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Admin

Pathway to Graduate

 Midterm is Thursday. School Panel
— October 18t at 6:30pm. Come hear alumni, grad
— Last names starting with A-L: BUCH A102. students, faculty share their
— Last names starting with M-Z: BUCH A104. experience
— 80 minutes. Tues. Oct 16
— Closed-book. 12:30 pm — 2 pm
— One doubled-sided ‘cheat sheet’ for midterm. X836, ICICS/CS

— Auditors do not take the midterm.
Sign up on my.cs.ubc.ca

* There will be two types of questions on the midterm:
— ‘Technical’ questions requiring things like pseudo-code or derivations.
e Similar to assignment questions, and will only be on topics related to those in assignments.

— ‘Conceptual’ questions testing understanding of key concepts.
* All lecture slide material except “bonus slides” is fair game here.



Last Time: Feature Selection

Last time we discussed feature selection:
— Choosing set of “relevant” features.
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Most common approach is search and score:

— Define “score” and “search” for features with best score.

But it’s hard to define the “score” and it’s hard to “search”.
— So we often use greedy methods like forward selection.
Methods work ok on “toy” data, but are frustrating on real data.

— Different methods may return very different results.
— Defining whether a feature is “relevant” is complicated and ambiguous.



My advice if you want the “relevant” variables.

Ty the association approach.
ry forward selection with different values of A.
ry out a few other feature selection methods too.

Discuss the results with the domain expert.
— They probably have an idea of why some variables might be relevant.

Don’t be overconfident:
— These methods are probably not discovering how the world truly works.

— “The algorithm has found that these variables are helpful in predicting y..
* Then a warning that these models are not perfect at finding relevant variables.

)



“Feature” Selection vs. “Model” Selection?

* Model selection: “which model should | use?”
— KNN vs. decision tree, depth of decision tree, degree of polynomial basis.

e Feature selection: “which features should | use?”

— Using feature 10 or not, using quadratic as part of polynomial basis.

 These two tasks are highly-related:
— It’s a differnet “model” if we add x.2 to linear regression.
— But the x.2 term is just a “feature” that could be “selected” or not.

— Usually, “feature selection” means choosing from some “original” features.
* You could say that “feature” selection is a special case of “model” selection.



Can it help prediction to throw features away?

* First, note that linear regression can overfit with large ‘d’.

/) io:

— Even though it’s “just” a hyper-plane.

e Consider using d=n, with completely random features.
— With high probability, you will be able to get a training error of 0.
— But the features were random, this is completely overfitting.

* You could view “number of features” as a hyper-parameter.
— Model gets more complex as you add more features.



(pause)



Recall: Polynomial Degree and Training vs. Testing

We've said that complicated models tend to overfit more.

M=0 M= 1 M=2 M=3

But what if we need a complicated model?



Controlling Complexity

Usually “true” mapping from x. to y. is complex.
— Might need high-degree polynomial.
— Might need to combine many features, and don’t know “relevant” ones.

But complex models can overfit.
So what do we do???

Our main tools:
— Model averaging: average over multiple models to decrease variance.
— Regularization: add a penalty on the complexity of the model.



Would you rather?

* Consider the following dataset and 3 linear regression models:

 Which line should we choose?



Would you rather?

e Consider the following dataset and 3 linear regression models:

 What if you are forced to choose between red and green?
— They have the same training error.

* You should pick green.
— The slope is smaller, so predictions are less sensitive to having ‘w’ exactly right.
— Since green ‘W’ is less sensitive to data, test error might be lower.



Size of Regression Weights are Overfitting
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* The regression weights w; with degree-7 are huge in this example.

 The degree-7 polynomial would be less sensitive to the data,
if we “regularized” the w; so that they are small.

)/ 0.0001(x)" + 0.03(x°+3 s }/ = 1000 (x) ‘gUOO’)é"Lg?OX/



L2-Regularization

e Standard regularization strategy is L2-regularization:

n 4
Fw) = f (w'x - ) +%,§ W' or F(w) = %”XW‘ }’”3 7“%VW//"
* Intuition: large slopes w; tend to lead to overfitting.
* Objective balances getting low error vs. having small slopes ‘w;’".

— “You can increase the training error if it makes ‘w’” much smaller.”
— Nearly-always reduces overfitting.

— Regularization parameter A > 0 controls “strength” of regularization.
e Large A puts large penalty on slopes.



L2-Regularization

e Standard regularization strategy is L2-regularization:

n 4
= | 2 2 - | - v]? 2
F(w) 32(W X~ ,) “"-I)%V‘{j or -F(W) Tl“XW >/H 'f‘_il',w//
* |In terms of fundamental trade-off:

— Regularization increases training error.

— Regularization decreases approximation error.

 How should you choose A?

— Theory: as ‘n’ grows A should be in the range O(1) to (\/n).

— Practice: optimize validation set or cross-validation error.
* This almost always decreases the test error.



