CPSC 340:
Machine Learning and Data Mining



Admin

* Assignment 4:
— Due Friday of next week.

e Midterm:

— Grades posted.
— Can view exam during Mike or my office hours this week and next week.

* 532M Projects:

— “No news is good news”.



Last Time: Other Normal Equations and Kernel Trick

 We discussed the “other” normal equations (under basis ‘Z’):
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« Predictions only depend on features through inner-product matrices ‘K’ and K.

— So everything we need to know about z, is summarized by the zisz.

y kCk+21)"y

t‘f‘ y.r

e ku\/w L\oq,( li\l ra,amclw:/f) iﬁl{(lv’rtllm'/ o'r ‘//P sige o'P IZ‘

e Kernel trick:

— If you have a kernel function k(x; x;) that computes szJ
then you don’t ever need to compute the basis z, explicitly to use the model.




Example: Linear Kernel

* Consider two examples x; and x; for a 2-dimensional dataset:
=(q x2) %7 (x,m)

 And our standard (“linear”) basis:

Z;: (21;)2;’1) '- (J‘) )))

* Inthis case the inner product z;'z; is k(x;x;) = x;'x;:



Example: Degree-2 Kernel

* Consider two examples x; and x; for a 2-dimensional dataset:
=(x xa) X7 (), 02)
* Now consider a particular degree-2 basis:
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* |n this case the inner product 2;'z; is k(x;,x;) = (X T )2
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Polynomial Kernel with Higher Degrees

* Let’s add a bias and linear terms to our degree-2 basis:
= [l \sz.n ﬁxiz Xuz \I?Xuxi.( Y/z)]’

* In this case the inner product z'z; is k(x;x;) = (1 + x;'x;)*:
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Polynomial Kernel with Higher Degrees

* To get all degree-4 “monomials” | can use:
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* To also get lower-order terms use k(x;x;) = (1 + x;'x;)*
 The general degree-p polynomial kernel function:

k(X,-7)(J->= (+ X,"'V))p

— Works for any number of features ‘d’.
— But cost of computing one k(x;x;) is O(d) instead of O(dP) to compute zisz.
— Take-home message: | can compute dot-products without the features.



Kernel Trick with Polynomials

* Using polynomial basis of degree ‘p’ with the kernel trick:
— Compute K and K using:
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* Training cost is only O(n?d + n3), despite using k=0O(dP) features.
— We can form ‘K’ in O(n?d), and we need to “invert” an ‘n x n’ matrix.

— Testing cost is only O(ndt), cost to form K.



Gaussian-RBF Kernel

e Most common kernel is the Gaussian RBF kernel:

(G0 esp(-Vm2™)

2@

 Same formula and behaviour as RBF basis, but not equivalent:
— Before we used RBFs as a basis, now we’re using them as inner-product.

* Basis z, giving Gaussian RBF kernel is infinite-dimensional.
— If d=1 and o=1, it corresponds to using this basis (bonus slide):
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Motivation: Finding Gold

* Kernel methods first came from mining engineering (“Kriging”):
— Mining company wants to find gold.
— Drill holes, measure gold content.

— Build a kernel regression model (typically use RBF kernels).
input Process Output




Kernel Trick for Non-Vector Data

* Consider data that doesn’t look like this:
[ 0.5377 (.3188 3.5784 | (1]
¥ 1.8339 1.3077  2.7694 , 1
— |—2.2588 —0.4336 —1.3499|°> YT [-1]°
| 0.8622 0.3426 3.0349 | +1
But instead looks like this:
[ Do you want to go for a drink sometime? | 1]
J'achéte du pain tous les jours. —1
X = . Y = .
Fais ce que tu veux. —1
| There are inner products between sentences? | +1]

Kernel trick lets us fit regression models without explicit features:
— We can interpret k(x;x;) as a “similarity” between objects x; and x..

— We don’t need features if we can compute ‘similarity’ between objects.
— There are “string kernels”, “image kernels”, “graph kernels”, and so on.



Valid Kernels

What kernel functions k(x;x;) can we use?

Kernel ‘k” must be an inner product in some space:

— There must exist a mapping from the x; to some z; such that k(x,x;) = z;'z,

It can be hard to show that a function satisfies this.

— Infinite-dimensional eigenfunction problem.

But like convex functions, there are some simple rules for
constructing “valid” kernels from other valid kernels (bonus slide).



Kernel Trick for Other Methods

Besides L2-regularized least squares, when can we use kernels?
— We can compute Euclidean distance with kernels:
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— All of our distance-based methods have kernel versions:
* Kernel k-nearest neighbours.
» Kernel clustering k-means (allows non-convex clusters)
» Kernel density-based clustering.
* Kernel hierarchical clustering.
* Kernel distance-based outlier detection.
e Kernel “Amazon Product Recommendation”,



Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized:
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Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized:
L2-regularized robust regression.

L2-regularized brittle regression.

L2-regularized logistic regression.

