
CPSC 340:
Machine Learning and Data Mining

Kernel Trick

Fall 2018

Admin

• Assignment 4:

– Due Friday of next week.

• Midterm:

– Grades posted.

– Can view exam during Mike or my office hours this week and next week.

• 532M Projects:

– “No news is good news”.

Last Time: Other Normal Equations and Kernel Trick

• We discussed the “other” normal equations (under basis ‘Z’):

– Faster if n < d.

• Predictions only depend on features through inner-product matrices ‘K’ and ෨𝐾.
– So everything we need to know about zi is summarized by the zi

Tzj.

• Kernel trick:
– If you have a kernel function k(xi,xj) that computes zi

Tzj,
then you don’t ever need to compute the basis zi explicitly to use the model.

http://svr-www.eng.cam.ac.uk/~kkc21/thesis_main/node12.html

Example: Linear Kernel

• Consider two examples xi and xj for a 2-dimensional dataset:

• And our standard (“linear”) basis:

• In this case the inner product zi
Tzj is k(xi,xj) = xi

Txj:

Example: Degree-2 Kernel

• Consider two examples xi and xj for a 2-dimensional dataset:

• Now consider a particular degree-2 basis:

• In this case the inner product zi
Tzj is k(xi,xj) = (xi

Txj)
2:

Polynomial Kernel with Higher Degrees

• Let’s add a bias and linear terms to our degree-2 basis:

• In this case the inner product zi
Tzj is k(xi,xj) = (1 + xi

Txj)
2:

Polynomial Kernel with Higher Degrees

• To get all degree-4 “monomials” I can use:

• To also get lower-order terms use k(xi,xj) = (1 + xi
Txj)

4

• The general degree-p polynomial kernel function:

– Works for any number of features ‘d’.

– But cost of computing one k(xi,xj) is O(d) instead of O(dp) to compute zi
Tzj.

– Take-home message: I can compute dot-products without the features.

Kernel Trick with Polynomials

• Using polynomial basis of degree ‘p’ with the kernel trick:

– Compute K and ෩𝐾 using:

– Make predictions using:

• Training cost is only O(n2d + n3), despite using k=O(dp) features.

– We can form ‘K’ in O(n2d), and we need to “invert” an ‘n x n’ matrix.

– Testing cost is only O(ndt), cost to form ෩𝐾.

Gaussian-RBF Kernel

• Most common kernel is the Gaussian RBF kernel:

• Same formula and behaviour as RBF basis, but not equivalent:

– Before we used RBFs as a basis, now we’re using them as inner-product.

• Basis zi giving Gaussian RBF kernel is infinite-dimensional.

– If d=1 and σ=1, it corresponds to using this basis (bonus slide):

Motivation: Finding Gold

• Kernel methods first came from mining engineering (“Kriging”):

– Mining company wants to find gold.

– Drill holes, measure gold content.

– Build a kernel regression model (typically use RBF kernels).

http://www.bisolutions.us/A-Brief-Introduction-to-Spatial-Interpolation.php

Kernel Trick for Non-Vector Data

• Consider data that doesn’t look like this:

• But instead looks like this:

• Kernel trick lets us fit regression models without explicit features:

– We can interpret k(xi,xj) as a “similarity” between objects xi and xj.

– We don’t need features if we can compute ‘similarity’ between objects.

– There are “string kernels”, “image kernels”, “graph kernels”, and so on.

Valid Kernels

• What kernel functions k(xi,xj) can we use?

• Kernel ‘k’ must be an inner product in some space:

– There must exist a mapping from the xi to some zi such that k(xi,xj) = zi
Tzj.

• It can be hard to show that a function satisfies this.

– Infinite-dimensional eigenfunction problem.

• But like convex functions, there are some simple rules for
constructing “valid” kernels from other valid kernels (bonus slide).

Kernel Trick for Other Methods

• Besides L2-regularized least squares, when can we use kernels?

