CPSC 340:
Machine Learning and Data Mining

Linear Classifiers
Fall 2018

Last Time: L1-Regularization

* We discussed L1-regularization:

Pz LI~ I+ Al

— Also known as “LASSO” and “basis pursuit denoising”.
— Regularizes ‘w’ so we decrease our test error (like L2-regularization).
— Yields sparse ‘W’ so it selects features (like LO-regularization).

* Properties:
— It’s convex and fast to minimize (with “proximal-gradient” methods).

— Solution is not unique (sometimes people do L2- and L1-regularization).
— Usually includes “correct” variables but tends to yield false positives.

L*-Regularization

* LO-regularization (AIC, BIC, Mallow’s Cp, Adjusted R?, ANOVA):

— Adds penalty on the number of non-zeros to select features.
£()= X =yl + Y1l
* |L2-regularization (ridge regression):
— Adding penalty on the L2-norm of ‘W’ to decrease overfitting:

F(w) - “Xw ‘}/“1 + %“w/’l

e L1-regularization (LASSO):
— Adding penalty on the L1-norm decreases overfitting and selects features:

F(\.\/): “Xw_y“1+ ;)/’w”,

LO- vs. L1- vs. L2-Regularization

Sparse ‘w’ Speed Coding Effort Irrelevant
(Selects Features) Features

LO-Regularization Yes Slow Few lines Not Sensitive
L1-Regularization Yes* Fast* No 1 line* Not Sensitive
L2-Regularization No Fast Yes 1 line A bit sensitive

e L1-Regularization isn’t as sparse as LO-regularization.
— L1-regularization tends to give more false positives (selects too many).
— And it’s only “fast” and “1 line” with specialized solvers.

Cost of L2-regularized least squares is O(nd? + d3).
— Changes to O(ndt) for ‘t’ iterations of gradient descent (same for L1).

e “Elastic net” (L1- and L2-regularization) is sparse, fast, and unique.
* Using LO+L2 does not give a unique solution.

Ensemble Feature Selection

e We can also use ensemble methods for feature selection.

— Usually designed to reduce false positives or reduce false negatives.

* |n this case of L1-regularization, we want to reduce false positives.

— Unlike LO-regularization, the non-zero w; are still “shrunk”.

* “Irrelevant” variables are included, before “relevant” W reach best value.

* A bootstrap approach to reducing false positives:
— Apply the method to bootstrap samples of the training data.
— Only take the features selected in all bootstrap samples.

Ensemble Feature Selection
— Feq’hrc selech-) Sf {I) 27 5} 77 7; \

X, T
= D {IZ,gS’)/’j _
{, 9 Feohut sebohr — 57 EhH25H 1 — 997 67
e .‘
\/)Xm 5 Feabr g —5 §° %2)3)3)7);5/‘

loctvr -
ooisfrv Rum ‘\Pm*dm se'él '
&5mm 'rf on eack Sample .Lnfp/)ec'hon
r B r 0{ selec f@cl qufm's,

 Example: boostrapping plus L1-regularization (“BoLASSQO”).
— Reduces false positives.
— It's possible to show it recovers “correct” variables with weaker conditions.

(pause)

Motivation: Identifying Important E-mails

* How can we automatically identify ‘important’ e-mails?

| » Mark .. Issam, Ricky (10) inbox A2, tutorials, marking = 10:41 am
COMPOSE
Holger, Jim (2) isis Intro to Computer Science 10:20 am
Inbox (3) N
» Issam Laradji inbox Convergence rates forcu = 9:49 am
Starred
<!mpa@nt > » sameh, Mark, sameh (3) inbox Graduation Project Dema = 8:01 am
Sent Mai ,]
- » Mark .. sara, Sara (11) Label propagation = [57am

* A binary classification problem (“important” vs. “not important”).

— Labels are approximated by whether you took an “action” based on mail.
— High-dimensional feature set (that we’ll discuss later).

* Gmail uses regression for this binary classification problem.

Binary Classification Using Regression?

* Can we apply linear models for binary classification?
— Set y. = +1 for one class (“important”).
— Set y. = -1 for the other class (“not important”).

e At training time, fit a linear regression model:

A - . €44 .
)/i = W, X + w2>(0+ twy x4

—

—

= WIY,
* The model will try to make w'x. = +1 for “important” e-mails,
and w'x. = -1 for “not important” e-mails.

Binary Classification Using Regression?

* Can we apply linear models for binary classification?
— Set y. = +1 for one class (“important”).
— Set y. = -1 for the other class (“not important”).

* Linear model gives real numbers like 0.9, -1.1, and so on.

