Last Time: L1-Regularization

• We discussed L1-regularization:

\[f(w) = \frac{1}{2} ||Xw - y||^2 + \lambda ||w||_1 \]

– Also known as “LASSO” and “basis pursuit denoising”.
– Regularizes ‘\(w\)’ so we decrease our test error (like L2-regularization).
– Yields sparse ‘\(w\)’ so it selects features (like L0-regularization).

• Properties:

 – It’s convex and fast to minimize (with “proximal-gradient” methods).
 – Solution is not unique (sometimes people do L2- and L1-regularization).
 – Usually includes “correct” variables but tends to yield false positives.
L*-Regularization

• **L0-regularization** (AIC, BIC, Mallow’s Cp, Adjusted R^2, ANOVA):
 – Adds penalty on the number of non-zeros to select features.
 \[f(w) = \| Xw - y \|^2 + \gamma \| w \|_0 \]

• **L2-regularization** (ridge regression):
 – Adding penalty on the L2-norm of ‘w’ to decrease overfitting:
 \[f(w) = \| Xw - y \|^2 + \frac{\lambda}{2} \| w \|^2 \]

• **L1-regularization** (LASSO):
 – Adding penalty on the L1-norm decreases overfitting and selects features:
 \[f(w) = \| Xw - y \|^2 + \gamma \| w \|_1 \]
L0- vs. L1- vs. L2-Regularization

<table>
<thead>
<tr>
<th></th>
<th>Sparse ‘w’ (Selects Features)</th>
<th>Speed</th>
<th>Unique ‘w’</th>
<th>Coding Effort</th>
<th>Irrelevant Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0-Regularization</td>
<td>Yes</td>
<td>Slow</td>
<td>No</td>
<td>Few lines</td>
<td>Not Sensitive</td>
</tr>
<tr>
<td>L1-Regularization</td>
<td>Yes*</td>
<td>Fast*</td>
<td>No</td>
<td>1 line*</td>
<td>Not Sensitive</td>
</tr>
<tr>
<td>L2-Regularization</td>
<td>No</td>
<td>Fast</td>
<td>Yes</td>
<td>1 line</td>
<td>A bit sensitive</td>
</tr>
</tbody>
</table>

• L1-Regularization isn’t as sparse as L0-regularization.
 – L1-regularization tends to give more false positives (selects too many).
 – And it’s only “fast” and “1 line” with specialized solvers.

• Cost of L2-regularized least squares is $O(nd^2 + d^3)$.
 – Changes to $O(ndt)$ for ‘t’ iterations of gradient descent (same for L1).

• “Elastic net” (L1- and L2-regularization) is sparse, fast, and unique.
• Using L0+L2 does not give a unique solution.
Ensemble Feature Selection

• We can also use ensemble methods for feature selection.
 – Usually designed to reduce false positives or reduce false negatives.

• In this case of L1-regularization, we want to reduce false positives.
 – Unlike L0-regularization, the non-zero w_j are still “shrunk”.
 • “Irrelevant” variables are included, before “relevant” w_j reach best value.

• A bootstrap approach to reducing false positives:
 – Apply the method to bootstrap samples of the training data.
 – Only take the features selected in all bootstrap samples.
- Ensemble Feature Selection

- Example: boostrapping plus L1-regularization ("BoLASSO").
 - Reduces false positives.
 - It’s possible to show it recovers “correct” variables with weaker conditions.
(pause)
Motivation: Identifying Important E-mails

• How can we automatically identify ‘important’ e-mails?

• A binary classification problem ("important" vs. "not important").
 – Labels are approximated by whether you took an "action" based on mail.
 – High-dimensional feature set (that we’ll discuss later).

• Gmail uses regression for this binary classification problem.
Can we apply linear models for **binary classification**?

- Set $y_i = +1$ for one class ("important").
- Set $y_i = -1$ for the other class ("not important").

At training time, **fit a linear regression model**:

$$\hat{y}_i = w_1 x_{i1} + w_2 x_{i2} + \cdots + w_d x_{id}$$

$$= w^T x_i$$

The model will try to make $w^T x_i = +1$ for "important" e-mails, and $w^T x_i = -1$ for "not important" e-mails.
Binary Classification Using Regression?

