CPSC 340: Machine Learning and Data Mining

Kernel Trick Fall 2018

Admin

- Assignment 4:
 - Due Friday of next week.
- Midterm:
 - Grades posted.
 - Can view exam during Mike or my office hours this week and next week.
- 532M Projects:
 - "No news is good news".

Last Time: Other Normal Equations and Kernel Trick

• We discussed the "other" normal equations (under basis 'Z'):

- Predictions only depend on features through inner-product matrices 'K' and \tilde{K} .
 - So everything we need to know about z_i is summarized by the $z_i^T z_i$.

$$\hat{\gamma} = \tilde{K} (K + \lambda I)^{-1} \gamma$$

= $\tilde{K} u$ sur hour h' porometors, independent of the size of '2'

- Kernel trick:
 - If you have a kernel function $k(x_i, x_j)$ that computes $z_i^T z_j$, then you don't ever need to compute the basis z_i explicitly to use the model.

Example: Linear Kernel

- Consider two examples x_i and x_j for a 2-dimensional dataset: $\chi_i = (x_{i_1}, x_{i_2})$ $x_j = (x_{j_1}, x_{j_2})$
- And our standard ("linear") basis:

$$Z_{j} = (z_{j_{1}}, z_{j_{2}})$$
 $Z_{j} = (z_{j_{1}}, z_{j_{2}})$

• In this case the inner product $z_i^T z_i$ is $k(x_i, x_i) = x_i^T x_i$:

$$Z_{j}^{T} Z_{j} = \chi_{i}^{T} \chi_{j}$$

$$\int_{x_{i}}^{T} \chi_{j}$$

Example: Degree-2 Kernel

- Consider two examples x_i and x_j for a 2-dimensional dataset: $\chi_i = (x_{i1}, x_{i2})$ $x_j = (x_{j1}, x_{j2})$
- Now consider a particular degree-2 basis:

$$Z_{i} = (x_{i1}^{2} \sqrt{2} x_{i1} x_{i2} x_{i2}^{2}) \qquad Z_{j} = (x_{j1}^{2} \sqrt{2} x_{j1} x_{j2} x_{j2}^{2})$$

• In this case the inner product $\underline{z}_i^T \underline{z}_i$ is $k(x_i, x_i) = (x_i^T x_i)^2$:

$$z_{i}^{T} z_{j} = x_{i}^{2} x_{j}^{2} + (\sqrt{2} x_{ii} x_{i2})(\sqrt{2} x_{j1} x_{j2}) + x_{i2}^{2} x_{j2}^{2}$$

$$= x_{i1}^{2} x_{j1}^{2} + 2 x_{i1} x_{i2} x_{j1} x_{j2} + x_{i1}^{2} x_{i2}^{2}$$

$$= (x_{i1} x_{j1} + x_{i2} x_{j2})^{2} \quad \text{"completing the square"}$$

$$= (x_{i}^{T} x_{j})^{2} \quad \text{No need for } z_{i} \text{ to compute } z_{i}^{T} z_{j}$$

Polynomial Kernel with Higher Degrees

• Let's add a bias and linear terms to our degree-2 basis:

$$Z_{i} = \begin{bmatrix} 1 & \sqrt{2} x_{i1} & \sqrt{2} x_{i2} & x_{i1}^{2} & \sqrt{2} & x_{i1} & x_{i2} & x_{i2}^{2} \end{bmatrix}$$

• In this case the inner product $z_i^T z_j$ is $k(x_i, x_j) = (1 + x_i^T x_j)^2$:

$$(| + x_i^7 x_j)^2 = | + 2x_i^7 x_j^7 + (x_i^7 x_j^7)^2$$

= | + 2x_{i1} x_{j1} + 2x_{i2} x_{j2}^7 + x_{i1}^2 x_{j1}^2 + 2x_{i1} x_{i2} x_{j1} x_{j2}^7 + x_{i2}^2 x_{j2}^2

$$= \begin{bmatrix} 1 & \sqrt{2} x_{i1} & \sqrt{2} x_{i2} & x_{i1}^{2} & \sqrt{2} & y_{i1} & y_{i2} & x_{i2}^{2} \\ & & & z_{i1}^{7} & & z_{i2}^{7} & y_{i1}^{7} & y_{i2} & y_{i2}^{7} \\ & & & z_{i1}^{7} & & z_{i2}^{7} & y_{i2}^{7} \\ & & & & z_{i1}^{7} & y_{i2}^{7} \\ & & & & z_{i2}^{7} & y_{i2}^{7} \\ & & & & z_{i2}^{7} & y_{i2}^{7} \\ & & & & z_{i2}^{7} \\ & & & & z_{i2}^{7$$

Polynomial Kernel with Higher Degrees

• To get all degree-4 "monomials" I can use:

$$k(x_{i}, x_{j}) = (x_{i}^{7} x_{j})^{4}$$

Equivalent to using a zi with weighted versions of xi1, xi1, xi2, xi1, xi2,

- To also get lower-order terms use $k(x_i, x_j) = (1 + x_i^T x_j)^4$
- The general degree-p polynomial kernel function:

$$k(x_{i}, x_{j}) = (1 + x_{i}^{7} x_{j})^{p}$$

- Works for any number of features 'd'.
- But cost of computing one $k(x_i, x_j)$ is O(d) instead of O(d^p) to compute $z_i^T z_j$.
- Take-home message: I can compute dot-products without the features.