* So to predict, we look at whether w'x; is closer to +1 or -1.
— If w'x, = 0.9, predict y, = +1.
— If w'x, =-1.1, predict y, = -1.
— If w'x, = 0.1, predict y, = +1.
— If w'x, =-100, predict y. = -1.
— We write this operation (rounding to +1 or -1) as y. = sign(w'x,).

Decision Boundary in 1D

\”

X;

¥ X ¥ 3 x ¥ &= "t

I‘W’Mf‘/an-l

z\/
lm ear [(7/?55100

nnoge,
N oooq
Yim WX

N

Decision Boundary in 1D

}4

IM‘)Uf+‘“1

OW‘ PréA w'l ‘rt/Mc'IiOf\
I o o é?/////—

z\/
lm éar [(7 eSSy

nnoge,

A
>’i’ le

* We can interpret ‘w’ as a hyperplane separating x into sets:
— Set where w'x; > 0 and set where w'x; < 0.

Decision Boundary in 2D

decision tree KNN linear classifier

* Alinear classifier would be linear function y.= w, + w x,;+W X,
coming out of the page (the boundary is at y.=0)

/I_w7
Y

Should we use least squares for classification?

Consider training by minimizing squared error with y; that are +1 or -1:

fa)7 L X0y !
Uy ' "']
|
f we predict w'x, = +0.9 and y. = +1, error is smaII (0.9-1)?=0.01.
f we predict w'x. =-0.8 and y, = +1, error is bigger: (-0.8 — 1)? = 3.24.
f we predict w'x, = +100 and y, = +1, error is huge: (100 — 1)% = 9801.
— But it shouldn’t be, the prediction is correct.

Least squares penalized for being “too right”.
— +100 has the right sign, so the error should be zero.

Should we use least squares for classification?

* Least squares can behave weirdly when applied to classification:

(Nf ’("""‘) + 'ﬂérxx.

0
(5rmﬂ) - Ie—

e Why? Squared

T‘M} s ﬂ\e Ijnem- y((lr(fsiw\ motlcl Wwe \,{/an'l

[/ (a rerrec" C'a’sl‘ritf)

\ -ﬁ time> we

n . N
Sfe Vlg();‘;y\'

-~ XX X X x x ¥y x|/ X ——x x ¥

error of\green line is huge!

— Make sure you understand why the green line achieves 0 training error.

“0-1 Loss” Function: Minimizing Classification Errors

e Could we instead minimize number of classification errors?

— This is called the 0-1 loss function:
* You either get the classification wrong (1) or right (0).

— We can write using the LO-norm as | |y-vy]| |,.
* Unlike regression, in classification it’s reasonable that y =y, (it’s either +1 or -1).

* Important special case: “linearly separable” data.

— Classes can be “separated” by a hyper-plane.
— So a perfect linear classifier exists.

Perceptron Algorithm for Linearly-Separable Data

One of the first “learning” algorithms was the “perceptron” (1957).
— Searches for a ‘w’ such that sign(w'x,) = y, for all i.

Perceptron algorithm:
— Start with w® = 0.

— Go through examples in any order until you make a mistake predicting y..
* Set w'l=w+yx.
— Keep going through examples until you make no errors on training data.

If a perfect classifier exists, this algorithm finds one in finite number of steps.

Intuition for step: if y. = +1, “add more of x, to w” so that w'x; is larger.
(wﬁ')')(,' = (W) = W% + x % = (b prediclinn) F Ny l)?

— Ify,=-1, you would be subtracting the squared norm.

https://en.wikipedia.org/wiki/Perceptron

History [edit]

- - -

= -
. ¥ =3 =3 =

The Mark | Perceptron machine was &J
the first implementation of the
perceptron algorithm. The machine was
connected to a camera that used
20x20 cadmium sulfide photocells to
produce a 400-pixel image. The main
visible feature is a patchboard that
allowed experimentation with different
combinations of input features. To the
right of that are arrays of
potentiometers that implemented the
adaptive weights.®2"?

Geometry of why we want the 0-1 loss

(w-' X\~ Y)1
/
@/h) ‘)eno‘H'/
For thN)
”foo rigln'f“

L 6rr0r“ or "/assn ‘)(\ar' ffeo,idiq w7x,-

v when true |abel i s =l

Pr¢c'lc',?0/\
ﬁ—ili— - WTXi
) NG .

yOV‘ Sl\Ovu f__(if

pev\ahze ‘For ruﬂin7 vax, heve.

0

—~
Lo\w‘ni w7X1 here 1S éa_;l

Thoughts on the previous (and next) slide

* We are now plotting the loss vs. the predicted w'x..
— “Loss space”, which is different than parameter space or data space.

