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Last Time: Change of Basis

e Last time we discussed change of basis:
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— You can fit non-linear models with linear regression. .
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— Just treat ‘Z’ as your data, then fit linear model. 0




Optimization Terminology

* When we minimize or maximize a function we call it “optimization”.
— In least squares, we want to solve the “optimization problem”:
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— The function being optimized is called the “objective”.
* Also sometimes called “loss” or “cost”, but these have different meanings in ML.

— The set over which we search for an optimum is called the domain.

— Often, instead of the minimum objective value, you want a minimizer.
* A set of parameters ‘w’ that achieves the minimum value.



Discrete vs. Continuous Optimization

* We have seen examples of continuous optimization:

— Least squares:
* Domain is the real-valued set of parameters ‘w’.
* Objective is the sum of the squared training errors.

* We have seen examples of discrete optimization:
— Fitting decision stumps:
 Domain is the finite set of unique rules.
* Objective is the number of classification errors (or infogain).

e We have also seen a mixture of discrete and continuous:
— K-means: clusters are discrete and means are continuous.



Stationary/Critical Points

 A‘w with V f(w) =0 is called a stationary point or critical point.
— The slope is zero so the tangent plane is “flat”.
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Stationary/Critical Points

 A‘w with V f(w) =0 is called a stationary point or critical point.
— The slope is zero so the tangent plane is “flat”.
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— If we're minimizing, we would ideally like to find a global minimum.

e But for some problems the best we can do is find a stationary point where V f(w)=0.



Motivation: Large-Scale Least Squares

* Normal equations find ‘w’ with V f(w) = 0 in O(nd? + d3) time.
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— Very slow if ‘d” is large.

* Alternative when ‘d’ is large is gradient descent methods.
— Probably the most important class of algorithms in machine learning.



Gradient Descent for Finding a Local Minimum

* Gradient descent is an iterative optimization algorithm:
— It starts with a “guess” w®.
— It uses the gradient V f(wP®) to generate a better guess w.
— It uses the gradient V f(w') to generate a better guess w?.
— It uses the gradient V f(w?) to generate a better guess w3.

— The limit of w' as ‘t’ goes to o= has V f(w') = 0.

* |t converges to the global optimum if ‘" is convex.



Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).
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Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).
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Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).
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Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).
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Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).
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Gradient Descent for Finding a Local Minimum

— We start with some initial guess, w®.
— Generate new guess by moving in the negative gradient direction:

w' = w’ = L VW)

* This decreases ‘f’ if the “step size” a® is small enough.
* Usually, we decrease o if it increases ‘f’ (see “findMin”).

— Repeat to successively refine the guess:
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Data Space vs. Parameter Space

e Usual regression plot is in the “x vs. y” data space (left):
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* Ontherightis plot of the “intecerpt vs. slope” parameter space.
— Points in parameter space correspond to models (* is least squares parameters).



Gradient Descent in Data Space vs. Parameter Space

* Gradient descent starts with an initial guess in parameter space:
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— And each iteration tries to move guess closer to solution.



Gradient Descent in Data Space vs. Parameter Space

* Gradient descent starts with an initial guess in parameter space:
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— And each iteration tries to move guess closer to solution.



Gradient Descent in Data Space vs. Parameter Space

* Gradient descent starts with an initial guess in parameter space:
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Gradient Descent in Data Space vs. Parameter Space

* Gradient descent starts with an initial guess in parameter space:
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— And each iteration tries to move guess closer to solution.



W, Gradient Descent in 2D
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* Under weak conditions, algorithm converges to a ‘w’ with V f(w) =

— ‘f” is bounded below, V f can’t change arbitrarily fast, small-enough constant at.
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Gradient Descent for Least Squares

* The least squares objective and gradient:
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* Gradient descent iterations for least squares:
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* Cost of gradient descent iteration is O(nd) (no need to form X'X).

@DH/MCC/\/ ' S tamru‘}/hc} VL\(Wt):: X'?({(Atv/é_)l)

Ulnd)
\/'\/'\/

5



Normal Equations vs. Gradient Descent

* Least squares via normal equations vs. gradient descent:
— Normal equations cost O(nd? + d?3).
— Gradient descent costs O(ndt) to run for ‘t’ iterations.

e Each of the ‘t’ iterations costs O(nd).

— Gradient descent can be faster when ‘d’ is very large:
* |f solution is “good enough” for a ‘t’ less than minimum(d,d?/n).
* CPSC 540: ‘t’ proportional to “condition number” of X'™X (no direct ‘d” dependence).

— Normal equations only solve linear least squares problems.

* Gradient descent solves many other problems.



Beyond Gradient Descent

 There are many variations on gradient descent.
— Methods employing a “line search” to choose the step-size.
— “Conjugate” gradient and “accelerated” gradient methods.
— Newton’s method (which uses second derivatives).
— Quasi-Newton and Hessian-free Newton methods.
— Stochastic gradient (later in course).

* This course focuses on gradient descent and stochastic gradient:
— They’re simple and give reasonable solutions to most ML problems.
— But the above can be faster for some applications.



(pause)



e |s finding a ‘W’ with Vf(w) = 0 good enough?

— Yes, for convex functions.