Kernel Trick with Polynomials

- Using polynomial basis of degree 'p' with the kernel trick:
 - Compute K and \widetilde{K} using:

$$K_{ij} = (1 + x_i^{T} x_j)^{\rho} \qquad \widetilde{K}_{ij} = (1 + \widetilde{x}_i^{T} x_j)^{\rho}$$

$$- \text{Make predictions using:} \qquad \qquad \underbrace{\text{fest e}}_{e \times ample} \qquad \underbrace{\text{test e}}_{e \times ampl$$

$$\hat{y} = \tilde{K}(K + \lambda I)' = \tilde{K}u$$

$$\lim_{k \to 1} \sum_{n \neq n} \sum_{n \neq 1} \sum_$$

- Training cost is only O(n²d + n³), despite using k=O(d^p) features.
 - We can form 'K' in $O(n^2d)$, and we need to "invert" an 'n x n' matrix.
 - Testing cost is only O(ndt), cost to form \widetilde{K} .

Gaussian-RBF Kernel

• Most common kernel is the Gaussian RBF kernel:

$$k(x_{i}, x_{j}) = exp(-\frac{||x_{i} - x_{j}||^{2}}{2\sigma^{2}})$$

- Same formula and behaviour as RBF basis, but not equivalent:
 - Before we used RBFs as a basis, now we're using them as inner-product.
- Basis z_i giving Gaussian RBF kernel is infinite-dimensional.

- If d=1 and σ =1, it corresponds to using this basis (bonus slide):

$$Z_{1} = e_{x_{1}}(-x_{1}^{2}) \left[1 \sqrt{\frac{2}{1}} x_{1} \sqrt{\frac{2^{2}}{3'}} x_{1}^{2} \sqrt{\frac{2^{3}}{3'}} x_{1}^{3} \sqrt{\frac{2^{4}}{4'}} x_{1}^{4} \cdots \right]$$

Motivation: Finding Gold

- Kernel methods first came from mining engineering ("Kriging"):
 - Mining company wants to find gold.
 - Drill holes, measure gold content.
 - Build a kernel regression model (typically use RBF kernels).

http://www.bisolutions.us/A-Brief-Introduction-to-Spatial-Interpolation.php

Kernel Trick for Non-Vector Data

• Consider data that doesn't look like this:

X =	0.5377 1.8339	$0.3188 \\ -1.3077$	$3.5784 \\ 2.7694$		$\begin{bmatrix} +1 \\ -1 \end{bmatrix}$	
	$-2.2588 \\ 0.8622$	$-0.4336 \\ 0.3426$	$-1.3499 \\ 3.0349$,	y =	-1 + 1

• But instead looks like this:

$$X = \begin{bmatrix} \text{Do you want to go for a drink sometime?} \\ \text{J'achète du pain tous les jours.} \\ \text{Fais ce que tu veux.} \\ \text{There are inner products between sentences?} \end{bmatrix}, y = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix}$$

- Kernel trick lets us fit regression models without explicit features:
 - We can interpret $k(x_i, x_i)$ as a "similarity" between objects x_i and x_i .
 - We don't need features if we can compute 'similarity' between objects.
 - There are "string kernels", "image kernels", "graph kernels", and so on.

Valid Kernels

- What kernel functions k(x_i,x_i) can we use?
- Kernel 'k' must be an inner product in some space:
 - There must exist a mapping from the x_i to some z_i such that $k(x_i, x_i) = z_i^T z_i$.
- It can be hard to show that a function satisfies this.
 - Infinite-dimensional eigenfunction problem.

• But like convex functions, there are some simple rules for constructing "valid" kernels from other valid kernels (bonus slide).

- Besides L2-regularized least squares, when can we use kernels?
 - We can compute Euclidean distance with kernels:

$$||z_{i} - z_{j}||^{2} = z_{i}^{T} z_{i} - 2 z_{i}^{T} z_{j} + z_{j}^{T} z_{j} = k(x_{i}, x_{i}) - 2k(x_{i}, x_{j}) + k(x_{j}, x_{j})$$

- All of our distance-based methods have kernel versions:
 - Kernel k-nearest neighbours.
 - Kernel clustering k-means (allows non-convex clusters)
 - Kernel density-based clustering.
 - Kernel hierarchical clustering.
 - Kernel distance-based outlier detection.
 - Kernel "Amazon Product Recommendation".

