CPSC 340:
Machine Learning and Data Mining

Multi-Class Classification
Fall 2018



Admin

* Assignment 4:
— Due Friday of next week.

e Midterm:

— Grades posted.
— Can view exam during Mike or my office hours this week and next week.



Last Time: SVMs, Logistic Regression, One vs. All

* We discussed hinge loss and logistic loss for binary classification.
— Convex approximation to number of classification errors in linear models.
— Leads to SVMs (hinge + L2-regularization) and logistic regression (logistic).
* We discussed multi-class classification: y; in {1,2,...,k}.

* One vs. all with +1/-1 binary classifier:
— Train weights w_ to predict +1 for class ‘c/, -1 otherwise.
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— Predict by taking ‘c” maximizing w_'x.. 1o ‘ueoh‘cf ¢lass ‘¢
* Problem: each w_is only “trying to get sign right” during training.
— Didn’t train the w_so that the largest w_'x; would be wyx;.




Shape of Decision Boundaries

* Recall that a binary linear classifier splits space using a hyper-plane:
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* Divides x. space into 2 “half-spaces”.




Shape of Decision Boundaries

* Multi-class linear classifier is intersection of these “half-spaces”:
— This divides the space into convex regions (like k-means):
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— Could be non-convex with change of basis. “



Multi-Class SVMs

* Can we define a loss that encourages largest w_'x; to be w,/x;?

— So when we maximizing over w_'x,, we choose correct label y..

* Recall our derivation of the hinge loss (SVMs):
— We wanted y.w'x, > 0 for all ‘i’ to classify correctly.
— We avoided non-degeneracy by aiming for yw'x. > 1.
— We used the constraint violation as our loss: max{0,1-y,w'x.}.

* We can derive multi-class SVMs using the same steps...



Multi-Class SVMs

* Can we define a loss that encourages largest w_'x; to be w,/x;?
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* For here, there are two ways to measure constraint violation:
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Multi-Class SVMs

* Can we define a loss that encourages largest w_'x. to be w,'x.?
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* For each training example ‘i’:
— “Sum” rule penalizes for each ‘c’ that violates the constraint.
— “Max” rule penalizes for one ‘c’ that violates the constraint the most.
e “Sum” gives a penalty of ‘k-1’ for W=0, “max” gives a penalty of ‘1’.
* |f we add L2-regularization, both are called multi-class SVMs:
— “Max” rule is more popular, “sum” rule usually works better.
— Both are convex upper bounds on the 0-1 loss.



Multi-Class Logistic Regression

We derived binary logistic loss by smoothing a degenerate ‘max’.
— A degenerate constraint in the multi-class case can be written as:

or 0z “W:'
We want the right side to be as small as possible.
Let’s smooth the max with the log-sum-exp:

~_W%’I"n * log (éexf(“’c?x'))

— With W=0 this gives a loss of log(k).
This is the softmax loss, the loss for multi-class logistic regression.



Multi-Class Logistic Regression

* We sum the loss over examples and add regularization:
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* This objective is convex (should be clear for 15t and 39 terms).
— It’s differentiable so you can use gradient descent.

* When k=2, equivalent to binary logistic.
— Not obvious at the moment.



Digression: Frobenius Norm

 We can write regularizer in matrix notation using:
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 The Frobenius norm of a matrix ‘W’ is defined by:
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(pause)



Motivation: Dog Image Classification

e Suppose we're classifying images of dogs into breeds:




Learning with Preferences

Do we need to throw out images where label is ambiguous?
— We don’t have they..

— We want classifier to prefer Syberian husky over bulldog, Chihuahua, etc.
e Even though we don’t know if these are Syberian huskies or Inuit dogs.

— Can we design a loss that enforces preferences rather than “true” labels?



Learning with Pairwise Preferences (Ranking)

* Instead of y,, we’re given list of (c,,c,) preferences for each i’:

We want w,'x; 7 VVL;'Xi for thee partivker (¢,)Q) values

* Multi-class classification is special case of choosing (y,,c) for all °c’.

* By following the earlier steps, we can get objectives for this setting:
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Learning with Pairwise Preferences (Ranking)

e Pairwise preferences for computer graphics:

— We have a smoke simulator, with several parameters:
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— Don’t know what the optimal parameters are, but we can ask the artist:
* “Which one looks more like smoke”?



