
CPSC 340:
Machine Learning and Data Mining

More Linear Classifiers

Fall 2018

Admin

• Assignment 4:

– Should be posted tonight and due Friday of next week.

• Midterm:

– Grades posted.

– Can view exam during Mike or my office hours this week and next week.

Last Time: Classification using Regression

• Binary classification using sign of linear models:

• We considered three different training “error” functions:
– Squared error: (wTxi – yi)

2.
• If yi = +1 and wTxi = +100, then squared error (wTxi – yi)

2 is huge.

– 0-1 error: (sign(wTxi) = yi)?
• Non-convex and hard to minimize in terms of ‘w’ (unless optimal error is 0 – perceptron).

– Degenerate convex approximation to 0-1 error: max{0,-yiw
Txi}.

• Doesn’t have the problems above, but has a degenerate solution of 0.

Hinge Loss: Convex Approximation to 0-1 Loss

4

Hinge Loss

• We saw that we classify examples ‘i’ correctly if yiw
Txi > 0.

– Our convex approximation is the amount this inequality is violated.

• Consider replacing yiw
Txi > 0 with yiw

Txi ≥ 1.
(the “1” is arbitrary: we could make ||w|| bigger/smaller to use any positive constant)

• The violation of this constraint is now given by:

• This is the called hinge loss.
– It’s convex: max(constant,linear).
– It’s not degenerate: w=0 now gives an error of 1 instead of 0.

Hinge Loss: Convex Approximation to 0-1 Loss

6

Hinge Loss: Convex Approximation to 0-1 Loss

7

Hinge Loss

• Hinge loss for all ‘n’ training examples is given by:

– Convex upper bound on 0-1 loss.
• If the hinge loss is 18.3, then number of training errors is at most 18.

• So minimizing hinge loss indirectly tries to minimize training error.

• Like perceptron, finds a perfect linear classifier if one exists.

• Support vector machine (SVM) is hinge loss with L2-regularization.

– There exist specialized optimization algorithm for this problems.

– SVMs can also be viewed as “maximizing the margin” (later in lecture).

‘λ’ vs ‘C’ as SVM Hyper-Parameter

• We’ve written SVM in terms of regularization parameter ‘λ’:

• Some software packages instead have regularization parameter ‘C’:

• In our notation, this corresponds to using λ = 1/C.

– Equivalent to just multiplying f(w) by constant.

– Note interpretation of ‘C’ is different: high regularization for small ‘C’.

• You can think of ‘C’ as “how much to focus on the classification error”.

Logistic Loss

• We can smooth max in degenerate loss with log-sum-exp:

• Summing over all examples gives:

• This is the “logistic loss” and model is called “logistic regression”.
– It’s not degenerate: w=0 now gives an error of log(2) instead of 0.

– Convex and differentiable: minimize this with gradient descent.

– You should also add regularization.

– We’ll see later that it has a probabilistic interpretation.

Convex Approximations to 0-1 Loss

Logistic Regression and SVMs

• Logistic regression and SVMs are used EVERYWHERE!

– Fast training and testing.

• Training on huge datasets using “stochastic” gradient descent (next week).

• Prediction is just computing wTxi.

– Weights wj are easy to understand.

• It’s how much wj changes the prediction and in what direction.

– We can often get a good good test error.

• With low-dimensional features using RBF basis and regularization.

• With high-dimensional features and regularization.

– Smoother predictions than random forests.

Comparison of “Black Box” Classifiers

• Fernandez-Delgado et al. [2014]:

– “Do we Need Hundreds of Classifiers to Solve Real World Classification
Problems?”

• Compared 179 classifiers on 121 datasets.

• Random forests are most likely to be the best classifier.

• Next best class of methods was SVMs (L2-regularization, RBFs).

• “Why should I care about logistic regression if I know about deep
learning?”

https://www.quora.com/Why-should-I-care-about-logistic-regression-if-I-know-about-deep-learning

Maximum-Margin Classifier

• Consider a linearly-separable dataset.

Maximum-Margin Classifier

• Consider a linearly-separable dataset.

– Perceptron algorithm finds some classifier with zero error.

– But are all zero-error classifiers equally good?