- Besides L2-regularized least squares, when can we use kernels?
 - "Representer theorems" (bonus slide) have shown that any L2-regularized linear model can be kernelized:

If learning can be written in the form min
$$f(Zv) + \frac{3}{3} ||v||^2$$
 for some 'Z'
then under weak conditions ("representer theorem")
we can re-parameterize in terms of $v=Z^{T}u$
giving min $f(ZZ^{T}u) + \frac{3}{4}uZZ^{T}u$
At test time you would use $\tilde{Z}v = \tilde{Z}Z^{T}u = \tilde{K}u$
 \tilde{K}
 \tilde{K}

- Besides L2-regularized least squares, when can we use kernels?
 - "Representer theorems" (bonus slide) have shown that any L2-regularized linear model can be kernelized:
 - L2-regularized robust regression.
 - L2-regularized brittle regression.
 - L2-regularized logistic regression.
 - L2-regularized hinge loss (SVMs).

Logistic Regression with Kernels

Linear Logistic Regression

Kernel-Poly Logistic Regression

Kernel-Linear Logistic Regression

Kernel-RBF Logistic Regression

Using "linear" Kernel is the same as using original features

(pause)

Motivation: "Personalized" Important E-mails

• Recall that we discussed identifying 'important' e-mails?

COMPOSE		>	Mark Issam, Ricky (10)	Inbox A2, tutorials, marking @	10:41 am
			Holger, Jim (2)	lists Intro to Computer Science	10:20 am
Inbox (3) Starred	1	*	Issam Laradji	Inbox Convergence rates for cu @	9:49 am
Important		*	sameh, Mark, sameh (3)	Inbox Graduation Project Dema C	8:01 am
Sent Mail		*	Mark sara, Sara (11)	Label propagation	7:57 am

- There might be some "globally" important messages:
 - "This is your mother, something terrible happened, give me a call ASAP."
- But your "important" message may be unimportant to others.
 - Similar for spam: "spam" for one user could be "not spam" for another.

Digression: Linear Models with Binary Features

- What is the effect of a binary features on linear regression?
- Suppose we use a bag of words:
 - With 3 words "hello", "Vicodin", "340" our model would be:

$$\gamma' = W_1 X_{i1} + W_2 X_{i2} + W_3 X_{i3}$$

$$\int_{\text{whether}}^{N} W_1 X_{i2} + W_3 X_{i3}$$

$$\int_{\text{whether}}^{N} W_1 X_{i2} + W_3 X_{i3}$$

$$\int_{\text{whether}}^{N} W_1 X_{i2} + W_3 X_{i3}$$

- If e-mail only has "hello" and "340" our prediction is:

$$\bigwedge_{Y_i} = \bigvee_{\substack{"h_0/l_0"\\ weight}} + \bigvee_{\substack{Y_i \\ Y_i \\ weight}}$$

- So having the binary feature 'j' increases \hat{y}_i by the fixed amount w_i .
 - Predictions are a bit like naïve Bayes where we combine features independently.
 - But now we're learning all w_i together so this tends to work better.

"Global" and "Local" Features

• Consider the following weird feature transformation:

"340"		"340" (any user)	"340" (user?)
1		1	User 1
1	\rightarrow	1	User 1
1	/	1	User 2
0		0	<no "340"=""></no>
1		1	User 3

- First feature: did "340" appear in this e-mail?
- Second feature: if "340" appeared in this e-mail, who was it addressed to?
- First feature will increase/decrease importance of "340" for every user (including new users).
- Second (categorical feature) increases/decreases important of "340" for specific users.
 - Lets us learn more about users where we have a lot of data

"Global" and "Local" Features

• Recall we usually represent categorical features using "1 of k" binaries:

"340"		"340" (any user)	"340" (user = 1)	"340" (user = 2)
1		1	1	0
1	\rightarrow	1	1	0
1		1	0	1
0		0	0	0
1		1	0	0

The Big Global/Local Feature Table for E-mails

• Each row is one e-mail (there are lots of rows):

Predicting Importance of E-mail For New User

- Consider a new user:
 - We start out with no information about them.
 - So we use global features to predict what is important to a generic user.

$$\hat{y}_i = \text{Sign}(w_g^T x_{ig})$$
 = features/weights shared
across users.

- With more data, update global features and user's local features:
 - Local features make prediction *personalized*.

$$\hat{y}_i = sign(w_g^T x_{ig} + w_u^T x_{iu})$$
 features/weights specific
suser? to user.

