CPSC 340:
Machine Learning and Data Mining

Stochastic Gradient
Fall 2018

Admin

Assignment 4.
— Due Friday.

Midterm:
— Can view exam during Mike or my office hours this week.

532M Projects:

— “No news is good news”.

Kernel trick for Fourier transform:
— Not needed, as Fourier transform has same size as input.

— But, sampling Fourier basis is common to reduce cost of using kernel trick.
* Especially elegant for Gaussian RBFs (won “test of time award” last year at NIPS).

Motivation: Big-N Problems
* Consider fitting a least squares model:
| & (T 2
fw=:2 2

* Gradient methods are effective when ‘d’ is very large.
— O(nd) per iteration instead of O(nd? + d3) to solve as linear system.

 But what if number of training examples ‘n’ is very large?
— All Gmails, all products on Amazon, all homepages, all images, etc.

Gradient Descent vs. Stochastic Gradient

* Recall the gradient descent algorithm:

Wt”:: wb = OJVF(WQ

* For least squares, our gradient has the form:

V()= Ig("\;'x: B 7:‘7&:

S(a’ar Jxl

* So the cost of computing this gradient is linear in ‘n’.

— As ‘n’ gets large, gradient descent iterations become expensive.

Gradient Descent vs. Stochastic Gradient

 Common solution to this problem is stochastic gradient algorithm:

\/Vtﬂt Wt - og£ VE(Wt?
* Uses the gradient of a randomly-chosen training example:
’ w X, Zi 7)(,'
SCalar :I;IJ
e Cost of computing this one gradient is independent of ‘n’.

— lterations are ‘n’ times faster than gradient descent iterations.
— With 1 billion training examples, this iteration is 1 billion times faster.

Stochastic Gradient (SG)

e Stochastic gradient is an iterative optimization algorithm:
— We start with some initial guess, wV.
— Generate new guess by moving in the negative gradient direction:

w = w’ = ol V(W)

* For a random training example ‘i’.

— Repeat to successively refine the guess:
WJrH:Wt_o(tv{:i(wt) for 1=)) :))'g)“‘

* For a random training example ‘i’.

Problem where we can use Stochastic Gradient

e Stochastic gradient applies when minimizing averages:

~
T Vv) = Z(W Xi]‘ (S:’mq/eJ error>

] = |
T(w) N f log(' +exr)()vWX)) (lo‘j"{ic re(j(CSS\OV‘)

1=

| =
F w) = —l';) 2 ['a(J U 4(’7'0 'y;w X;)42”w//2] (Lz’rf’y\/\{w)u,/ /v()isfll)

‘»\(w): 71) 1(:(\'\) (OW noM_i_on 7Pof 7 he 99/\1'4%/ co.>e)

i=1
* Basically, all our regression losses except “brittle” regression.
— Recall: multiplying by positive constant doesn’t change location of optimal ‘w’

Why Does Stochastic Gradient Work / Not Work?

 Main problem with stochastic gradient:

— Gradient of random example might point in the wrong direction.

* Does this have any hope of working?
— The average of the random gradients is the full gradient.
n.

N
Mean over VW) s 12 VEH (WD which 15 91,

— The algorithm is going in the right direction on average.

Gradient Descent vs. Stochastic Gradient (SG)

e Gradient descent:

* Stochastic gradlent

=

M v

Gradient Descent in Action

Stochastic Gradient in Action

N 2 (w'x,) F)
"\‘(\«/7 - (‘«/7)(1 '71)2
]C (w) = (w' N~ /2)1
fs(w) = (w" X3 = /;) i -
{i (W) = (w Xy /4) w? W
L) = (s ys) Phr) £6) A R
Stochast,
3@"sz
’ MininiZes
! > ,Z)A‘é j:fe)

Stochastic Gradient in Action

f,)
ﬁ(w) = (w-')/g "ﬂ)l
—
= x
w? W W
»
§+o(l\as1‘ic
9’0(‘“47‘
M)WM/?(j
S/ averaqe
- _— Valye