Learning with Pairwise Preferences (Ranking)

* Pairwise preferences for humour:
— New Yorker caption contest:
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— “Which one is funnier”?



(pause)



Support Vector Machines for Non-Separable

 What about data that is not even close to separable?




Support Vector Machines for Non-Separable

 What about data that is not even close to separable?

— It may be separable under change of basis (or closer to separable).
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Support Vector Machines for Non-Separable

 What about data that is not even close to separable?

— It may be separable under change of basis (or closer to separable).
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Support Vector Machines for Non-Separable

 What about data that is not even close to separable?
— |t may be separable under change of basis (or closer to separable).
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Multi-Dimensional Polynomial Basis

e Recall fitting polynomials when we only have 1 feature:
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* We can fit these models using a change of basis:
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e How can we do this when we have a lot of features?



Multi-Dimensional Polynomial Basis

* Polynomial basis for d=2 and p=2:
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* With d=4 and p=3, the polynomial basis would include:

— Bias variable and the x;: 1, x;3, X;, Xi3, Xig-

— The x; squared and cubed: (x;;)?, (x,)% (X3)% (%ia)% (%1)%5 (%2)%, (Xi3)3, (Xi4)°.

— Two-term interactions: Xi;X.», Xi1Xi3, Xi1 X, XixXiz, XinXig, XizXig-

— Cubic interactions: X;;X;yXi3, Xi>Xi3Xia, Xi1Xi3,Xigs XiqXioXig,
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Kernel Trick

* |f we go to degree p=5, we’ll have O(d>) quintic terms:
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* For large ‘d” and ‘p’, storing a polynomial basis is intractable!

— ‘7" has k=0(dP) columns, so it does not fit in memory.

* Today: efficient polynomial basis for L2-regularized least squares.
— Main tools: the “other” normal equations and the “kernel trick”.



The “Other” Normal Equations

Recall the L2-regularized least squares objective with basis ‘Z’:

Fv)= g2y =yll* + 2
We showed that the minimum is given by
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(in practice you still solve the linear system, since inverse can be numerically unstable — see CPSC 302)

With some work (bonus), this can equivalently be written as:
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This is faster if n << k: nxn
— Cost is O(n?k + n3) instead of O(nk? + k3).
— But for the polynomial basis, this is still too slow since k = O(dP).




The “Other” Normal Equations

With the “other” normal equations we have = Z'(22'+ T) y
Given test data X, predict 9 y by forming Z and then using:
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Notice that if you have K and K then you do not need Z and Z.

Key idea behind “kernel trick” for certain bases (like polynomials):
— We can efficiently compute K and K even though forming Z and Z is intractable.



Gram Matrix

e The matrix K=2ZZ"is called the Gram matrix K.
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* K contains the dot products between all training examples.
— Similar to 2’ in RBFs, but using dot product as “similarity” instead of distance.



Gram Matrix

« The matrix K = ZZ" has dot products between train and test examples:
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* Kernel function: k(x, x) = z,z;.
— Computes dot product between in basis (zisz) using original features x; and x;.
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Kernel Trick
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Kernel Trick

————
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Linear Regression vs. Kernel Regression
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Summary

Multi-class SVMs measure violation of classification constraints.
Softmax loss is a multi-class version of logistic loss.
High-dimensional bases allows us to separate non-separable data.
“Other” normal equations are faster when n < d.

Next time: how do we train on all of Gmail?



Bonus Slide: Equivalent Form of Ridge Regression

Note that X and Y are the same on the left and right side, so we only need to show that
(XTX 4+ M) XT = XT(XXT + 2D, (1)
A version of the matrix inversion lemma (Equation 4.107 in MLAPP) is
(E-FH 'GY'FH '=E 'F(H-GE 'F) .

Since matrix addition is commutative and multiplying by the identity matrix does nothing, we can re-write
the left side of (1) as

(XEXHANTIXT = WHXTX)TIXT = WHXTIX) XY = M=XT (=N X)X = ~M=XT (=N X)X (=1)
Now apply the matrix inversion with £ = Al (so E~' = () 1), F=X", H= —1I (so H~' = —I too), and
G=X:

~(M = XT(=DX) ' XT(-1) = =(5 -

Now use that (1/a)A~" = (aA)™!, to push the (=1/X) inside the sum as — A,

NIxT(-r-x (1) XT)1.

-(%}IJ{"'(—I - X G) XMy = X+ XXT) ' = XT(XXT 4+ A1) L.