L2-regularized hinge loss (SVMs).
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Regression with Kernels

Linear Logistic Regression

Logistic

kernel-Linear Logistic Regression
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(pause)



Motivation: “Personalized” Important E-mails

e Recall that we discussed identifying ‘important’ e-mails?

| » Mark .. Issam, Ricky (10) Inbox A2, tutorials, marking = 10:41 am
COMPOSE
Holger, Jim (2) lists  Intro to Computer Science 10:20 am
Inbox (3) .
» Issam Laradji Inbox  Convergence rates forcu = 9:49 am
Starred
<!mpa@n? > * sameh, Mark, sameh (3) Inbox  Graduation Project Dema = 8:01 am
Sent Mai - .
g » Mark .. sara, Sara (11) Label propagation = 7:57am

 There might be some “globally” important messages:

— “This is your mother, something terrible happened, give me a call ASAP”

* But your “important” message may be unimportant to others.

— Similar for spam: “spam” for one user could be “not spam” for another.



Digression: Linear Models with Binary Features

 What is the effect of a binary features on linear regression?

* Suppose we use a bag of words:
— With 3 words “hello”, “Vicodin”, “340“ our model would be:

N
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— If e-mail only has “hello” and “340” our prediction is: 7

N
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* So having the binary feature j" increases J; by the fixed amount w;.
— Predictions are a bit like naive Bayes where we combine features independently.
— But now we’re learning all w; together so this tends to work better.



“Global” and “Local” Features

e Consider the following weird feature transformation:

m “340” (any user) “340” (user?)

1 1 User 1
1 ,._> 1 User 1
1 - 1 User 2
0 0 <no “340">
1 1 User 3

* First feature: did “340” appear in this e-mail?
e Second feature: if “340” appeared in this e-mail, who was it addressed to?

* First feature will increase/decrease importance of “340” for every user (including new users).

* Second (categorical feature) increases/decreases important of “340” for specific users.
— Lets us learn more about users where we have a lot of data



“Global” and “Local” Features

e Recall we usually represent categorical features using “1 of k” binaries:

m “340” (any user) “340” (user = 1) “340” (user = 2)
1 1 0
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The Big Global/Local Feature Table for E-mails

 Each row is one e-mail (there are lots of rows):
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Predicting Importance of E-mail For New User

e Consider a new user:
— We start out with no information about them.

— So we use global features to predict what is important to a generic user.
N
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* With more data, update global features and user’s local features:
— Local features make prediction personalized.
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— What is important to this user? NN 1o wser

* G-mail system: classification with logistic regression.
— Trained with a variant of stochastic gradient.



Summary

e Kernel trick allows us to use high-dimensional bases efficiently.
— Write model to only depend on inner products between features vectors.

N ~/
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e Kernels let us use similarity between objects, rather than features.
— Allows some exponential- or infinite-sized feature sets.
— Applies to distance-based and linear models (with L2-reg. or gradient descent).

* Global vs. local features allow “personalized” predictions.

* Next time:
— How do we train on all of Gmail?



Why is inner product a similarity?

* |t seems weird to think of the inner-product as a similarity.
e But consider this decomposition of squared Euclidean distance:

U4 =Ty w12
3 k=g 112 = 3 ell® = "y 4 gl
* If all training examples have the same norm, then minimizing Euclidean
distance is equivalent to maximizing inner product.
— So “high similarity” according to inner product is like “small Euclidean distance”.

— The only difference is that the inner product is biased by the norms of the
training examples.
— Some people explicitly normalize the x; by setting x. = (1/] | x| | )x;, so that inner
products act like the negation of Euclidean distances.
* E.g., Amazon product recommendation.



Guasian-RBF Kernels

@ The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,

. e |12
k(zi,xj) = exp (— i = ;] ) .

G_z

@ What function ¢(x) would lead to this as the inner-product?
» To simplify, assume d =1 and o = 1,

k(zi, i) = exp(—x; + 275 — ..r_f)
= exp(—x}) exp(2z;z;) exp(—z3),
so we need ¢(x;) = exp(—x7)z; where 2;2; = exp(2z;z;).
@ For this to work for all x; and z;, z; must be infinite-dimensional.

o If we use that o ok
20t

exp(2x;z;) = z ;;I L

k=0

-

then we obtain
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Constructing Valid Kernels

o If ki(zi,z;) and ka(x;, ;) are valid kernels, then the following are valid kernels:

o ky(d(xq), d(xj)).
@ {}kl(Tg,TJ) —+ ﬁk’z(TET_}.) for >0 and B > 0.
o ky(wi, xj)ka(ws, xj).
o P(x;)ky(xi,x;)0(xy).
@ D}{p(kl(iﬂi,:ﬁj)).
e Example: Gaussian-RBF kernel:

2
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(i, 35) = exp (_M 3|)
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Representer Theorem

Consider linear model differentiable with losses f; and L2-regularization,
. A
argmin > fi(w”z) + 5 [lw]?
Setting the gradient equal to zero we get
(= Z fl(wlz))x; + M.

So any solution w* can written as a linear combination of features x;,

n n

w' = —i Zfz"((’LU*)TIz')iUi = Z Zil;

=1 =1

This is called a representer theorem (true under much more general conditions).



Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized.

— Linear models without regularization fit with gradient descent.
* If you starting at v=0 or with any other value in span of rows of Z’.
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