
CPSC 340:
Machine Learning and Data Mining

Nonlinear Regression

Fall 2018



Last Time: Linear Regression

• We discussed linear models:

• “Multiply feature xij by weight wj, 
add them to get yi”.

• We discussed squared error function:

• Interactive demo: 

– http://setosa.io/ev/ordinary-least-squares-regression

http://www.bloomberg.com/news/articles/2013-01-10/the-dunbar-number-from-the-guru-of-social-networks

http://setosa.io/ev/ordinary-least-squares-regression


• We’re treating ‘w’, ‘y’, ො𝑦𝑖, and each xi as column-vectors:

• So feature matrix ‘X’ actually has xi transposed as rows:

Last Time: Supervised Learning Notation



Last Time: Matrix Notation

• We can write vector of predictions ො𝑦𝑖 as a matrix-vector product:

• And we can write linear least squares in matrix notation as:

• We’ll use this notation to derive d-dimensional least squares ‘w’…



Digression: Matrix Algebra Review

• Quick review of linear algebra operations we’ll use:

– If ‘a’ and ‘b’ be vectors, and ‘A’ and ‘B’ be matrices then:



Linear and Quadratic Gradients

• From these rules we have (see post-lecture slide for steps):

• How do we compute gradient?



Linear and Quadratic Gradients

• We’ve written as a d-dimensional quadratic:

• Gradient is given by:

• Using definitions of ‘A’ and ‘b’:



Normal Equations

• Set gradient equal to zero to find the “critical” points:

• We now move terms not involving ‘w’ to the other side:

• This is a set of ‘d’ linear equations called the “normal equations”.

– This a linear system like “Ax = b” from Math 152.

• You can use Gaussian elimination to solve for ‘w’.

– In Python, you solve linear systems in 1 line using numpy.linalg.solve.



Incorrect Solutions to Least Squares Problem



Least Squares Cost

• Cost of solving “normal equations” XTXw = XTy?

• Forming XTy vector costs O(nd).

– It has ‘d’ elements, and each is an inner product between ‘n’ numbers.

• Forming matrix XTX costs O(nd2).

– It has d2 elements, and each is a sum of ‘n’ numbers.

• Solving a d x d system of equations costs O(d3).

– Cost of Gaussian elimination on a d-variable linear system.

– Other standard methods have the same cost.

• Overall cost is O(nd2 + d3).

– Which term dominates depends on ‘n’ and ‘d’.



Least Squares Issues

• Issues with least squares model:

– Solution might not be unique.

– It is sensitive to outliers.

– It always uses all features.

– Data can might so big we can’t store XTX.

• Or you can’t afford the O(nd2 + d3) cost.

– It might predict outside range of yi values.

– It assumes a linear relationship between xi and yi.



Non-Uniqueness of Least Squares Solution

• Why isn’t solution unique?
– Imagine having two features that are identical for all examples.

– This is special case of features being “collinear”
• One feature is a linear function of the others.

– I can increase weight on one feature, and decrease it on the other,
without changing predictions.

– Thus, if (w1,w2) is a solution then (w1+w2, 0) is a solution.

• But, any ‘w’ where ∇ f(w) = 0 is a global optimum.
– This is due to convexity of ‘f’, which we’ll discuss later.



(pause)



Motivation: Non-Linear Progressions in Athletics

• Are top athletes going faster, higher, and farther?

http://www.at-a-lanta.nl/weia/Progressie.html
https://en.wikipedia.org/wiki/Usain_Bolt
http://www.britannica.com/biography/Florence-Griffith-Joyner



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

http://www.at-a-lanta.nl/weia/Progressie.html



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

http://www.at-a-lanta.nl/weia/Progressie.html



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

• CPSC 540.

https://en.wikipedia.org/wiki/Multivariate_normal_distribution



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression:
– Find ‘k’ nearest neighbours of xi.

– Return the mean of the corresponding yi.

http://scikit-learn.org/stable/modules/neighbors.html



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression.

• Could be weighted by distance.
– Close points ‘j’ get more “weight” wij.

http://scikit-learn.org/stable/modules/neighbors.html



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression.

• Could be weighted by distance.

• ‘Nadaraya-Waston’: weight all yi by distance to xi.

http://www.mathworks.com/matlabcentral/fileexchange/35316-kernel-regression-with-variable-window-width/content/ksr_vw.m



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression.

• Could be weighted by distance.

• ‘Nadaraya-Waston’: weight all yi by distance to xi.

• ‘Locally linear regression’: for each xi, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd423.htm



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression.

• Could be weighted by distance.

• ‘Nadaraya-Waston’: weight all yi by distance to xi.

• ‘Locally linear regression’: for each xi, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)

– Ensemble methods:

• Can improve performance by averaging across regression models.



