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Admin

* Midterm is tomorrow.
— October 18t at 6:30pm.
— Last names starting with A-L: BUCH A102.
— Last names starting with M-Z: BUCH A104.
— 80 minutes.
— Closed-book.
— One doubled-sided ‘cheat sheet’ for midterm.
— Auditors do not take the midterm.
— Mike will go over midterm questions/solutions in his lecture Friday.

 There will be two types of questions on the midterm:
— ‘Technical’ questions requiring things like pseudo-code or derivations.
e Similar to assignment questions, and will only be on topics related to those in assignments.

— ‘Conceptual’ questions testing understanding of key concepts.
* All lecture slide material except “bonus slides” is fair game here.



Last Time: L2-Regularization

* We discussed regularization:

— Adding a continuous penalty on the model complexity:
— _
0= =y i+ 21,2

— Best parameter A almost always leads to improved test error.
* L2-regularized least squares is also known as “ridge regression”.
e Can be solved as a linear system like least squares.

— Numerous other benefits:

* Solution is unique, less sensitive to data, gradient descent converges faster.



Parametric vs. Non-Parametric Transforms

 We’'ve been using linear models with polynomial bases:
— ’
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* But polynomials are not the only possible bases:

— Exponentials, logarithms, trigonometric functions, etc.

— The right basis will vastly improve performance.

— If we use the wrong basis, our accuracy is limited even with lots of data.
— But the right basis may not be obvious.



Parametric vs. Non-Parametric Transforms

 We’'ve been using linear models with polynomial bases:
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* Alternative is non-parametric bases:

— Size of basis (number of features) grows with n’.
— Model gets more complicated as you get more data.

— Can model complicated functions where you don’t know the right basis.
* With enough data.

— Classic example is “Gaussian RBFs”.



Gaussian RBFs: A Sum of “bumps”
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e Gaussian RBFs are universal approximators (compact subets of RY)
— Enough bumps can approximate any continuous function to arbitrary precision.
— Achieve optimal test error as ‘n’ goes to infinity.



Gaussian RBFs: A Sum of “Bumps”
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* Bonus slides: challenges of “far from data” (and future) predlctlons



Gaussian RBF Parameters

 Some obvious questions:

1. How many bumps should we use?

2. Where should the bumps be centered?

3. How high should the bumps go? mﬁi&xﬁk
4. How wide should the bumps be?

* The usual answers:

We use ‘n” bumps (non-parametric basis).

Each bump is centered on one training example x..

Fitting regression weights ‘w’ gives us the heights (and signs).

= w N

The width is a hyper-parameter (narrow bumps == complicated model).



Gaussian RBFs: Formal Details

 What is a radial basis functions (RBFs)?
— A set of non-parametric bases that depend on distances to training points.
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 Variance o? is a hyper-parameter controlling “width”. A 'x,

— This affects fundamental trade-off (set it using a validation set).



Gaussian RBFs: Formal Details

 What is a radial basis functions (RBFs)?

— A set of non-parametric bases that depend on distances to training points.

i \\ r__;3(’”%_ X,H) 9(",\',‘&”) Cvo. a(”]. —)(n,/)-—
_ ~x1) aUlx=xl) = gy, = xn
chlace X = n ’37 7 = 9()})& A 9" f\)\(‘ g Xz/; xnll) "\
o P
—_ ~ o ~n — N
Ia mQ/(B P{eJlLfiorﬁ on X: }t USe Z - j
~ oy -t
~ 3(” i X‘))D /\'/f}méer of
—\-—V“/ L_ ‘_l ' eafu/es"
- — — is ﬂ'u(v»ber
J N % fra,nm9 (’xar\,o/(’l



Gaussian RBFs: Pseudo-Code
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Non-Parametric Basis: RBFs

Least squares with Gaussian RBFs for different o values:
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RBFs and Regularization

* Gaussian Radial basis functions (RBFs) predictions:
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— Flexible bases that can model any continuous function.
— But with ‘n” data points RBFs have ‘n’ basis functions.

