
CPSC 340:
Machine Learning and Data Mining

Stochastic Gradient

Fall 2018

Admin

• Assignment 4:
– Due Friday.

• Midterm:
– Can view exam during Mike or my office hours this week.

• 532M Projects:
– “No news is good news”.

• Kernel trick for Fourier transform:
– Not needed, as Fourier transform has same size as input.
– But, sampling Fourier basis is common to reduce cost of using kernel trick.

• Especially elegant for Gaussian RBFs (won “test of time award” last year at NIPS).

Motivation: Big-N Problems

• Consider fitting a least squares model:

• Gradient methods are effective when ‘d’ is very large.

– O(nd) per iteration instead of O(nd2 + d3) to solve as linear system.

• But what if number of training examples ‘n’ is very large?

– All Gmails, all products on Amazon, all homepages, all images, etc.

Gradient Descent vs. Stochastic Gradient

• Recall the gradient descent algorithm:

• For least squares, our gradient has the form:

• So the cost of computing this gradient is linear in ‘n’.

– As ‘n’ gets large, gradient descent iterations become expensive.

Gradient Descent vs. Stochastic Gradient

• Common solution to this problem is stochastic gradient algorithm:

• Uses the gradient of a randomly-chosen training example:

• Cost of computing this one gradient is independent of ‘n’.

– Iterations are ‘n’ times faster than gradient descent iterations.

– With 1 billion training examples, this iteration is 1 billion times faster.

Stochastic Gradient (SG)

• Stochastic gradient is an iterative optimization algorithm:

– We start with some initial guess, w0.

– Generate new guess by moving in the negative gradient direction:

• For a random training example ‘i’.

– Repeat to successively refine the guess:

• For a random training example ‘i’.

Problem where we can use Stochastic Gradient

• Stochastic gradient applies when minimizing averages:

• Basically, all our regression losses except “brittle” regression.

– Recall: multiplying by positive constant doesn’t change location of optimal ‘w’.

Why Does Stochastic Gradient Work / Not Work?

• Main problem with stochastic gradient:

– Gradient of random example might point in the wrong direction.

• Does this have any hope of working?

– The average of the random gradients is the full gradient.

– The algorithm is going in the right direction on average.

Gradient Descent vs. Stochastic Gradient (SG)
• Gradient descent:

• Stochastic gradient:

Gradient Descent in Action

Stochastic Gradient in Action

Stochastic Gradient in Action

Stochastic Gradient in Action

Stochastic Gradient in Action

Stochastic Gradient in Action

Effect of ‘w’ Location on Progress

• We’ll still make good progress if most gradients points in right direction.

Variance of the Random Gradients

• The “confusion” is captured by a kind of variance of the gradients:

• If the variance is 0, every step goes in the right direction.

– We’re outside of the region of confusion.

• If the variance is small, most steps point in the direction.

– We’re just inside region of confusion.

• If the variance is large, many steps will point in the wrong direction.

– Middle of region of confusion, where w* lives.

Effect of the Step-Size

• We can reduce the effect of the variance with the step size.

– Variance slows progress by amount proportional to square of step-size.

– So as the step size gets smaller, the variance has less of an effect.

• For a fixed step-size, SG makes progress until variance is too big.

• This leads to two “phases” when we use a constant step-size:

1. Rapid progress when we are far from the solution.

2. Erratic behaviour confined to a “ball” around solution.
(Radius of ball is proportional to the step-size.)

Stochastic Gradient with Constant Step Size

Stochastic Gradient with Constant Step Size

Stochastic Gradient with Constant Step Size

Stochastic Gradient with Constant Step Size

Stochastic Gradient with Decreasing Step Sizes

• To get convergence, we need a decreasing step size.

– Shrinks size of ball to zero so we converge to w*.

• But it can’t shrink too quickly:

– Otherwise, we don’t move fast enough to reach the ball.

• Stochastic gradient converges to a stationary point if:

– Ratio of sum of squared step-sizes over sum of step-sizes converges to 0.

Stochastic Gradient with Decreasing Step Sizes

• For convergence step-sizes need to satisfy:

• Classic solution is to use a step-size sequence like αt = O(1/t).

– E.g., αt = .001/t.

• Unfortunately, this often works badly in practice:
– Steps get really small really fast.
– Some authors add extra parameters like αt = γ/(t + Δ), which helps a bit.
– One of the only cases where this works well: binary SVMs with αt = 1/λt.

Stochastic Gradient with Decreasing Step Sizes

• How do we pick step-sizes satisfying

• Better solution is to use a step-size sequence like αt = O(1/√𝑡).

– E.g., use αt = .001/√t

– Both sequences diverge, but denominator diverges faster.

• This approach (roughly) optimizes rate that it goes to zero.
– Better worst-case theoretical properties (and more robust to step-size).

– Often better in practice too.

Stochastic Gradient with Constant Step Sizes?

• Alternately, could we just use a constant step-size.
– E.g., use αt = .001 for all ‘t’.

• This will not converge to a stationary point in general.
– However, do we need it to converge?

• What if you only care about the first 2-3 digits of the test error?
– Who cares if you aren’t able to get 10 digits of optimization accuracy?

• There is a step-size small enough to achieve any fixed accuracy.
– Just need radius of “ball” to be small enough.

Mini-batches: Using more than 1 example

• Does it make sense to use more than 1 random example?

– Yes, you can use a “mini-batch” Bt of examples.

– Radius of ball is inversely proportional to the mini-batch size.

• If you double the batch size, you half the radius of the ball.
– Big gains for going from 1 to 2, less big gains from going from 100 to 101.

• You can use a bigger step size as the batch size increases.
– Gets you to the ball faster (though diverges if step-size is too big).

– Useful for vectorizing/parallelizing code.

• Evaluate one gradient on each core.

Polyak-Ruppert Iterate Averaging

• Another practical/theoretical trick is averaging of the iterations.

1. Run the stochastic gradient algorithm with αt = O(1/√t) or αt constant.

2. Take some weighted average of the wt values.

• Average does not affect the algorithm, it’s just “watching”.

• Surprising result shown by Polyak and by Ruppert in the 1980s:

– Asymptotically achieves the same rate as stochastic Newton’s method.

Stochastic Gradient with Averaging

Summary

• Stochastic gradient methods let us use huge datasets.

• Step-size in stochastic gradient is a huge pain:

– Needs to go to zero to get convergence, but classic O(1/t) steps are bad.

– O(1/√𝑡) works better, but still pretty slow.

– Constant step-size is fast, but only up to a certain point.

• Next time:

– What do regression and regularization have to do with probabilities?

A Practical Strategy For Choosing the Step-Size

• All these step-sizes have a constant factor in the “O” notation.

– E.g.,

• We don’t know how to set step size as we go in the stochastic case.

– And choosing wrong γ can destroy performance.

• Common practical trick:

– Take a small amount of data (maybe 5% of the original data).

– Do a binary search for γ that most improves objective on this subset.