- What is important to *this* user?
- G-mail system: classification with logistic regression.
 - Trained with a variant of stochastic gradient.

Summary

• Kernel trick allows us to use high-dimensional bases efficiently.

 $\hat{\nabla} = \tilde{V} (V + \sqrt{\tau})^{-1}$

- Write model to only depend on inner products between features vectors.

- Kernels let us use similarity between objects, rather than features.
 - Allows some exponential- or infinite-sized feature sets.
 - Applies to distance-based and linear models (with L2-reg. or gradient descent).
- Global vs. local features allow "personalized" predictions.
- Next time:
 - How do we train on all of Gmail?

Why is inner product a similarity?

- It seems weird to think of the inner-product as a similarity.
- But consider this decomposition of squared Euclidean distance:

$$\frac{1}{2} ||x_i - x_j||^2 = \frac{1}{2} ||x_i||^2 - x_i^T x_j + \frac{1}{2} ||x_j||^2$$

- If all training examples have the same norm, then minimizing Euclidean distance is equivalent to maximizing inner product.
 - So "high similarity" according to inner product is like "small Euclidean distance".
 - The only difference is that the inner product is biased by the norms of the training examples.
 - Some people explicitly normalize the x_i by setting $x_i = (1/||x_i||)x_i$, so that inner products act like the negation of Euclidean distances.
 - E.g., Amazon product recommendation.

Guasian-RBF Kernels

• The most common kernel is the Gaussian-RBF (or 'squared exponential') kernel,

$$k(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{\sigma^2}\right)$$

• What function $\phi(x)$ would lead to this as the inner-product?

• To simplify, assume d = 1 and $\sigma = 1$,

$$k(x_i, x_j) = \exp(-x_i^2 + 2x_i x_j - x_j^2)$$

= $\exp(-x_i^2) \exp(2x_i x_j) \exp(-x_j^2),$

so we need $\phi(x_i) = \exp(-x_i^2)z_i$ where $z_i z_j = \exp(2x_i x_j)$. • For this to work for all x_i and x_j , z_i must be infinite-dimensional. • If we use that

$$\exp(2x_i x_j) = \sum_{k=0}^{\infty} \frac{2^k x_i^k x_j^k}{k!},$$

then we obtain

$$\phi(x_i) = \exp(-x_i^2) \begin{bmatrix} 1 & \sqrt{\frac{2}{1!}} x_i & \sqrt{\frac{2^2}{2!}} x_i^2 & \sqrt{\frac{2^3}{3!}} x_i^3 & \cdots \end{bmatrix}.$$

Constructing Valid Kernels

- If $k_1(x_i, x_j)$ and $k_2(x_i, x_j)$ are valid kernels, then the following are valid kernels:
 - $k_1(\phi(x_i), \phi(x_j)).$
 - $\alpha k_1(x_i, x_j) + \beta k_2(x_i, x_j)$ for $\alpha \ge 0$ and $\beta \ge 0$.
 - $k_1(x_i, x_j)k_2(x_i, x_j)$.
 - $\phi(x_i)k_1(x_i, x_j)\phi(x_j)$.
 - $\exp(k_1(x_i, x_j)).$
- Example: Gaussian-RBF kernel:

$$k(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{\sigma^2}\right)$$
$$= \underbrace{\exp\left(-\frac{\|x_i\|^2}{\sigma^2}\right)}_{\phi(x_i)} \underbrace{\exp\left(\frac{2}{\sigma^2} \underbrace{x_i^T x_j}_{\text{valid}}\right)}_{\exp(\text{valid})} \underbrace{\exp\left(-\frac{\|x_j\|^2}{\sigma^2}\right)}_{\phi(x_j)}.$$

Representer Theorem

• Consider linear model differentiable with losses f_i and L2-regularization,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^n f_i(w^T x_i) + \frac{\lambda}{2} \|w\|^2.$$

• Setting the gradient equal to zero we get

$$0 = \sum_{i=1}^{n} f_i'(w^T x_i) x_i + \lambda w.$$

• So any solution w^* can written as a linear combination of features x_i ,

$$w^* = -\frac{1}{\lambda} \sum_{i=1}^n f'_i((w^*)^T x_i) x_i = \sum_{i=1}^n z_i x_i$$

= $X^T z$.

• This is called a representer theorem (true under much more general conditions).

• Besides L2-regularized least squares, when can we use kernels?

 "Representer theorems" (bonus slide) have shown that any L2-regularized linear model can be kernelized.

Linear models without regularization fit with gradient descent.

• If you starting at v=0 or with any other value in span of rows of 'Z'.

Iterations of gradient descent on
$$f(Zv)$$
 can be written as $v=Z'u$
which lets us re-parameterize as $f(ZZ'u)$
At test time you would use $Zv = \tilde{Z}Z'u = \tilde{K}u$