 We're plotting the individual loss for a particular training example.

— In the figure the label is y,= -1 (so loss is centered at -1).
* It will be centered at +1 wheny, = +1.

* (The next slide is the same as the previous one)

Geometry of why we want the 0-1 loss

(w-' X\~ Y)1
/
@/h) ‘)eno‘H'/
For thN)
”foo rigln'f“

L 6rr0r“ or "/assn ‘)(\ar' ffeo,idiq w7x,-

v when true |abel i s =l

Pr¢c'lc',?0/\
ﬁ—ili— - WTXi
) NG .

yOV‘ Sl\Ovu f__(if

pev\ahze ‘For ruﬂin7 vax, heve.

0

—~
Lo\w‘ni w7X1 here 1S éa_;l

Geometry of why we want the 0-1 loss

7

@/i‘) ‘)er\o‘H'/
For thN)
”foo rig‘\f"

(w"X.-'le

L Ermr“ or "/assn ‘)[\ar' ffeo,idiq w7x,-

v when 17‘4 Jabe Vi 15)

Pr(c'lc',m/\
ﬁ_lj‘— - wai
A N _J

yOV‘ sl\Ovu f__()j

0

pev\ahze ‘For fuﬂms V"TX‘- heve.

—~
Lo\w'n’ w—'h’ here 1S Ea;l

Geometry of why we want the 0-1 loss
(w-’x'--'y;)l [_" Ecror” or "/oss“ ‘)(\or' ffeolidim] W7X.'

when true |abel Vi s =/

> !
@/it) ‘)er\o‘H'/
{:Of bf""‘) What we Vggﬂj LS

"too r),hf" \[the "0 IoSSf
V Prgc'lc',m/\

7= w X,
7"’/\ .

N\
ym» Should 'ld 0 L‘O\viﬂy w X, here IS éa_;‘
pev\alaze for f\,h‘m7 vax. heve.

0-1 Loss Function

* Unfortunately the 0-1 loss is non-convex in ‘w’.
— It’s easy to minimize if a perfect classifier exists (perceptron).
— Otherwise, finding the ‘W’ minimizing 0-1 loss is a hard problem.

— Gradient is zero everywhere: don’t even know “which way to go”.

— NOT the same type of problem we had with using the squared loss.
* We can minimize the squared error, but it might give a bad model for classification.

* Motivates convex approximations to 0-1 loss...

Degenerate Convex Approximation to 0-1 Loss

If y. = +1, we get the label right if wx. > 0.
If y. = -1, we get the label right if w'x, < 0, or equivalently —w'x. > 0.
So “classifying ‘i’ correctly” is equivalent to having y.w'x. > 0.

One possible convex approximation to 0-1 loss:

— Minimize how much this constraint is violated.
T -7 \\|
1 £ yi W ¥, 70 Then you Se'} an error of ()
Tf)’iwl)’i <0 the you sd an eror of ‘-\/i W’Xi
— So ﬂ)c ,’Crror“ IS 9[\/&4 lo\/ W G x go) "’/i WTX,?

Mmay t Cons Toul N loV\(’WS =2 (ovwv €y

Degenerate Convex Approximation to 0-1 Loss

Our convex approximation of the error for one example is:
ki
MaVZO) Vi w X §
We could train by minimizing sum over all examples:

i’\w)' Zmax / Xf

But this has a degenerate solution:
— We have f(0) = 0, and this is the lowest possible value of ‘.

There are two standard fixes: hinge loss and logistic loss.

Summary

Ensemble feature selection reduces false positives or negatives.

Binary classification using regression:

— Encode using y. in {-1,1}.

— Use sign(w'x.) as prediction.

— “Linear classifier” (a hyperplane splitting the space in half).

Least squares is a weird error for classification.

Perceptron algorithm: finds a perfect classifier (if one exists).

0-1 loss is the ideal loss, but is non-smooth and non-convex.

Next time: one of the best “out of the box” classifiers.

L1-Regularization as a Feature Selection Method

* Advantages:
— Deals with conditional independence (if linear).

— Sort of deals with collinearity:
* Picks at least one of “mom” and “mom?2”.

— Very fast with specialized algorithms.
* Disadvantages:
— Tends to give false positives (selects too many variables).

* Neither good nor bad:
— Does not take small effects.
— Says “gender” is relevant if we know “baby”.

— Good for prediction if we want fast training and don’t care about having
some irrelevant variables included.