* How do we avoid overfitting with this huge number of features?

— We regularize ‘w’ and use validation error to choose o and A.



RBFs, Regularization, and Validation

e A model that is hard to beat:

— RBF basis with L2-regularization and cross-validation to choose o and A.
— Flexible non-parametric basis, magic of regularization, and tuning for test error.
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RBFs, Regularization, and Validation

e A model that is hard to beat:

— RBF basis with L2-regularization and cross-validation to choose o and A.
— Flexible non-parametric basis, magic of regularization, and tuning for test error!

RBF Basis (sigma = 2.000000)

— Expensive at test time:
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needs distance to all training examples.
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RBF Basis (sigma = 0.500000)
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Hyper-Parameter Optimization

In this setting we have 2 hyper-parameters (o and A).
More complicated models have even more hyper-parameters.

— This makes searching all values expensive (increases over-fitting risk).

Leads to the problem of hyper-parameter optimization.
— Try to efficiently find “best” hyper-parameters.

Simplest approaches:
— Exhaustive search: try all combinations among a fixed set of o and A values.
— Random search: try random values.



Hyper-Parameter Optimization

 Other common hyper-parameter optimization methods:

— Exhaustive search with pruning:
* Ifit “looks” like test error is getting worse as you decrease A, stop decreasing it.

— Coordinate search:
* Optimize one hyper-parameter at a time, keeping the others fixed.
* Repeatedly go through the hyper-parameters

— Stochastic local search:
* Generic global optimization methods (simulated annealing, genetic algorithms, etc.).

— Bayesian optimization (Mike’s PhD research topic):
* Use RBF regression to build model of how hyper-parameters affect validation error.
* Try the best guess based on the model.



(pause)



Previously: Search and Score

We talked about search and score for feature selection:
— Define a “score” and “search” for features with the best score.

Usual scores count the number of non-zeroes (“LO-norm”):
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But it’s hard to find the ‘W’ minimizing this objective.

We discussed forward selection, but requires fitting O(d?) models.
— For robust regression, need to run gradient descent O(d?) times.
— With regularization, need to search for lambda O(d?) times.



L1-Regularization

Consider regularizing by the L1-norm:
F)= LM 117+ Ml

Like L2-norm, it’s convex and improves our test error.
Like LO-norm, it encourages elements of ‘w’ to be exactly zero.

L1-regularization simultaneously regularizes and selects features.
— Very fast alternative to search and score.
— Sometimes called “LASSO” regularization.



L2-Regularization vs. L1-Regularization

 Regularization path of w; values as ‘A’ varies:

Regularization Path Regularization Path
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Regularizers and Sparsity

L1-regularization give sparsity but L2-regularization doesn’t.
— But don’t they both shrink variables to zero?

Consider problem where 3 vectors can get minimum training error:

(00 r
12— (100 I_ (9999
002] w . 0 W 0.62

Without regularization, we could choose any of these 3.
— They all have same error, so regularization will “break tie”.

With LO-regularization, we would choose w?:

(M, = WAL= W, =2



Regularizers and Sparsity

L1-regularization give sparsity but L2-regularization doesn’t.
— But don’t they both shrink variables to zero?

Consider problem where 3 vectors can get minimum training error:

o) W] WLy
With L2-regularization, we would choose w?:
! 1%= 16«00 AP =2+ 02 WP = 92917 +0.022
= |0000- 0po4 = |000D = 19750067

L2-regularization focuses on decreasing largest (makes w; similar).



Regularizers and Sparsity

L1-regularization give sparsity but L2-regularization doesn’t.
— But don’t they both shrink variables to zero?

Consider problem where 3 vectors can get minimum training error:

(00
2= (100 3- (9999
002] W [ o ] W 0.62
With L1-regularization, we would choose w?:

W ih=100+002 Wil =1w+p  WGlh= 9999 +0.0;
~100.02 = ’00 = 100.0]

L1-regularization focuses on decreasing all w; until they are 0.



