CPSC 340: Machine Learning and Data Mining

Gradient Descent Fall 2018

Last Time: Change of Basis

- Last time we discussed change of basis:
 - E.g., polynomial basis:

Replace
$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 with $Z = \begin{bmatrix} 1 & x_1 & (x_1)^2 & \dots & (x_n)^n \\ 1 & x_2 & (x_2)^2 & \dots & (x_n)^n \end{bmatrix}$

– You can fit non-linear models with linear regression.

$$\hat{y}_i = v^T z_i = w_0 + w_1 x_i + w_2 x_i^2 + w_3 x_i^3 + \dots + w_p x_i^p$$

– Just treat 'Z' as your data, then fit linear model.

Optimization Terminology

- When we minimize or maximize a function we call it "optimization".
 - In least squares, we want to solve the "optimization problem":

$$\min_{w \in \mathbb{R}^{d}} \frac{1}{2} \sum_{j=1}^{n} (w X_{i} - y_{j})^{2}$$

- The function being optimized is called the "objective".
 - Also sometimes called "loss" or "cost", but these have different meanings in ML.
- The set over which we search for an optimum is called the domain.
- Often, instead of the minimum objective value, you want a minimizer.
 - A set of parameters 'w' that achieves the minimum value.

Discrete vs. Continuous Optimization

- We have seen examples of continuous optimization:
 - Least squares:
 - Domain is the real-valued set of parameters 'w'.
 - Objective is the sum of the squared training errors.
- We have seen examples of discrete optimization:
 - Fitting decision stumps:
 - Domain is the finite set of unique rules.
 - Objective is the number of classification errors (or infogain).
- We have also seen a mixture of discrete and continuous:
 - K-means: clusters are discrete and means are continuous.

Stationary/Critical Points

- A 'w' with ∇ f(w) = 0 is called a stationary point or critical point.
 - The slope is zero so the tangent plane is "flat".

Stationary/Critical Points

• A 'w' with ∇ f(w) = 0 is called a stationary point or critical point.

- The slope is zero so the tangent plane is "flat".

– If we're minimizing, we would ideally like to find a global minimum.

• But for some problems the best we can do is find a stationary point where ∇ f(w)=0.

Motivation: Large-Scale Least Squares

• Normal equations find 'w' with ∇ f(w) = 0 in O(nd² + d³) time.

- Alternative when 'd' is large is gradient descent methods.
 - Probably the most important class of algorithms in machine learning.

- Gradient descent is an iterative optimization algorithm:
 - It starts with a "guess" w^0 .

...

- It uses the gradient ∇ f(w⁰) to generate a better guess w¹.
- It uses the gradient ∇ f(w¹) to generate a better guess w².
- It uses the gradient ∇ f(w²) to generate a better guess w³.
- The limit of w^t as 't' goes to ∞ has ∇ f(w^t) = 0.
- It converges to the global optimum if 'f' is convex.

- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\nabla$ f(w).

- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\nabla$ f(w).

- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\nabla$ f(w).

- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\nabla$ f(w).

- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\nabla$ f(w).

- We start with some initial guess, w^0 .
- Generate new guess by moving in the negative gradient direction:

$$w' = w^{o} - \alpha^{o} \nabla f(w^{o})$$

- This decreases 'f' if the "step size" α^0 is small enough.
- Usually, we decrease α^0 if it increases 'f' (see "findMin").
- Repeat to successively refine the guess:

$$W^{t+1} = w^t - \alpha^t \nabla f(w^t) \quad \text{for } t = \frac{1}{2}, \frac{2}{3}, \dots$$

Stop if not making progress or

$$||\nabla f(w^{t})|| \leq \varepsilon$$

Some small Scalar.
Approximate local minimum

Data Space vs. Parameter Space

• Usual regression plot is in the "x vs. y" data space (left):

- On the right is plot of the "intecerpt vs. slope" parameter space.
 - Points in parameter space correspond to models (* is least squares parameters).

• Gradient descent starts with an initial guess in parameter space:

And each iteration tries to move guess closer to solution.

• Gradient descent starts with an initial guess in parameter space:

- And each iteration tries to move guess closer to solution.

