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Admin

• Assignment 4:

– Due Friday of next week.

• Midterm:

– Grades posted.

– Can view exam during Mike or my office hours this week and next week.



Last Time: SVMs, Logistic Regression, One vs. All

• We discussed hinge loss and logistic loss for binary classification.
– Convex approximation to number of classification errors in linear models.

– Leads to SVMs (hinge + L2-regularization) and logistic regression (logistic).

• We discussed multi-class classification: yi in {1,2,…,k}.

• One vs. all with +1/-1 binary classifier:
– Train weights wc to predict +1 for class ‘c’, -1 otherwise.

– Predict by taking ‘c’ maximizing wc
Txi.

• Problem: each wc is only “trying to get sign right” during training.
– Didn’t train the wc so that the largest wc

Txi would be     Txi.



Shape of Decision Boundaries

• Recall that a binary linear classifier splits space using a hyper-plane:

• Divides xi space into 2 “half-spaces”.



Shape of Decision Boundaries

• Multi-class linear classifier is intersection of these “half-spaces”:

– This divides the space into convex regions (like k-means):

– Could be non-convex with change of basis.



Multi-Class SVMs

• Can we define a loss that encourages largest wc
Txi to be     Txi?

– So when we maximizing over wc
Txi, we choose correct label yi.

• Recall our derivation of the hinge loss (SVMs):

– We wanted yiw
Txi > 0 for all ‘i’ to classify correctly.

– We avoided non-degeneracy by aiming for yiw
Txi ≥ 1.

– We used the constraint violation as our loss: max{0,1-yiw
Txi}.

• We can derive multi-class SVMs using the same steps…



Multi-Class SVMs

• Can we define a loss that encourages largest wc
Txi to be     Txi?

• For here, there are two ways to measure constraint violation:



Multi-Class SVMs

• Can we define a loss that encourages largest wc
Txi to be     Txi?

• For each training example ‘i’:
– “Sum” rule penalizes for each ‘c’ that violates the constraint.

– “Max” rule penalizes for one ‘c’ that violates the constraint the most.
• “Sum” gives a penalty of ‘k-1’ for W=0, “max” gives a penalty of ‘1’.

• If we add L2-regularization, both are called multi-class SVMs:
– “Max” rule is more popular, “sum” rule usually works better.

– Both are convex upper bounds on the 0-1 loss.



Multi-Class Logistic Regression

• We derived binary logistic loss by smoothing a degenerate ‘max’.
– A degenerate constraint in the multi-class case can be written as:

• We want the right side to be as small as possible.

• Let’s smooth the max with the log-sum-exp:

– With W=0 this gives a loss of log(k).

• This is the softmax loss, the loss for multi-class logistic regression.



Multi-Class Logistic Regression

• We sum the loss over examples and add regularization:

• This objective is convex (should be clear for 1st and 3rd terms).
– It’s differentiable so you can use gradient descent.

• When k=2, equivalent to binary logistic.
– Not obvious at the moment.



Digression: Frobenius Norm

• We can write regularizer in matrix notation using:

• The Frobenius norm of a matrix ‘W’ is defined by:



(pause)



Motivation: Dog Image Classification

• Suppose we’re classifying images of dogs into breeds:

• What if we have images where class label isn’t obvious?

– Syberian husky vs. Inuit dog?

https://www.slideshare.net/angjoo/dog-breed-classification-using-part-localization
https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements



Learning with Preferences

• Do we need to throw out images where label is ambiguous?
– We don’t have the yi.

– We want classifier to prefer Syberian husky over bulldog, Chihuahua, etc.
• Even though we don’t know if these are Syberian huskies or Inuit dogs.

– Can we design a loss that enforces preferences rather than “true” labels?

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements



Learning with Pairwise Preferences (Ranking)

• Instead of yi, we’re given list of (c1,c2) preferences for each ‘i’:

• Multi-class classification is special case of choosing (yi,c) for all ‘c’.