Maximum-Margin Classifier

• Consider a linearly-separable dataset.

– Maximum-margin classifier: choose the farthest from both classes.

Maximum-Margin Classifier

• Consider a linearly-separable dataset.

– Maximum-margin classifier: choose the farthest from both classes.

Maximum-Margin Classifier

• Consider a linearly-separable dataset.

– Maximum-margin classifier: choose the farthest from both classes.

Maximum-Margin Classifier

• For linearly-separable data:

• With small-enough λ > 0, SVMs find the maximum-margin classifier.
– Origin of the name: the “support vectors” are the points closest to the line (see bonus).

– Need λ small enough that hinge loss is 0 in solution.

• Recent result: logistic regression also finds maximum-margin classifier.
– With λ=0 and if you fit it with gradient descent (not true for many other optimizers).

(pause)

Motivation: Part of Speech (POS) Tagging

• Consider problem of finding the verb in a sentence:

– “The 340 students jumped at the chance to hear about POS features.”

• Part of speech (POS) tagging is the problem of labeling all words.

– >40 common syntactic POS tags.

– Current systems have ~97% accuracy on standard test sets.

– You can achieve this by applying “word-level” classifier to each word.

• What features of a word should we use for POS tagging?

But first…

• How do we categorical features in regression?

• Standard approach is to convert to a set of binary features:

Age City Income

23 Van 22,000.00

23 Bur 21,000.00

22 Van 0.00

25 Sur 57,000.00

19 Bur 13,500.00

22 Van 20,000.00

Age Van Bur Sur Income

23 1 0 0 22,000.00

23 0 1 0 21,000.00

22 1 0 0 0.00

25 0 0 1 57,000.00

19 0 1 0 13,500.00

22 1 0 0 20,000.00

POS Features
• Regularized multi-class logistic regression with 19 features gives ~97% accuracy:

– Categorical features whose domain is all words (“lexical” features):
• The word (e.g., “jumped” is usually a verb).
• The previous word (e.g., “he” hit vs. “a” hit).
• The previous previous word.
• The next word.
• The next next word.

– Categorical features whose domain is combinations of letters (“stem” features):
• Prefix of length 1 (“what letter does the word start with?”)
• Prefix of length 2.
• Prefix of length 3.
• Prefix of length 4 (“does it start with JUMP?”)
• Suffix of length 1.
• Suffix of length 2.
• Suffix of length 3 (“does it end in ING?”)
• Suffix of length 4.

– Binary features (“shape” features):
• Does word contain a number?
• Does word contain a capital?
• Does word contain a hyphen?

Multi-Class Linear Classification

• We’ve been considering linear models for binary classification:

• E.g., is there a cat in this image or not?

https://www.youtube.com/watch?v=tntOCGkgt98

Multi-Class Linear Classification

• Today we’ll discuss linear models for multi-class classification:

• In POS classification we have >40 possible labels instead of 2.

– This was natural for methods of Part 1 (decision trees, naïve Bayes, KNN).

– For linear models, we need some new notation.

“One vs All” Classification

• One vs all method for turns binary classifier into multi-class.

• Training phase:

– For each class ‘c’, train binary classifier to predict whether example is a ‘c’.

– So if we have ‘k’ classes, this gives ‘k’ classifiers.

• Prediction phase:

– Apply the ‘k’ binary classifiers to get a “score” for each class ‘c’.

– Return the ‘c’ with the highest score.

“One vs All” Classification

• “One vs all” logistic regression for classifying as cat/dog/person.

– Train a separate classifier for each class.

• Classifier 1 tries to predict +1 for “cat” images and -1 for “dog” and “person” images.

• Classifier 2 tries to predict +1 for “dog” images and -1 for “cat” and “person” images.

• Classifier 3 tries to predict +1 for “person” images and -1 for “cat” and “dog” images.

– This gives us a weight vector wc for each class ‘c’:

• Weights wc try to predict +1 for class ‘c’ and -1 for all others.

• We’ll use ‘W’ as a matrix with the wc as rows:

“One vs All” Classification

• “One vs all” logistic regression for classifying as cat/dog/person.