• Gradient descent starts with an initial guess in parameter space:

- And each iteration tries to move guess closer to solution.

• Gradient descent starts with an initial guess in parameter space:

- And each iteration tries to move guess closer to solution.

- Under weak conditions, algorithm converges to a 'w' with ∇ f(w) = 0.
 - 'f' is bounded below, ∇ f can't change arbitrarily fast, small-enough constant α^{t} .

Gradient Descent for Least Squares

• The least squares objective and gradient:

$$f(u) = \frac{1}{2} ||X_u - y||^2 \quad \nabla f(u) = X^T(X_u - y)$$

• Gradient descent iterations for least squares:

$$w^{t} = w^{t} - \alpha^{t} \chi^{t} (\chi_{w}^{t} - \gamma)$$

Cost of gradient descent iteration is O(nd) (no need to form X^TX).

Bottleneck is computing
$$\nabla f(nt) = \chi^7 (\chi_n t - \gamma)$$

 $U(nd)$
 $U(nd)$
 $O(nd)$

Normal Equations vs. Gradient Descent

- Least squares via normal equations vs. gradient descent:
 - Normal equations $\cot O(nd^2 + d^3)$.
 - Gradient descent costs O(ndt) to run for 't' iterations.
 - Each of the 't' iterations costs O(nd).
 - Gradient descent can be faster when 'd' is very large:
 - If solution is "good enough" for a 't' less than minimum(d,d²/n).
 - CPSC 540: 't' proportional to "condition number" of X^TX (no direct 'd' dependence).
 - Normal equations only solve linear least squares problems.
 - Gradient descent solves many other problems.

Beyond Gradient Descent

- There are many variations on gradient descent.
 - Methods employing a "line search" to choose the step-size.
 - "Conjugate" gradient and "accelerated" gradient methods.
 - Newton's method (which uses second derivatives).
 - Quasi-Newton and Hessian-free Newton methods.
 - Stochastic gradient (later in course).
- This course focuses on gradient descent and stochastic gradient:
 - They're simple and give reasonable solutions to most ML problems.
 - But the above can be faster for some applications.

(pause)

Convex Functions

- Is finding a 'w' with $\nabla f(w) = 0$ good enough?
 - Yes, for convex functions.

- All values between any two points above function stay above function.

Convex Functions

• All 'w' with ∇ f(w) = 0 for convex functions are global minima.

- Normal equations find a global minimum because of convexity.

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.

We showed that $f(w) = e^{w}$ is convex, so $f(w) = 10e^{w}$ is convex.

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.

$$f(w) = |0e^{w} + \frac{1}{2}||w||^{2} \text{ is convex}$$

From constant norm
earlier squared

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.

$$f(w) = w^{T} \chi_{i} = w_{i} \chi_{i_{1}} + w_{i} \chi_{i_{2}} + \cdots + w_{i} \chi_{i_{d}}$$
(onvex convex convex convex convex convex science derivative of each term is 0.

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.
 - The max of convex functions is a convex function

$$f(w) = \max \{ \{ \{ \} \} \} \}$$
 is convex

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.
 - The max of convex functions is a convex function.
 - Composition of a convex function and a linear function is convex.

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.
 - The max of convex functions is a convex function.
 - Composition of a convex function and a linear function is convex.
- But: not true that composition of convex with convex is convex:

Even if 'f' is convex and 'g' is convex,
$$f(g(w))$$
 might not be convex.
E.g. x^2 is convex and $-\log(x)$ is convex but $-\log(x^2)$ is not convex.

Example: Convexity of Linear Regression

• Consider linear regression objective with squared error:

$$f(w) = ||\chi_w - \gamma||^2$$

• We can use that this is a convex function composed with linear:

Let
$$g(r) = ||r||^2$$
, which is convex because it's a squared norm.

Then
$$f(w) = g(Xw - y)$$
, which is convex because it's
a convex function composed with
a linear function

Convexity in Higher Dimensions

- Twice-differentiable 'd'-variable function is convex iff:
 Eigenvalues of Hessian ∇² f(w) are non-negative for all 'w'.
- True for least squares where $\nabla^2 f(w) = X^T X$ for all 'w'. — It may not be obvious that this matrix has non-negative eigenvalues.