• Can we apply linear models for binary classification?
 – Set $y_i = +1$ for one class (“important”).
 – Set $y_i = -1$ for the other class (“not important”).
• Linear model gives real numbers like 0.9, -1.1, and so on.
• So to predict, we look at whether $w^T x_i$ is closer to +1 or -1.
 – If $w^T x_i = 0.9$, predict $\hat{y}_i = +1$.
 – If $w^T x_i = -1.1$, predict $\hat{y}_i = -1$.
 – If $w^T x_i = 0.1$, predict $\hat{y}_i = +1$.
 – If $w^T x_i = -100$, predict $\hat{y}_i = -1$.
 – We write this operation (rounding to +1 or -1) as $\hat{y}_i = \text{sign}(w^T x_i)$.
Decision Boundary in 1D

The graph illustrates a decision boundary in 1D space. The equation for the linear regression model is given by:

\[\hat{y}_i = w^T x_i \]
• We can interpret ‘w’ as a hyperplane separating x into sets:
 – Set where $w^T x_i > 0$ and set where $w^T x_i < 0$.

Decision Boundary in 1D

\[\hat{y}_i = w^T x_i \]
• A linear classifier would be linear function $\hat{y}_i = w_0 + w_1 x_{i1} + w_2 x_{i2}$ coming out of the page (the boundary is at $\hat{y}_i = 0$)
Should we use least squares for classification?

• Consider training by minimizing squared error with y_i that are +1 or -1:

$$ \ell(w) = \frac{1}{2} \| Xw - y \|^2 $$

• If we predict $w^T x_i = +0.9$ and $y_i = +1$, error is small: $(0.9 - 1)^2 = 0.01$.
• If we predict $w^T x_i = -0.8$ and $y_i = +1$, error is bigger: $(-0.8 - 1)^2 = 3.24$.
• If we predict $w^T x_i = +100$ and $y_i = +1$, error is huge: $(100 - 1)^2 = 9801$.
 – But it shouldn’t be, the prediction is correct.

• Least squares penalized for being “too right”.
 – +100 has the right sign, so the error should be zero.
Should we use least squares for classification?

• Least squares can behave weirdly when applied to classification:

• Why? Squared error of green line is huge!
 – Make sure you understand why the green line achieves 0 training error.
“0-1 Loss” Function: Minimizing Classification Errors

• Could we instead minimize number of classification errors?
 – This is called the 0-1 loss function:
 • You either get the classification wrong (1) or right (0).
 – We can write using the L0-norm as \(||\hat{y} - y||_0\).
 • Unlike regression, in classification it’s reasonable that \(\hat{y}_i = y_i\) (it’s either +1 or -1).

• Important special case: “linearly separable” data.
 – Classes can be “separated” by a hyper-plane.
 – So a perfect linear classifier exists.
Perceptron Algorithm for Linearly-Separable Data

• One of the first “learning” algorithms was the “perceptron” (1957).
 – Searches for a ‘w’ such that \(\text{sign}(w^T x_i) = y_i \) for all \(i \).

• Perceptron algorithm:
 – Start with \(w^0 = 0 \).
 – Go through examples in any order until you make a mistake predicting \(y_i \).
 • Set \(w^{t+1} = w^t + y_i x_i \).
 – Keep going through examples until you make no errors on training data.

• If a perfect classifier exists, this algorithm finds one in finite number of steps.

• Intuition for step: if \(y_i = +1 \), “add more of \(x_i \) to \(w \)” so that \(w^T x_i \) is larger.
 \[
 (w^{t+1})^T x_i = (w^t + y_i x_i)^T x_i = (w^t)^T x_i + x_i^T x_i = (\text{old prediction}) + \|x_i\|^2
 \]
 – If \(y_i = -1 \), you would be subtracting the squared norm.
The Mark I Perceptron machine was the first implementation of the perceptron algorithm. The machine was connected to a camera that used 20×20 cadmium sulfide photocells to produce a 400-pixel image. The main visible feature is a patchboard that allowed experimentation with different combinations of input features. To the right of that are arrays of potentiometers that implemented the adaptive weights.
Geometry of why we want the 0-1 loss

\[(w^T x_i - y_i)^2\]

"Error" or "loss" for predicting \(w^T x_i\) when true label \(y_i\) is -1.

Big penalty for being "too right".

You should not penalize for putting \(w^T x_i\) here.

Having \(w^T x_i\) here is bad.
Thoughts on the previous (and next) slide

• We are now plotting the loss vs. the predicted $w^\top x_i$.
 – “Loss space”, which is different than parameter space or data space.