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression.

• Applications:
– Regression forests for fluid simulation:

• https://www.youtube.com/watch?v=kGB7Wd9CudA

– KNN for image completion:
• http://graphics.cs.cmu.edu/projects/scene-completion
• Combined with “graph cuts” and “Poisson blending”.

– KNN regression for “voice photoshop”:
• https://www.youtube.com/watch?v=I3l4XLZ59iw
• Combined with “dynamic time warping” and “Poisson blending”.

• But we’ll focus on linear models with non-linear transforms.
– These are the building blocks for more advanced methods.

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd423.htm

https://www.youtube.com/watch?v=kGB7Wd9CudA
http://graphics.cs.cmu.edu/projects/scene-completion
https://www.youtube.com/watch?v=I3l4XLZ59iw


Motivation: Limitations of Linear Models

• On many datasets, yi is not a linear function of xi.

• Can we use least square to fit non-linear models?



Non-Linear Feature Transforms

• Can we use linear least squares to fit a quadratic model?

• You can do this by changing the features (change of basis):

• Fit new parameters ‘v’ under “change of basis”: solve ZTZv = ZTy.

• It’s a linear function of w, but a quadratic function of xi.



Non-Linear Feature Transforms



General Polynomial Features (d=1)

• We can have a polynomial of degree ‘p’ by using these features:

• There are polynomial basis functions that are numerically nicer:
– E.g., Lagrange polynomials (see CPSC 303).



General Polynomial Features

• If you have more than one feature, you can include interactions:

– With p=2, in addition to (xi1)2 and (xi2)2 you would include xi1xi2.



“Change of Basis” Terminology

• Instead of “nonlinear feature transform”, in machine learning
it is common to use the expression “change of basis”.

– The zi are the “coordinates in the new basis” of the training example.

• “Change of basis” means something different in math:

– Math: basis vectors must be linearly independent (in ML we don’t care).

– Math: change of basis must span the same space (in ML we change space).

• Unfortunately, saying “change of basis” in ML is common.

– When I say “change of basis”, just think “nonlinear feature transform”.



Change of Basis Notation (MEMORIZE)

• Linear regression with original features:
– We use ‘X’ as our “n by d” data matrix, and ‘w’ as our parameters.

– We can find d-dimensional ‘w’ by minimizing the squared error:

• Linear regression with nonlinear feature transforms:
– We use ‘Z’ as our “n by k” data matrix, and ‘v’ as our parameters.

– We can find k-dimensional ‘v’ by minimizing the squared error:

• Notice that in both cases the target is still ‘y’.



Degree of Polynomial and Fundamental Trade-Off

• As the polynomial degree increases, the training error goes down.

• But approximation error goes up: we start overfitting with large ‘p’.

• Usual approach to selecting degree: validation or cross-validation.
http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf



Beyond Polynomial Transformations

• Polynomials are not the only possible transformation:
– Exponentials, logarithms, trigonometric functions, etc.

– The right non-linear transform will vastly improve performance.

– But when you have a lot of features, the right basis may not be obvious.

• The above bases are parametric model:
– The size of the model does not depend on the number of training examples ‘n’.

– As ‘n’ increases, you can estimate the model more accurately.

– But at some point, more data doesn’t help because model is too simple.

• Alternative is non-parametric models:
– Size of the model grows with the number of training examples.

– Model gets more complicated as you get more data.

– You can model very complicated functions where you don’t know the right basis.

xkcd

https://m.xkcd.com/2048/


Summary

• Normal equations: solution of least squares as a linear system.

– Solve (XTX)w = (XTy).

• Solution might not be unique because of collinearity.

– But any solution is optimal because of “convexity”.

• Tree/probabilistic/non-parametric/ensemble regression methods.

• Non-linear transforms:

– Allow us to model non-linear relationships with linear models.

• Next time: how to do least squares with a million features.



Linear Least Squares: Expansion Step



Bonus Slide: Householder(-ish) Notation

• Househoulder notation: set of (fairly-logical) conventions for math.



Bonus Slide: Householder(-ish) Notation

• Househoulder notation: set of (fairly-logical) conventions for math:



When does least squares have a unique solution?

• We said that least squares solution is not unique if we have repeated 
columns.

• But there are other ways it could be non-unique:
– One column is a scaled version of another column.

– One column could be the sum of 2 other columns.

– One column could be three times one column minus four times another.

• Least squares solution is unique if and only if all columns of X are 
“linearly independent”.
– No column can be written as a “linear combination” of the others.

– Many equivalent conditions (see Strang’s linear algebra book):
• X has “full column rank”, XTX is invertible, XTX has non-zero eigenvalues, det(XTX) > 0.

– Note that we cannot have independent columns if d > n.


