochastic case.
 - And choosing wrong γ can destroy performance.
- Common practical trick:
 - Take a small amount of data (maybe 5% of the original data).
 - Do a binary search for γ that most improves objective on this subset.