– Prediction on example xi given parameters ‘W’ :

– For each class ‘c’, compute wc
Txi.

• Ideally, we’ll get sign(wc
Txi) = +1 for one class and sign(wc

Txi) = -1 for all others.

• In practice, it might be +1 for multiple classes or no class.

– To predict class, we take maximum value of wc
Txi (“most positive”).

Digression: Multi-Label Classification

• A related problem is multi-label classification:

• Which of the ‘k’ objects are in this image?

– There may be more than one “correct” class label.

– Here we can also fit ‘k’ binary classifiers.

• But we would take all sign(wc
Txi)=+1 as the labels.

http://image-net.org/challenges/LSVRC/2013/

“One vs All” Multi-Class Classification

• Back to multi-class classification where we have 1 “correct” label:

• We’ll use ‘ ’ as classifier c=yi (row wc of correct class label).

– So if yi=2 then = w2.

• Problem: We didn’t train the wc so that the largest wc
Txi would be Txi.

– Each classifier is just trying to get the sign right.

Summary

• Hinge loss is a convex upper bound on 0-1 loss.
– SVMs add L2-regularization, can be viewed as “maximizing the margin”.

• Logistic loss is a smooth convex approximation to the 0-1 loss.
– “Logistic regression”, also maximizes margin if you use gradient descent.

• SVMs and logistic regression are very widely-used.
– A lot of ML consulting: “find good features, use L2-regularized logistic”.

– Both are just linear classifiers (a hyperplane dividing into two halfspaces).

• Word features: lexical, stem, shape.

• One vs all turns a binary classifier into a multi-class classifier.

• Next time:
– A trick that lets you find gold and use polynomial basis with d > 1.

Maximum-Margin Classifier

• Consider a linearly-separable dataset.

– Maximum-margin classifier: choose the farthest from both classes.

Maximum-Margin Classifier

• Consider a linearly-separable dataset.

– Maximum-margin classifier: choose the farthest from both classes.

Maximum-Margin Classifier

• Consider a linearly-separable dataset.

– Maximum-margin classifier: choose the farthest from both classes.

Support Vector Machines

• For linearly-separable data, SVM minimizes:

– Subject to the constraints that:
(see Wikipedia/textbooks)

• But most data is not linearly separable.

• For non-separable data, try to minimize violation of constraints:

Support Vector Machines

• Try to maximizing margin and also minimizing constraint violation:

• We typically control margin/violation trade-off with parameter “λ”:

• This is the standard SVM formulation (L2-regularized hinge).
– Some formulations use λ = 1 and multiply hinge by ‘C’ (equivalent).

Support Vector Machines for Non-Separable

• Non-separable case:

Support Vector Machines for Non-Separable

• Non-separable case:

Support Vector Machines for Non-Separable

• Non-separable case:

Support Vector Machines for Non-Separable

• Non-separable case:

Robustness and Convex Approximations

• Because the hinge/logistic grow like absolute value for mistakes,
they tend not to be affected by a small number of outliers.

Robustness and Convex Approximations

• Because the hinge/logistic grow like absolute value for mistakes,
they tend not to be affected by a small number of outliers.

• But performance degrades if we have many outliers.

Non-Convex 0-1 Approximations

• There exists some smooth non-convex 0-1 approximations.

– Robust to many/extreme outliers.

– Still NP-hard to minimize.

– But can use gradient descent.

• Finds “local” optimum.

“Robust” Logistic Regression

• A recent idea: add a “fudge factor” vi for each example.

• If wTxi gets the sign wrong, we can “correct” the mis-classification
by modifying vi.

– This makes the training error lower but doesn’t directly help with test data,
because we won’t have the vi for test data.

– But having the vi means the ‘w’ parameters don’t need to focus as much
on outliers (they can make |vi| big if sign(wTxi) is very wrong).

“Robust” Logistic Regression

• A recent idea: add a “fudge factor” vi for each example.

• If wTxi gets the sign wrong, we can “correct” the mis-classification
by modifying vi.

• A problem is that we can ignore the ‘w’ and get a tiny training error
by just updating the vi variables.

• But we want most vi to be zero, so “robust logistic regression” puts
an L1-regularizer on the vi values:

• You would probably also want to regularize the ‘w’ with different λ.