Unfortunately, sometimes hard to show convexity this way.
 Usually easier to just use some of the rules as we did on the last slide.

(pause)

• Consider least squares problem with outliers in 'y':

• Consider least squares problem with outliers in 'y':

• Least squares is very sensitive to outliers.

• Squaring error shrinks small errors, and magnifies large errors:

• Outliers (large error) influence 'w' much more than other points.

• Squaring error shrinks small errors, and magnifies large errors:

line

Summary

- Gradient descent finds critical point of differentiable function.
 Finds global optimum if function is convex.
- Convex functions:
 - Set of functions with property that ∇ f(w) = 0 implies 'w' is a global min.
 - Can (usually) be identified using a few simple rules.
- Outliers in 'y' can cause problem for least squares.

- Next time:
 - Linear regression without the outlier sensitivity...

Constraints, Continuity, Smoothness

- Sometimes we need to optimize with constraints:
 - Later we'll see "non-negative least squares".

$$\min_{\substack{\lambda \neq 0 \\ \forall \neq 0}} \frac{1}{2} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

- A vector 'w' satisfying $w \ge 0$ (element-wise) is said to be "feasible".

- Two factors affecting difficulty are continuity and smoothness.
 - Continuous functions tend to be easier than discontinuous functions.
 - Smooth/differentiable functions tend to be easier than non-smooth.
 - See the calculus review here if you haven't heard these words in a while.

Convexity, min, and argmin

• If a function is convex, then all critical points are global optima.

- However, convex functions don't necessarily have critical points:
 - For example, $f(x) = a^*x$, f(x) = exp(x), etc.
- Also, more than one 'x' can achieve the global optimum:
 For example, f(x) = c is minimized by any 'x'.

Why use the negative gradient direction?

- For a twice-differentiable 'f', multivariable Taylor expansion gives: $f(w^{t+i}) = f(w^t) + \nabla f(w^t)^{T}(w^{t+i} - w^t) + \frac{1}{2}(w^{t+i} - w^t)\nabla^2 f(v)(w^{t+i} - w^t)$ for some 'v' between w^{t+i} and wt
- If gradient can't change arbitrarily quickly, Hessian is bounded and: $f(w^{t+i}) = F(w^t) + \nabla f(w^t)^T(w^{t+i} - w^t) + O(\|w^{t+i} - w^t\|^2)$

becomes negigible as w^{t+1} gets close to wt

- But which choice of w^{t+1} decreases 'f' the most?
 - As ||w^{t+1}-w^t|| gets close to zero, the value of w^{t+1} minimizing f(w^{t+1}) in this formula converges to (w^{t+1} w^t) = α^t ∇ f(w^t) for some scalar α^t.
 - So if we're moving a small amount, the optimal w^{t+1} is: $w^{t+1} = w^t \alpha_t \nabla f(w^t)$ for some

Scalar At.

Normalized Steps

Question from class: "can we use
$$w^{t+l} = w^t - \frac{1}{\|\nabla f(w^t)\|} \nabla f(w^t)$$
"
This will work for a while, but notice that
 $\|w^{t+l} - w^t\| = \|\frac{1}{\|\nabla f(w^t)\|} \nabla f(w^t)\|$
 $= \frac{1}{\|\nabla f(w^t)\|} \|\nabla f(w^t)\|$
 $= \|$
So the algorithm never converges

Random Sample Consensus (RANSAC)

- In computer vision, a widely-used generic framework for robust fitting is random sample consensus (RANSAC).
- This is designed for the scenario where:
 - You have a large number of outliers.
 - Majority of points are "inliers": it's really easy to get low error on them.

Random Sample Consensus (RANSAC)

- RANSAC:
 - Sample a small number of training examples.
 - Minimum number needed to fit the model.
 - For linear regression with 1 feature, just 2 examples.
 - Fit the model based on the samples.
 - Fit a line to these 2 points.
 - With 'd' features, you'll need 'd' examples.
 - Test how many points are fit well based on the model.
 - Repeat until we find a model that fits at least the expected number of "inliers".
- You might then re-fit based on the estimated "inliers".