– We can compute Euclidean distance with kernels:

– All of our distance-based methods have kernel versions:

• Kernel k-nearest neighbours.

• Kernel clustering k-means (allows non-convex clusters)

• Kernel density-based clustering.

• Kernel hierarchical clustering.

• Kernel distance-based outlier detection.

• Kernel “Amazon Product Recommendation”.

Kernel Trick for Other Methods

• Besides L2-regularized least squares, when can we use kernels?

– “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized:

Kernel Trick for Other Methods

• Besides L2-regularized least squares, when can we use kernels?

– “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized:

• L2-regularized robust regression.

• L2-regularized brittle regression.

• L2-regularized logistic regression.

• L2-regularized hinge loss (SVMs).

Logistic Regression with Kernels

(pause)

Motivation: “Personalized” Important E-mails

• Recall that we discussed identifying ‘important’ e-mails?

• There might be some “globally” important messages:

– “This is your mother, something terrible happened, give me a call ASAP.”

• But your “important” message may be unimportant to others.

– Similar for spam: “spam” for one user could be “not spam” for another.

Digression: Linear Models with Binary Features

• What is the effect of a binary features on linear regression?

• Suppose we use a bag of words:
– With 3 words “hello”, “Vicodin”, “340“ our model would be:

– If e-mail only has “hello” and “340” our prediction is:

• So having the binary feature ‘j’ increases ො𝑦i by the fixed amount wj.
– Predictions are a bit like naïve Bayes where we combine features independently.

– But now we’re learning all wj together so this tends to work better.

“Global” and “Local” Features
• Consider the following weird feature transformation:

• First feature: did “340” appear in this e-mail?
• Second feature: if “340” appeared in this e-mail, who was it addressed to?

• First feature will increase/decrease importance of “340” for every user (including new users).
• Second (categorical feature) increases/decreases important of “340” for specific users.

– Lets us learn more about users where we have a lot of data

“340” (any user) “340” (user?)

1 User 1

1 User 1

1 User 2

0 <no “340”>

1 User 3

“340”

1

1

1

0

1

“Global” and “Local” Features

• Recall we usually represent categorical features using “1 of k” binaries:
“340” (any user) “340” (user = 1) “340” (user = 2)

1 1 0

1 1 0

1 0 1

0 0 0

1 0 0

“340”

1

1

1

0

1

The Big Global/Local Feature Table for E-mails

• Each row is one e-mail (there are lots of rows):

Predicting Importance of E-mail For New User

• Consider a new user:
– We start out with no information about them.

– So we use global features to predict what is important to a generic user.

• With more data, update global features and user’s local features:
– Local features make prediction personalized.

– What is important to this user?

• G-mail system: classification with logistic regression.
– Trained with a variant of stochastic gradient.

Summary

• Kernel trick allows us to use high-dimensional bases efficiently.
– Write model to only depend on inner products between features vectors.

• Kernels let us use similarity between objects, rather than features.
– Allows some exponential- or infinite-sized feature sets.
– Applies to distance-based and linear models (with L2-reg. or gradient descent).

• Global vs. local features allow “personalized” predictions.

• Next time:
– How do we train on all of Gmail?

Why is inner product a similarity?

• It seems weird to think of the inner-product as a similarity.

• But consider this decomposition of squared Euclidean distance:

• If all training examples have the same norm, then minimizing Euclidean
distance is equivalent to maximizing inner product.
– So “high similarity” according to inner product is like “small Euclidean distance”.

– The only difference is that the inner product is biased by the norms of the
training examples.

– Some people explicitly normalize the xi by setting xi = (1/||xi||)xi, so that inner
products act like the negation of Euclidean distances.
• E.g., Amazon product recommendation.

Kernel Trick for Other Methods

• Besides L2-regularized least squares, when can we use kernels?

– “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized.

– Linear models without regularization fit with gradient descent.

• If you starting at v=0 or with any other value in span of rows of ‘Z’.