Why doesn’t L2-Regularization set variables to 0?

* Consider an L2-regularized Igast squares problem with 1 feature:
{j(w) = ;'2 (wx.~ y;)L t f\’i—wz

* Let’s solve for the optimal ‘w’:
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* So as A gets bigger, ‘w’ converges to 0.
* However, for all finite A ‘w’ will be non-zero unless y'x = 0 exactly.

— But it’s very unlikely that y'x will be exactly zero.



Why doesn’t L2-Regularization set variables to 0?

. Small A Big A

e Solution further from zero Solution closer to zero
(but not exactly 0)



Why does L1-Regularization set things to 0?

Small A Big A
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(minimum of left parabola is past origin, but right parabola is not) (minimum of both parabola are past the origin),




Why does L1-Regularization set things to 0?

* Consider an L1-regularized least squares problem with 1 feature:
L) = 5' %' (wx-,'y.-)z + A wl
e If (w=0), then “left” limit and “right” limit are given by:
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L2-regularization vs. L1-regularization

* So with 1 feature:
— L2-regularization only sets ‘w’ to 0 if y'x = 0.

* There is a only a single possible y'x value where the variable gets set to zero.
* And A has nothing to do with the sparsity.

— L1-regularization sets ‘w’ to O if |y™x| < A.
* There is a range of possible y'x values where the variable gets set to zero.
* And increasing A increases the sparsity since the range of y'™x grows.

* Note that it’s important that the function is non-differentiable:
— Differentiable regularizers penalizing size would need y'x = O for sparsity.



L2-Regularization vs. L1-Regularization

* L2-Regularization: * L1-Regularization:
— Insensitive to changes in data. — Insensitive to changes in data.
— Decreased variance: — Decreased variance:
* Lower test error. * Lower test error.
— Closed-form solution. — Requires iterative solver.
— Solution is unique. — Solution is not unique.
— All ‘w’ tend to be non-zero. — Many ‘w’ tend to be zero.
— Can learn with linear number of — Can learn with exponential number
irrelevant features. of irrelevant features.
e E.g., only O(d) relevant features. * E.g., only O(log(d)) relevant features.

Paper on this result by Andrew Ng



http://www.andrewng.org/portfolio/feature-selection-l1-vs-l2-regularization-and-rotational-invariance/

L1-loss vs. L1-regularization

 Don’t confuse the L1 loss with L1-regularization!
— L1-loss is robust to outlier data points.
* You can use this instead of removing outliers.

— L1-regularization is robust to irrelevant features.

* You can use this instead of removing features.

* And note that you can be robust to outliers and select features:

f(w) = //)(w’ \/“, u q,/w//,
L, — loss L,"rfev\'q/lztf’r
* Why aren’t we smoothing and using “Huber regularization”?
— Huber regularizer is still robust to irrelevant features.
— But it’s the non-smoothness that sets weights to exactly 0.
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Summary

* Radial basis functions:
— Non-parametric bases that can model any function.

e L1-regularization:
— Simultaneous regularization and feature selection.
— Robust to having lots of irrelevant features.

* Next time: are we really going to use regression for classification?



Sparsity and Least Squares

* Consider 1D least squares objective:
N
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* This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):
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* This variable does not look relevant (minimum is close to 0). (bonag)

— But for finite ‘n” the minimum is unlikely to be exactly zero.




Sparsity and LO-Regularization

* Consider 1D LO-regularized least squares objective:
2 i wTO
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* This is a convex 1D quadratic function but with a discontinuity at O: )
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e LO-regularized minimum is often exactly at the ‘discontinuity’ at O:
— Sets the feature to exactly O (does feature selection), but is non-convex.