• We're plotting the individual loss for a particular training example.
 – In the figure the label is $y_i = -1$ (so loss is centered at -1).
 • It will be centered at +1 when $y_i = +1$.

• (The next slide is the same as the previous one)
Geometry of why we want the 0-1 loss

\[(w^T x_i - y_i)^2\]

"Error" or "loss" for predicting \(w^T x_i\) when true label \(y_i\) is -1.

Big penalty for being "too right."

You should not penalize for putting \(w^T x_i\) here.

Having \(w^T x_i\) here is bad.
Geometry of why we want the 0-1 loss

Big penalty for being "too right".

Absolute error reduces but does not fix this issue.

"Error" or "loss" for predicting $w^T x_i$ when true label y_i is -1.

You should not penalize for putting $w^T x_i$ here.

Having $w^T x_i$ here is bad.
Geometry of why we want the 0-1 loss

Big penalty for being "too right"

Absolute error reduces but does not fix this issue.

you should not penalize for putting $w^T x_i$ here.

"Error" or "loss" for predicting $w^T x_i$ when true label y_i is -1.

What we want is the "0-1 loss."

Having $w^T x_i$ here is bad.
0-1 Loss Function

• Unfortunately the 0-1 loss is non-convex in ‘w’.
 – It’s easy to minimize if a perfect classifier exists (perceptron).
 – Otherwise, finding the ‘w’ minimizing 0-1 loss is a hard problem.

 – Gradient is zero everywhere: don’t even know “which way to go”.

 – NOT the same type of problem we had with using the squared loss.
 • We can minimize the squared error, but it might give a bad model for classification.

• Motivates convex approximations to 0-1 loss...
Degenerate Convex Approximation to 0-1 Loss

• If $y_i = +1$, we get the label right if $w^T x_i > 0$.
• If $y_i = -1$, we get the label right if $w^T x_i < 0$, or equivalently $-w^T x_i > 0$.
• So “classifying ‘i’ correctly” is equivalent to having $y_i w^T x_i > 0$.

• One possible convex approximation to 0-1 loss:
 – Minimize how much this constraint is violated.

 If $y_i w^T x_i > 0$ then you get an “error” of 0.
 If $y_i w^T x_i < 0$ then you get an “error” of $-y_i w^T x_i$.
 → So the “error” is given by $\max\{0, -y_i w^T x_i\}$.
Degenerate Convex Approximation to 0-1 Loss

• Our convex approximation of the error for one example is:
 \[\max \{0, -y_i w^T x_i\} \]

• We could train by minimizing sum over all examples:
 \[f(w) = \sum_{i=1}^{n} \max \{0, -y_i w^T x_i\} \]

• But this has a degenerate solution:
 – We have \(f(0) = 0 \), and this is the lowest possible value of ‘\(f \)’.

• There are two standard fixes: hinge loss and logistic loss.
Summary

• **Ensemble feature selection** reduces false positives or negatives.

• **Binary classification using regression:**
 – Encode using y_i in {-1,1}.
 – Use $\text{sign}(w^T x_i)$ as prediction.
 – “Linear classifier” (a hyperplane splitting the space in half).

• Least squares is a weird error for classification.

• **Perceptron algorithm:** finds a perfect classifier (if one exists).

• **0-1 loss** is the ideal loss, but is non-smooth and non-convex.

• Next time: one of the best “out of the box” classifiers.
L1-Regularization as a Feature Selection Method

• Advantages:
 – Deals with conditional independence (if linear).
 – Sort of deals with collinearity:
 • Picks at least one of “mom” and “mom2”.
 – Very fast with specialized algorithms.

• Disadvantages:
 – Tends to give false positives (selects too many variables).

• Neither good nor bad:
 – Does not take small effects.
 – Says “gender” is relevant if we know “baby”.
 – Good for prediction if we want fast training and don’t care about having some irrelevant variables included.
“Elastic Net”: L2- and L1-Regularization

• To address non-uniqueness, some authors use L2- and L1-:

\[
\ell(w) = \frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2 + \lambda_1 \|w\|_1
\]

• Called “elastic net” regularization.
 – Solution is sparse and unique.
 – Slightly better with feature dependence:
 • Selects both “mom” and “mom2”.

• Optimization is easier though still non-differentiable.
L1-Regularization Debiasing and Filtering

• To remove false positives, some authors add a debiasing step:
 – Fit ‘w’ using L1-regularization.
 – Grab the non-zero values of ‘w’ as the “relevant” variables.
 – Re-fit relevant ‘w’ using least squares or L2-regularized least squares.