A function is convex if the area above the function is a convex set.
— All values between any two points above function stay above function.



Convex Functions

* All ‘w” with V f(w) = 0 for convex functions are global minima.
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— Normal equations find a global minimum because of convexity.



How do we know if a function is convex?

* Some useful tricks for showing a function is convex:

— 1-variable, twice-differentiable function is convex iff f’(w) > 0 for all ‘w’.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f’(w) > 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.

We showed  tThat f(W)=e™ s LonveX, SO ()= (0™ is conve.



How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f’(w) > 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f’(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
— The sum of convex functions is a convex function.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f’(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
— The sum of convex functions is a convex function.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:

— 1-variable, twice-differentiable function is convex iff f”’(w) = 0 for all ‘w’.{

— A convex function multiplied by non-negative constant is convex.

— Norms and squared norms are convex.

— The sum of convex functions is a convex functiop. \ \/:2\.\/
— The max of convex functions is a convex functioN.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f’(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
— The sum of convex functions is a convex function.
— The max of convex functions is a convex function.
— Composition of a convex function and a linear function is convex.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f’(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
— The sum of convex functions is a convex function.
— The max of convex functions is a convex function.
— Composition of a convex function and a linear function is convex.

* But: not true that composition of convex with convex is convex:
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Example: Convexity of Linear Regression

* Consider linear regression objective with squared error:

e We can use thatt
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Convexity in Higher Dimensions

e Twice-differentiable ‘d’-variable function is convex iff:

— Eigenvalues of Hessian V4 f(w) are non-negative for all ‘w’.

* True for least squares where V4 f(w) = X'X for all ‘w".
— |t may not be obvious that this matrix has non-negative eigenvalues.

* Unfortunately, sometimes hard to show convexity this way.

— Usually easier to just use some of the rules as we did on the last slide.



(pause)



Least Squares with Outliers

* Consider least squares problem with outligrs in\’y’:
x & ouflier ﬂwn‘ Joe,,.‘f ﬁ//m, Yren C!

_”/\iS (> \A/Lq‘ll wée

B / \ALO'_V_\:IL least Squnares
to do

http://setosa.io/ev/ordinary-least-squares-regression



http://setosa.io/ev/ordinary-least-squares-regression

Least Squares with Outliers

* Consider least squares problem with outligrs in\’y’:
x & ouflier ‘ﬂwﬂ‘ Joe,,.‘f ﬁ,//a.,v Yren C!
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* Least squares is very sensitive to outliers.



/N
Least Squares with Outliers

e Squaring error shrinks small errors, and magnifies largg errors:
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e Qutliers (large error) influence ‘w” much more than other points.

http://students.brown.edu/seeing-theory/regression/index.html



http://students.brown.edu/seeing-theory/regression/index.html

Least Squares with Outliers

e Squaring error shrinks small errors, and magnifies large errors:
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e Qutliers (large error) influence ‘w” much more than other points.
— Good if outlier means ‘plane crashes’, bad if it means ‘data entry error’.
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Summary

Gradient descent finds critical point of differentiable function.

— Finds global optimum if function is convex.

Convex functions:

— Set of functions with property that V f(w) = 0 implies ‘W’ is a global min.
— Can (usually) be identified using a few simple rules.

Outliers in ‘y’ can cause problem for least squares.

Next time:
— Linear regression without the outlier sensitivity...



Constraints, Continuity, Smoothness

 Sometimes we need to optimize with constraints:

— Later we’ll see “non-negative least squares”.
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— A vector ‘W’ satisfying w =2 0 (element-wise) is said to be “feasible”.

* Two factors affecting difficulty are continuity and smoothness.
— Continuous functions tend to be easier than discontinuous functions.
— Smooth/differentiable functions tend to be easier than non-smooth.
— See the calculus review here if you haven’t heard these words in a while.


https://www.cs.ubc.ca/~schmidtm/Courses/Notes/calculus.pdf

Convexity, min, and argmin

* |f a function is convex, then all critical points are global optima.

* However, convex functions don’t necessarily have critical points:
— For example, f(x) = a*x, f(x) = exp(x), etc.

* Also, more than one X’ can achieve the global optimum:

— For example, f(x) = c is minimized by any ‘X



Why use the negative gradient direction?

* For a twice-differentiable ‘t, multivariable Taylor expansion gives:
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Normalized Steps
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Random Sample Consensus (RANSAC)

* |n computer vision, a widely-used generic framework for robust
fitting is random sample consensus (RANSAC).

* This is designed for the scenario where: « o

— You have a large number of outliers. ’ E o

— Majority of points are “inliers”:
it’s really easy to get low error on them. - . @ .



Random Sample Consensus (RANSAC)

* RANSAC: Linear l’?c,m:;jan L,J,.((
. on ‘H(
— Sample a small number of training examples. < ’Zﬂ’"—/"‘.
* Minimum number needed to fit the model. o .

* For linear regression with 1 feature, just 2 examples.

— Fit the model based on the samples.
* Fit a line to these 2 points.
* With ‘d’ features, you’ll need ‘d” examples.

— Test how many points are fit well
based on the model.

— Repeat until we find a model that fits at
least the expected number of “inliers”.

* You might then re-fit based on the
estimated “inliers”.