Stochastic Gradient in Action

fe)

[5“’) :(WTx3875)2 ‘ 4

)
WOV W
£

§+ocl\as1‘ic

3/0Jkeﬂf

mming

AVe/aqC

VO\\\Ae

Stochastic Gradient in Action

o)
'ﬁ(w? = (\«/7)(, ’71)2
—
—5—
WO WY "
P w)
§+o(l\as1‘ic
9’0(‘“47‘
/ M)VM'M/?(j
—7 averaqe
) 'o 3 2\, X Value

Stochastic Gradient in Action

{\g (W) = (w'rs ™ ‘/5)2

= 4

§+ocl\as1‘ic
3’0(‘“47‘
Mumw?cj
: averaqe
) ' 0) ‘3:71 X Iy Value

Effect of ‘w’ Location on Progress
FWpa £y A i)

\/\/\—/
W)

(—:vem/ V‘R (W) eré

(—:\,Q,\/ V‘F‘ (W) eré

/ _
* /R.e (N OP (OﬁFU‘SlO/\ ’

Some Vﬂ(w) powﬂl

*OW(NJS V\/)}‘F Gntl
Some dont

po'»m‘s towerds w, PO""“{S fowerds \/\/*

 We'll still make good progress if most gradients points in right direction.

Variance of the Random Gradients

The “confusion” is captured by a kind of variance of the gradients:

L Z VRO = FAOIP

—
If the variance is O, every step goes in the right direction.
— We're outside of the region of confusion.

If the variance is small, most steps point in the direction.

— We’'re just inside region of confusion.

If the variance is large, many steps will point in the wrong direction.
— Middle of region of confusion, where w™ lives.

Effect of the Step-Size

* We can reduce the effect of the variance with the step size.
— Variance slows progress by amount proportional to square of step-size.
— So as the step size gets smaller, the variance has less of an effect.

* For a fixed step-size, SG makes progress until variance is too big.

* This leads to two “phases” when we use a constant step-size:
1. Rapid progress when we are far from the solution.

2. Erratic behaviour confined to a “ball” around solution.
(Radius of ball is proportional to the step-size.)

Stochastic Gradient with Constant Step Size

Stochastic Gradient with Constant Step Size

0
» W

A1)

gang Conver 7 en(e

+0 the ball

- We (an Ji\/hle 'rL\e rodius b-f
\ / qu/, N 2 loy cLI'V‘(c/,',,a “t [’}’ Z
#-—- . (buf dakres /orf)ev/'fo j«"f fo bell)

/‘/(\,\1';0,\) < Q bq” with f‘ml(u)
A FrorOrhoan 1o ot

Stochastic Gradient with Constant Step Size

\
AN
N}
D
N
N
S
-
< ..
S _ ‘
(& bt errelic LeLau/JVJ
b ¢ o jS v\,i"‘/h 0(01) o‘P 0/!1/17"0/ ‘r’(
¥“"’ — T T T T T T = T = fuconver Luvctions
(V"f('f ("/{fﬁ Of)’uw,n"/uns‘)

l\ —_

Stochastic Gradient with Constant Step Size

Olor) reqor is ko
cod in bl

Stochastic Gradient with Decreasing Step Sizes

* To get convergence, we need a decreasing step size.
— Shrinks size of ball to zero so we converge to w".

* Butit can’t shrink too quickly:
— Otherwise, we don’t move fast enough to reach the ball.

* Stochastic gradient converges to a stationary point if:
— Ratio of sum of squared step-sizes over sum of step-sizes converges to O.

//tl«?\v cht‘ Nvise qmcls yu,‘ —) OZO.(D(T)'L
t=! = ()

o<t

,/Ao‘/v for you (‘nwj’f”/——?