• By following the earlier steps, we can get objectives for this setting:

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements



Learning with Pairwise Preferences (Ranking)

• Pairwise preferences for computer graphics:

– We have a smoke simulator, with several parameters:

– Don’t know what the optimal parameters are, but we can ask the artist:

• “Which one looks more like smoke”?

https://circle.ubc.ca/bitstream/handle/2429/30519/ubc_2011_spring_brochu_eric.pdf?sequence=3



Learning with Pairwise Preferences (Ranking)

• Pairwise preferences for humour:

– New Yorker caption contest:

– “Which one is funnier”?

https://homes.cs.washington.edu/~jamieson/resources/next.pdf



(pause)



Support Vector Machines for Non-Separable

• What about data that is not even close to separable?

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes



Support Vector Machines for Non-Separable

• What about data that is not even close to separable?

– It may be separable under change of basis (or closer to separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes



Support Vector Machines for Non-Separable

• What about data that is not even close to separable?

– It may be separable under change of basis (or closer to separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes



Support Vector Machines for Non-Separable

• What about data that is not even close to separable?

– It may be separable under change of basis (or closer to separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes



Multi-Dimensional Polynomial Basis

• Recall fitting polynomials when we only have 1 feature:

• We can fit these models using a change of basis:

• How can we do this when we have a lot of features?



Multi-Dimensional Polynomial Basis

• Polynomial basis for d=2 and p=2:

• With d=4 and p=3, the polynomial basis would include:

– Bias variable and the xij: 1, xi1, xi2, xi3, xi4.

– The xij squared and cubed: (xi1)2, (xi2)2, (xi3)2, (xi4)2, (xi1)3, (xi2)3, (xi3)3, (xi4)3.

– Two-term interactions: xi1xi2, xi1xi3, xi1xi4, xi2xi3, xi2xi4, xi3xi4.

– Cubic interactions: xi1xi2xi3, xi2xi3xi4, xi1xi3,xi4, xi1xi2xi4,
xi1
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Kernel Trick

• If we go to degree p=5, we’ll have O(d5) quintic terms:

• For large ‘d’ and ‘p’, storing a polynomial basis is intractable!

– ‘Z’ has k=O(dp) columns, so it does not fit in memory.

• Today: efficient polynomial basis for L2-regularized least squares.

– Main tools: the “other” normal equations and the “kernel trick”.



The “Other” Normal Equations

• Recall the L2-regularized least squares objective with basis ‘Z’:

• We showed that the minimum is given by

(in practice you still solve the linear system, since inverse can be numerically unstable – see CPSC 302)

• With some work (bonus), this can equivalently be written as:

• This is faster if n << k:
– Cost is O(n2k + n3) instead of O(nk2 + k3).

– But for the polynomial basis, this is still too slow since k = O(dp).



The “Other” Normal Equations

• With the “other” normal equations we have

• Given test data ෨𝑋, predict ො𝑦 by forming ෨𝑍 and then using:

• Notice that if you have K and ෩𝐾 then you do not need Z and ෨𝑍. 

• Key idea behind “kernel trick” for certain bases (like polynomials):
– We can efficiently compute K and ෩𝐾 even though forming Z and ෨𝑍 is intractable.



Gram Matrix

• The matrix K = ZZT is called the Gram matrix K.

• K contains the dot products between all training examples.
– Similar to ‘Z’ in RBFs, but using dot product as “similarity” instead of distance.



Gram Matrix

• The matrix ෩𝐾 = ෨𝑍ZT has dot products between train and test examples:

• Kernel function: k(xi, xj) = zi
Tzj.

– Computes dot product between in basis (zi
Tzj) using original features xi and xj.



Kernel Trick



Kernel Trick



Linear Regression vs. Kernel Regression



Summary

• Multi-class SVMs measure violation of classification constraints.

• Softmax loss is a multi-class version of logistic loss.

• High-dimensional bases allows us to separate non-separable data.

• “Other” normal equations are faster when n < d.

• Next time: how do we train on all of Gmail?