Sparsity and L2-Regularization

* Consider 1D L2-regularized least squares objective:
=L S (- v)* 4 2P
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* This is a convex 1D quadratic function of ‘w’ (i.e., a parabola): {D(W)
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* L2-regularization moves it closer to zero, but not all the way to zero.
— It doesn’t do feature selection (“penalty goes to 0 as slope goes to 0”).— f =0
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Sparsity and L1-Regularization

 Consider 1D L1-regularized least squares objective:
=12 (- )
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* This is a convex piecwise-quadratic function of ‘w’ with ‘kink’ at O: £(.)

\/ N minima

* L1-regularization tends to set variables to exactly 0 (feature selectlon)
— Penalty on slope is A even if you are close to zero.
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— Big A selects few features, small A allows many features. e A y’
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L1-Loss vs. Huber Loss

 The same reasoning tells us the difference between the L1 *loss*
and the Huber loss. They are very similar in that they both grow
linearly far away from 0. So both are both robust but...

— With the L1 loss the model often passes exactly through some points.
— With Huber the model doesn’t necessarily pass through any points.

* Why? With L1-regularization we were causing the elements of ‘'w’
to be exactly 0. Analogously, with the L1-loss we cause the
elements of ‘r’ (the residual) to be exactly zero. But zero residual
for an example means you pass through that example exactly.



Non-Uniqueness of L1-Regularized Solution

How can L1-regularized least squares solution not be unique?
— Isn’t it convex?

Convexity implies that minimum value of f(w) is unique (if exists),
but there may be multiple ‘w’ values that achieve the minimum.

Consider L1-regularized least squares with d=2, where feature 2 is a

copy of a feature 1. For a solution (w,,w,) we have:
N
Yi = WX +W2x"2 - \V, X-“* Wy Xy = (Wl+Wz )X,—,

So we can get the same squared error with different w, and w, values
that have the same sum. Further, if neither w, or w, changes sign, then
lw,| + |w,| will be the same so the new w, and w, will be a solution.



Splines in 1D

* For 1D interpolation, alternative to polynomials/RBFs are splines:
— Use a polynomial in the region between each data point.
— Constrain some derivatives of the polynomials to yield a unique solution.

 Most common example is cubic spline:
— Use a degree-3 polynomial between each pair of points.
— Enforce that f’(x) and f”’(x) of polynomials agree at all point.
— “Natural” spline also enforces f”’(x) = 0 for smallest and largest x.

Approximating f{x) = x sin(2 1 x + 1) using Matural cubic splines

* Non-trivial fact: natural cubic splines are sum of:
— Y-intercept.
— Linear basis.
— RBFs with g(g) = €3.

e Different than Gaussian RBF because it increases with distance.

= Cubic spline Apprax.
= = Exact Function




Splines in Higher Dimensions

* Splines generalize to higher dimensions if data lies on a grid.
— Many methods exist for grid-structured data (linear, cubic, splines, etc.).
— For more general (“scattered”) data, there isn’t a natural generalization.

* Common 2D “scattered” data interpolation is thin-plate splines:
— Based on curve made when bending sheets of metal.
— Corresponds to RBFs with g(g) = €2 log(g).

* Natural splines and thin-plate splines: special cases of - &
“polyharmonic” splines: '
— Less sensitive to parameters than Gaussian RBF.




L2-Regularization vs. L1-Regularization

.. | @Unconstrained Solution

|+-."] © L2-Regularized Solution |,

| 2-regularization conceptually restricts ‘w’ to a ball.

N{n;mizim} {]'Xw'y”l + .%“w”l
'S e v\'\va\/w\"’ )La rn/him/'a/m}

-—ji”)(w'yllz subject  to

e (onstraint Hat |l €7

'Fof some yalue T



L2-Regularization vs. L1-Regularization

| @Unconstrained Solution

|+-."] © L2-Regularized Solution |,

| 1-regularization restricts to the L1 “

| 2-regularization conceptually restricts ‘w’ to a ball.

... | @Unconstrained Solution
P .| @L1-Regularized Solution
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— Solutions tend to be at corners where W, are zero.

Related Infinite Series video



https://www.youtube.com/watch?v=ineO1tIyPfM&t=596s