• A related use of L1-regularization is as a filtering method:
 – Fit ‘w’ using L1-regularization.
 – Grab the non-zero values of ‘w’ as the “relevant” variables.
 – Run standard (slow) variable selection restricted to relevant variables.
 • Forward selection, exhaustive search, stochastic local search, etc.
Non-Convex Regularizers

- Regularizing $|w_j|^2$ selects all features.
- Regularizing $|w_j|$ selects fewer, but still has many false positives.
- What if we regularize $|w_j|^{1/2}$ instead?
 - Minimizing this objective would lead to fewer false positives.
 - Less need for debiasing, but it’s not convex and hard to minimize.
- There are many non-convex regularizers with similar properties.
 - L1-regularization is (basically) the “most sparse” convex regularizer.
Can we just use least squares??

• What went wrong?
 – “Good” errors vs. “bad” errors.

This is the linear regression model we want (a perfect classifier).

"Good" errors: model is being penalized for predicting wrong class.

"Bad" errors: model is being penalized for predicting correct class.

This is what we actually get.
Can we just use least squares??

- What went wrong?
 - “Good” errors vs. “bad” errors.

\[f(w) = \sum_{i=1}^{n} (w^T x_i - y_i)^2 \]

What happens if \(y_i = -1 \) and \(w^T x_i = -1000 \)?

This is the linear regression model we want (a perfect classifier).

This is what we actually get.

"Bad" errors of the perfect linear classifier are huge.
Online Classification with Perceptron

- **Perceptron for online linear binary classification** [Rosenblatt, 1957]
 - Start with $w_0 = 0$.
 - At time ‘t’ we receive features x_t.
 - We predict $\hat{y}_t = \text{sign}(w_t^T x_t)$.
 - If $\hat{y}_t \neq y_t$, then set $w_{t+1} = w_t + y_t x_t$.
 - Otherwise, set $w_{t+1} = w_t$.

(Slides are old so above I’m using subscripts of ‘t’ instead of superscripts.)

- **Perceptron mistake bound** [Novikoff, 1962]:
 - Assume data is linearly-separable with a “margin”:
 - There exists w^* with $\|w^*\| = 1$ such that $\text{sign}(x_t^T w^*) = \text{sign}(y_t)$ for all ‘t’ and $|x_t^T w^*| \geq \gamma$.
 - Then the number of total mistakes is bounded.
 - No requirement that data is IID.
Let’s normalize each x_t so that $||x_t|| = 1$. Length doesn’t change label.

Whenever we make a mistake, we have $\text{sign}(y_t) \neq \text{sign}(w_t^T x_t)$ and

\[
||w_{t+1}||^2 = ||w_t + y_t x_t||^2 \\
= ||w_t||^2 + 2 y_t w_t^T x_t + 1 \\
\leq ||w_t||^2 + 1 \\
\leq ||w_{t-1}||^2 + 2 \\
\leq ||w_{t-2}||^2 + 3.
\]

So after ‘k’ errors we have $||w_t||^2 \leq k$.
Perceptron Mistake Bound

• Let’s consider a solution \(w^* \), so \(\text{sign}(y_t) = \text{sign}(x_t^T w^*) \).
 – And let’s choose a \(w^* \) with \(||w^*|| = 1 \),
• Whenever we make a mistake, we have:

\[
||w_{t+1}|| = ||w_{t+1}|| ||w^*|| \\
\geq w_{t+1}^T w^* \\
= (w_t + y_t x_t)^T w^* \\
= w_t^T w^* + y_t x_t^T w^* \\
= w_t^T w^* + |x_t^T w^*| \\
\geq w_t^T w^* + \gamma.
\]

 – Note: \(w_t^T w^* \geq 0 \) by induction (starts at 0, then at least as big as old value plus \(\gamma \)).
• So after ‘\(k \)’ mistakes we have \(||w_t|| \geq \gamma k \).
Perceptron Mistake Bound

• So our two bounds are $||w_t|| \leq \sqrt{k}$ and $||w_t|| \geq \gamma k$.

• This gives $\gamma k \leq \sqrt{k}$, or a maximum of $1/\gamma^2$ mistakes.
 – Note that $\gamma > 0$ by assumption and is upper-bounded by one by $||x|| \leq 1$.
 – After this ‘k’, under our assumptions we’re guaranteed to have a perfect classifier.