Feature Engineering

• “…some machine learning projects succeed and some fail. What
makes the difference? Easily the most important factor is the
features used.”

– Pedro Domingos

• “Coming up with features is difficult, time-consuming, requires
expert knowledge. "Applied machine learning" is basically feature
engineering.”

– Andrew Ng

Feature Engineering

• Better features usually help more than a better model.

• Good features would ideally:

– Capture most important aspects of problem.

– Generalize to new scenarios.

– Allow learning with few examples, be hard to overfit with many examples.

• There is a trade-off between simple and expressive features:

– With simple features overfitting risk is low, but accuracy might be low.

– With complicated features accuracy can be high, but so is overfitting risk.

Feature Engineering

• The best features may be dependent on the model you use.

• For counting-based methods like naïve Bayes and decision trees:

– Need to address coupon collecting, but separate relevant “groups”.

• For distance-based methods like KNN:

– Want different class labels to be “far”.

• For regression-based methods like linear regression:

– Want labels to have a linear dependency on features.

Discretization for Counting-Based Methods

• For counting-based methods:

– Discretization: turn continuous into discrete.

– Counting age “groups” could let us learn more quickly than exact ages.

• But we wouldn’t do this for a distance-based method.

Age

23

23

22

25

19

22

< 20 >= 20, < 25 >= 25

0 1 0

0 1 0

0 1 0

0 0 1

1 0 0

0 1 0

Standardization for Distance-Based Methods

• Consider features with different scales:

• Should we convert to some standard ‘unit’?

– It doesn’t matter for counting-based methods.

• It matters for distance-based methods:
• KNN will focus on large values more than small values.

• Often we “standardize” scales of different variables (e.g., convert everything to grams).

Egg (#) Milk (mL) Fish (g) Pasta
(cups)

0 250 0 1

1 250 200 1

0 0 0 0.5

2 250 150 0

Non-Linear Transformations for Regression-Based

• Non-linear feature/label transforms can make things more linear:

– Polynomial, exponential/logarithm, sines/cosines, RBFs.

www.google.com/finance

Discussion of Feature Engineering

• The best feature transformations are application-dependent.

– It’s hard to give general advice.

• My advice: ask the domain experts.

– Often have idea of right discretization/standardization/transformation.

• If no domain expert, cross-validation will help.

– Or if you have lots of data, use deep learning methods from Part 5.

Ordinal Features

• Categorical features with an ordering are called ordinal features.

• If using decision trees, makes sense to replace with numbers.
– Captures ordering between the ratings.

– A rule like (rating ≥ 3) means (rating ≥ Good), which make sense.

Rating

Bad

Very Good

Good

Good

Very Bad

Good

Medium

Rating

2

5

4

4

1

4

3

Ordinal Features

• If using linear models, this would assumes ratings are equally spaced.
– The difference between “Bad” and “Medium” is similar to the distance between “Good”

and “Very Good”.

• An alternative that preserves ordering with binary features:

• Regression weight wmedium represents:
– “How much medium changes prediction over bad”.

Rating

Bad

Very Good

Good

Good

Very Bad

Good

Medium

≥ Bad ≥ Medium ≥ Good Very Good

1 0 0 0

1 1 1 1

1 1 1 0

1 1 1 0

0 0 0 0

1 1 1 0

1 1 0 0

“All-Pairs” and ECOC Classification

• Alternative to “one vs. all” to convert binary classifier to multi-class is
“all pairs”.
– For each pair of labels ‘c’ and ‘d’, fit a classifier that predicts +1 for examples of

class ‘c’ and -1 for examples of class ‘d’ (so each classifier only trains on examples
from two classes).

– To make prediction, take a vote of how many of the (k-1) classifiers for class ‘c’
predict +1.

– Often works better than “one vs. all”, but not so fun for large ‘k’.

• A variation on this is using “error correcting output codes” from
information theory (see Math 342).
– Each classifier trains to predict +1 for some of the classes and -1 for others.

– You setup the +1/-1 code so that it has an “error correcting” property.
• It will make the right decision even if some of the classifiers are wrong.