NN

Stochastic Gradient with Decreasing Step Sizes

* For convergence step-sizes need to satisfy: f(‘x /20(=)

 Classic solution is to use a step-size sequence like at= O(1/t).

o o=
Z&t=2d - Z(O(C) Z L <L oo
t= t=1 t < _ €
- K_/-\/‘\/ .
Weé can ae‘f ev?fywl‘ff”t’,\\ /,qucf olp Vol ahee jB"S lo zero
— E.g., at=.001/t.
* Unfortunately, this often works badly in practice:
— Steps get really small really fast.
— Some authors add extra parameters like at = y/(t + A), which helps a bit.

— One of the only cases where this works well: binary SVMs with ot = 1/At.

"

Stochastic Gradient with Decreasing Step Sizes

* How do we pick step-sizes satisfying f(o(/20(—

e Better solution is to use a step-size sequence like a'= O(1/Vt).

o o= a~ 2 _ B
=5 1 = ZW)'=ZL =0
go(t:/\rt 0(&) = _, t 0(07 ()
— E.g., use at =.001/Vt

— Both sequences diverge, but denominator diverges faster.

e This approach (roughly) optimizes rate that it goes to zero.
— Better worst-case theoretical properties (and more robust to step-size).
— Often better in practice too.

Stochastic Gradient with Constant Step Sizes?

Alternately, could we just use a constant step-size.
— E.g., use at =.001 for all ‘t’".

This will not converge to a stationary point in general.
— However, do we need it to converge?

What if you only care about the first 2-3 digits of the test error?
— Who cares if you aren’t able to get 10 digits of optimization accuracy?

There is a step-size small enough to achieve any fixed accuracy.
— Just need radius of “ball” to be small enough.

Mini-batches: Using more than 1 example

* Does it make sense to use more than 1 random example?
— Yes, you can use a “mini-batch” B! of examples.
e _ t t flav Ak
w T w | RE 2 VA (W) of bt
‘B ,egts _ 0 C’VOIM//PS
— Radius of ball is inversely proportional to the mini-batch size.

* If you double the batch size, you half the radius of the ball.
— Big gains for going from 1 to 2, less big gains from going from 100 to 101.

* You can use a bigger step size as the batch size increases.
— Gets you to the ball faster (though diverges if step-size is too big).

— Useful for vectorizing/parallelizing code.

e Evaluate one gradient on each core.

Polyak-Ruppert lterate Averaging

* Another practical/theoretical trick is averaging of the iterations.

1. Run the stochastic gradient algorithm with a! = O(1/\/t) or o constant.
2. Take some weighted average of the w! values. P

v ©p
t 4 ,(4
VV — ? VI(Wk H{re) v S a SCa/ar g V/h Fdrm C'V(/OjF
) , 1y —~t-
= ,L/”we-i/lﬂ of i’/@rqtom k w — 2 w

* Average does not affect the algorithm, it’s just “watching”.
* Surprising result shown by Polyak and by Ruppert in the 1980s:

— Asymptotically achieves the same rate as stochastic Newton’s method.

Stochastic Gradient with Averaging

0
W

A4)

rY\ast (onver 7 en(e

+0 the ball
A\/erac}e O‘F effo']L)(

i [9‘31"0‘\/’0*\:’ (an converqe
oy e
((solulion) I<—Q ball wiTh {‘ml(u)
l . FrorOrhoan 1o ot

Summary

e Stochastic gradient methods let us use huge datasets.
e Step-size in stochastic gradient is a huge pain:
— Needs to go to zero to get convergence, but classic O(1/t) steps are bad.

— O(1/\/t) works better, but still pretty slow.
— Constant step-size is fast, but only up to a certain point.

e Nexttime:

— What do regression and regularization have to do with probabilities?

A Practical Strategy For Choosing the Step-Size

* All these step-sizes have a constant factor in the “O” notation.
- Eg, O(t: Z <'- How Jo Y d cl'\aaje TA?) (oy\;{‘am‘{?
\I3

* We don’t know how to set step size as we go in the stochastic case.
— And choosing wrong y can destroy performance.

e Common practical trick:
— Take a small amount of data (maybe 5% of the original data).
— Do a binary search for y that most improves objective on this subset.