Regularization Path

* Regularization path is a plot of the optimal weights ‘w;" as ‘A" varies:

Regularization Path
T

coefficients

log2(lambda)

* Starts with least squares with A= 0, and w; converge to 0 as A grows.



L2-regularization and the normal equations

When using L2-regularization we can just set V f(w) to 0 and solve.

Loss before:  f(w) = || Xw — y||3
Loss after:  f(w) = [[Xw —yl[3 + Mw3

Gradient before: V f(w) = X' Xw — X'y
Gradient after: Vf(w) = X' Xw — X'y + \w

Linear system before: X Xw = XTy

Linear system after: (X' X + A w = X"y
But unlike XX, the matrix (X"™X + Al) is always invertible:
— Multiply by its inverse for unique solution: WS ()(T)( +97 )-,(X_‘/)



Gradient Descent for L2-Regularizaed Least Squares

 The L2-regularized least squares objective and gradient:
WW):-—‘ZIIXW—/IIH_ﬂ;/wuﬂ VF(w)’XT(XW'y)‘\']w
* Gradient descent iterations for L2-regularized least squares:
et () A ]
N~
V)

* Cost of gradient descent iteration is still O(nd).

— Can show number of iterations decrease as A increases (not obvious).



* |t's a weird thing to do, but Mark says “always use regularization”.

Why use L2-Regularization?

4

— “Almost always decreases test error” should already convince you.

 But here are 6 more reasons:

o g BY e

Solution ‘W’ is unique.

X™X does not need to be invertible (no collinearity issues).

Less sensitive to changes in X or .

Gradient descent converge faster (bigger A means fewer iterations).
Stein’s paradox: if d > 3, ‘shrinking” moves us closer to ‘true’ w.

Worst case: just set A small and get the same performance.



(pause)



Features with Different Scales

e Consider continuous features with different scales:

Egg (#) Milk (mL) Pasta
(cups)
250 0 1

0

1 250 200 1
0 0 0 0.5
2 250 150 0

e Should we convert to some standard ‘unit’?
— |t doesn’t matter for decision trees or naive Bayes.
* They only look at one feature at a time.

— It doesn’t matter for least squares:
* w;*(100 mL) gives the same model as w;*(0.1 L) with a different w;.



Features with Different Scales

e Consider continuous features with different scales:

Egg (#) Milk (mL) Pasta
(cups)
250 0 1

0

1 250 200 1
0 0 0 0.5
2 250 150 0

* Should we convert to some standard ‘unit’?
— It matters for k-nearest neighbours:
» “Distance” will be affected more by large features than small features.

— |t matters for regularized least squares:
* Penalizing (wj)2 means different things if features ‘j’ are on different scales.



Standardizing Features

* |tis common to standardize continuous features: - ,
Averde g
— For each feature: T "y

column /|

1. Compute mean and standard deviation:

N ——
' _ g

-
-~

2. Subtract mean and divide by standard deviation (“z-score”

Ktlal%CC X') W"/.L\ le — 4

o’

— Now changes in ‘w;" have similar effect for any feature ‘j'.

* How should we standardize test data?
— Wrong approach: use mean and standard deviation of test data.
— Training and test mean and standard deviation might be very different.
— Right approach: use mean and standard deviation of training data.



Standardizing Features

* Itis common to standardize continuous features: - ,
Averde g
— For each feature: T "y
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1. Compute mean and standard deviation:
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2. Subtract mean and divide by standard deviation (“z-score”
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— Now changes in ‘w;" have similar effect for any feature ‘j'.

* If we're doing 10-fold cross-validation:
— Compute y; and g; based on the 9 training folds (e.g., average over 9/10s of data).
— Standardize the remaining (“validation”) fold with this “training” p, and o..
— Re-standardize for different folds.



Standardizing Target

In regression, we sometimes standardize the targets y..
— Puts targets on the same standard scale as standardized features:

Repla(e Yi W}fL‘ /_l_:.ﬁy

%

With standardized target, setting w = 0 predicts average y;:
— High regularization makes us predict closer to the average value.

Again, make sure you standardize test data with the training stats.
Other common transformations of y. are logarithm/exponent:

Ve |o(}(y,) or 5Yr(/ryi)

— Makes sense for geometric/exponential processes.



Regularizing the Y-Intercept?

Should we regularize the y-intercept?

No! Why encourage it to be closer to zero (it could be anywhere)?

— You should be allowed to shift function up/down globally.
Yes! It makes the solution unique and it easier to compute ‘w’.

Compromise: regularize by a smaller amount than other variables.

f(w)wﬂ: -21 ”XVV ‘f'W@‘y”“? +—/’]E”w//2 "’%glr\/,,z



(pause)



Predicting the Future

* In principle, we can use any features x. that we think are relevant.
* This makes it tempting to use time as a feature, and predict future.
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Predicting the Future

* In principle, we can use any features x. that we think are relevant.
* This makes it tempting to use time as a feature, and predict future.