“Elastic Net”: L2- and L1-Regularization
* To address non-uniqueness, some authors use L2- and L1-:

U () =1 X =p 1+ A [l + 3,)

* Called “elastic net” regularization.
— Solution is sparse and unique.
— Slightly better with feature dependence:

e Selects both “mom” and “mom?2”.

* Optimization is easier though still non-differentiable.

L1-Regularization Debiasing and Filtering

 To remove false positives, some authors add a debiasing step:
— Fit ‘w’ using L1-regularization.
— Grab the non-zero values of ‘w’ as the “relevant” variables.
— Re-fit relevant ‘w’ using least squares or L2-regularized least squares.

* A related use of L1-regularization is as a filtering method:
— Fit ‘w’ using L1-regularization.
— Grab the non-zero values of ‘w’ as the “relevant” variables.

— Run standard (slow) variable selection restricted to relevant variables.
* Forward selection, exhaustive search, stochastic local search, etc.

Non-Convex Regularizers

Regularizing |w;]| 2 selects all features.
Regularizing |w;| selects fewer, but still has many false positives.

What if we regularize |w;|*? instead? 3
' J

B

Minimizing this objective would lead to fewer false positives.
— Less need for debiasing, but it’s not convex and hard to minimize.

There are many non-convex regularizers with similar properties.
— L1-regularization is (basically) the “most sparse” convex regularizer.

Can we just use least squares??

* What went wrong?

— “Good” errors vs. “bad” errors.

Tl«l) s H\q Iinenr yu)r(ssiw\ MOACI we Wan‘,

[/ (G rerFec" c‘assirier)

0, \ | ﬁf"’fmlﬁ
(Sram) —Iﬁ—'s X 4(11 1 1()l X X)1 T

L [K

oo ecros S g

model\ s lotémj | "Bod errves model
f)(’ha,iz {:or re(l'l('“/\, S beimq ‘Jﬁ\aliet'cl f;(

W r on C loss. G:Lcel\(fiﬂ correcl class,

Can we just use least squares??

N
- 4
* What went wrong? -V(w)s 2 (W' - y;)
— “Good” errors vs. “bad” errors. - & l
\ |
l/T‘m) s 'l’l«e Iinenr yu)r(ssiw\ MOJCI we \A/an', W‘\f’ hla{)rfm‘/lf
S - on
(a fer‘Fec'f cla,s.mr))I\'N_i)(': -’000?
(et ’("""‘) + , AR
\ Htime we
O Sce "vicodin"
(5ram) - I"") S S Y X X X x ¥ IllgaJ : errols of
| e pected
’/'neur ¢ lassifior
are HUGE

Online Classification with Perceptron

* Perceptron for online linear binary classification [Rosenblatt, 1957]
— Start with w, = 0.
— At time ‘t” we receive features x..
— We predict y, = sign(w,'x,).
— Ify, 2y, thensetw,, =w, +yx.
* Otherwise, set w,,, = w,.

(Slides are old so above I’'m using subscripts of ‘t” instead of superscripts.)

e Perceptron mistake bound [Novikoff, 1962]:

— Assume data is linearly-separable with a “margin”: .

* There exists w* with | |w*||=1 such that sign(x,'w*) = sign(y,) for all t” and |x'w*| 2 y.>o
— Then the number of total mistakes is bounded.

* No requirement that data is IID.

Perceptron Mistake Bound

* Let’s normalize each x, so that | |x,| | = 1.
— Length doesn’t change label.

* Whenever we make a mistake, we have sign(y,) # sign(w,'x,) and
lwes[|* = [lwe + yae?

Jwe | + Qgtthmt +1

<0
< Jlwe||* +1
< ’wt—1|2+2
< 'wt_2|2+3.

* So after ‘k” errors we have | |w,| |2 <k.

Perceptron Mistake Bound

* Let’s consider a solution w*, so sign(y,) = sign(x,'w*).
— And let’s choose a w* with | |w*|| =1,
e Whenever we make a mistake, we have:

|lwea |l = [Jwepa|[[[wa

T

2 W4 1 W
T
= (wy + ypt)" Wy

T T
= Wy Wy + YTy Wy

— 'th'w* + |mfw*\
> wlw, + 7.
— Note: w,'w. 2 0 by induction (starts at 0, then at least as big as old value plus y).
* So after 'k’ mistakes we have | |w,|| = yk.

Perceptron Mistake Bound

* So our two bounds are | |w,|| <sagrt(k) and | |w,|]| = yk.

* This gives vk < sqgrt(k), or a maximum of 1/y? mistakes.
— Note that y > 0 by assumption and is upper-bounded by one by | |x]| | < 1.

— After this ‘k’, under our assumptions
we’re guaranteed to have a perfect classifier.