43

+ actual
— predicted

421

We need o be

oAy v
Fe 4

§  MOROCC
£ ATHENS 20\

41}

C_aw\ﬁaus aboul

Joing This

4

£ e
1

3.9F

world record for the men's mile

| |
1900 1950 2000 I 2050


https://overthehillsports.files.wordpress.com/2015/07/guerrouj1.jpg
https://overthehillsports.files.wordpress.com/2015/07/guerrouj1.jpg

Predicting 100m times 400 years in the future?

Male 100 m Sprint Prediction
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Interpolation vs Extrapolation

Interpolation is task of predicting “between the data points”.

— Regression models are good at this if you have enough data and function is smooth.
Extrapolation is task of prediction outside the range of the data points.

— Without assumptions, regression models can be embarrassingly-bad at this.

If you run the 100m regression models backwards in time:
— They predict that humans used to be really really slow!

If you run the 100m regression models forwards in time:
— They might eventually predict arbitrarily-small 100m times.

— The linear model actually predicts negative times in the future.
* These time traveling races in 2060 should be pretty exciting!

Some discussion here:
— http://callingbullshit.org/case studies/case study gender gap running.html

https://www.smbc-comics.com/comic/rise-of-the-machines



http://callingbullshit.org/case_studies/case_study_gender_gap_running.html
https://www.smbc-comics.com/comic/rise-of-the-machines

No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future

: ‘Tlr\is Moclel Q'SO ‘FﬂlS’ dota well

7 .

/(’Firsw‘ available L " Ume /t,'wesmf

1)
Mfﬁ§Mr(m f”\.' ng more (()Mrale(

So ','f‘o\'/nma €fror May be poor a,oprdz\’)/haﬂanf‘;ﬂmw
5 :



Ockham’s Razor vs. No Free Lunch

* Ockham’s razor is a problem-solving principle:

— “Among competing hypotheses, the one with the
fewest assumptions should be selected.”

— Suggests we should select linear model.

* Fundamental trade-off:
— If same training error, pick model less likely to overfit.
— Formal version of Occam’s problem-solving principle.
— Also suggests we should select linear model.

e No free lunch theorem:

— There exists possible datasets where you should
select the green model.



No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future
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Discussion: Climate Models

* Has Earth warmed up over last 100 years? (Consistency zone)
— Data clearly says “yes”.

Global Land—Ocean Temperature Index
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e Will Earth continue to warm over next 100 years? (generalization error)
— We should be more skeptical about models that predict future events.



Discussion: Climate Models

So should we all become global warming skeptics?

If we average over models that overfit in *independent™ ways, we
expect the test error to be lower, so this gives more confidence:

Global Warming Projections
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— We should be skeptical of individual models, but agreeing predictions made by
models with different data/assumptions are more likely be true.

All the near-future predictions agree, so they are likely to be accurate.
— And temperature changes are likely to change continuously.

Variance is higher further into future, so predictions are less reliable.
— Relying more on assumptions and less on data.



Summary

Regularization:
— Adding a penalty on model complexity.

L2-regularization: penalty on L2-norm of regression weights ‘w’.

— Almost always improves test error.

Standardizing features:

— For some models it makes sense to have features on the same scale.

Interpolation vs. Extrapolation:
— Machine learning with large ‘n’ is good at predicting “between the data”.
— Without assumptions, can be arbitrarily bad “away from the data”.

Next time: learning with an exponential number of irrelevant features.



L2-Regularization

e Standard regularization strategy is L2-regularization:
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Regularization/Shrinking Paradox

 We throw darts at a target:
— Assume we don’t always hit the exact center.

— Assume the darts follow a symmetric pattern
around center.




Regularization/Shrinking Paradox

 We throw darts at a target:
— Assume we don’t always hit the exact center.

— Assume the darts follow a symmetric pattern
around center.

* Shrinkage of the darts :

1. Choose some arbitrary location ‘0’
2. Measure distances from darts to ‘0.



Regularization/Shrinking Paradox

 We throw darts at a target:

— Assume we don’t always hit the exact center. /@V\

— Assume the darts follow a symmetric pattern )
around center.

e Shrinkage of the darts : Uo“ X
1. Choose some arbitrary location ‘0’ 0
2. Measure distances from darts to ‘0.

3. Move misses towards ‘0, by small
amount proportional to distance from O.

* |f small enough, darts will be closer to center on average.



Regularization/Shrinking Paradox

 We throw darts at a target:

— Assume we don’t always hit the exact center

. /(-x \x\
%

— Assume the darts follow a symmetric pattern \?)J)
X

around center.

* Shrinkage of the darts : '/5"
1. Choose some arbitrary location ‘0’
2. Measure distances from darts to ‘0.
3. Move misses towards ‘0, by small
amount proportional to distance from O.

* |f small enough, darts will be closer to center on average.

Visualization of the related higher-dimensional paradox that the mean of data coming from a Gaussian
is not the best estimate of the mean of the Gaussian in 3-dimensions or higher: https://www.naftaliharris.com/blog/steinviz

X


https://www.naftaliharris.com/blog/steinviz

