CPSC 340: Machine Learning and Data Mining

Nonlinear Regression
Fall 2018
Last Time: Linear Regression

• We discussed **linear models**:
 \[y_i = w_1 x_{i1} + w_2 x_{i2} + \cdots + w_d x_{id} \]
 \[= \sum_{j=1}^{d} w_j x_{ij} = \mathbf{w}^\top \mathbf{x}_i \]
 • “Multiply feature \(x_{ij} \) by weight \(w_j \), add them to get \(y_i \)”.

• We discussed **squared error function**:
 \[f(w) = \frac{1}{a} \sum_{i=1}^{a} (\mathbf{w}^\top \mathbf{x}_i - y_i)^2 \]

• Interactive demo:

Last Time: Supervised Learning Notation

- We’re treating ‘w’, ‘y’, \hat{y}_i, and each x_i as column-vectors:
 \[w = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad x_i = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{id} \end{bmatrix}, \quad \hat{y}_i = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_t \end{bmatrix} \]

- So feature matrix ‘X’ actually has x_i transposed as rows:
 \[X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix} \]
Last Time: Matrix Notation

• We can write vector of predictions \(\hat{y}_i \) as a matrix-vector product:

\[
\hat{y} = Xw = \begin{bmatrix}
 \hat{y}_1 \\
 \hat{y}_2 \\
 \vdots \\
 \hat{y}_n \\
\end{bmatrix}
\]

• And we can write linear least squares in matrix notation as:

\[
f(w) = \frac{1}{2} \| Xw - y \|^2 = \frac{1}{2} \sum_{i=1}^{n} (w^T x_i - y_i)^2
\]

• We’ll use this notation to derive d-dimensional least squares ‘w’...
Digression: Matrix Algebra Review

- Quick review of **linear algebra operations** we’ll use:
 - If ‘a’ and ‘b’ be vectors, and ‘A’ and ‘B’ be matrices then:
 \[
 a^T b = b^T a \\
 \| a \|^2 = a^T a \\
 (A + B)^T = A^T + B^T \\
 (AB)^T = B^T A^T \\
 (A + B)(A + B) = AA + BA + AB + BB \\
 a^T A b = b^T A^T a
 \]

 Sanity check:
 ALWAYS CHECK THAT DIMENSIONS MATCH
 (if not, you did something wrong)
Linear and Quadratic Gradients

• From these rules we have (see post-lecture slide for steps):

\[
f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^\top x_i - y_i)^2 = \frac{1}{2} \|Xw - y\|^2 = \frac{1}{2} w^\top X^\top Xw - w^\top X^\top y + \frac{1}{2} y^\top y
\]

Matrix 'A', vector 'b', scalar 'c'

\[
= \frac{1}{2} w^\top Aw + w^\top b + c
\]

These are scalars so dimensions match.

• How do we compute gradient?

Let's first do it with \(d=1 \):

\[
f(w) = \frac{1}{2} w w + w b + c
\]

\[
= \frac{1}{2} w^2 + w b + c
\]

\[
f'(w) = a w + b + 0
\]

Here are the generalizations to 'd' dimensions:

\[
\nabla c = 0 \text{ (zero vector)}
\]

\[
\nabla [w^\top b] = b
\]

\[
\nabla \left[\frac{1}{2} w^\top A w \right] = A w \text{ (if } A \text{ is symmetric)}
\]

Full derivations are on webpage in notes on linear and quadratic gradients.
Linear and Quadratic Gradients

• We’ve written as a d-dimensional quadratic:

\[f(w) = \frac{1}{2} \sum_{i=1}^{D} (w^T x_i - y_i)^2 = \frac{1}{2} \| Xw - y \|^2 = \frac{1}{2} w^T X^T Xw - w^T X^T y + \frac{1}{2} y^T y \]

\[= \frac{1}{2} w^T A w + w^T b + c \]

• Gradient is given by:

\[\nabla f(w) = A w - b + 0 \]

• Using definitions of ‘A’ and ‘b’:

\[= X^T Xw - X^T y \]

Sanity check: all dimensions match
\[(d \times n) (n \times d) (d \times 1) - (d \times n) (n \times 1) \]
Normal Equations

• Set gradient equal to zero to find the “critical” points:
 \[
 \chi^\top \chi_w - \chi^\top \gamma = 0
 \]

• We now move terms not involving ‘w’ to the other side:
 \[
 \chi^\top \chi_w = \chi^\top \gamma
 \]

• This is a set of ‘d’ linear equations called the “normal equations”.
 – This a linear system like “Ax = b” from Math 152.
 • You can use Gaussian elimination to solve for ‘w’.
 – In Python, you solve linear systems in 1 line using numpy.linalg.solve.
Incorrect Solutions to Least Squares Problem

The least squares objective is \(f(w) = \frac{1}{2} \| Xw - y \|_2^2 \)

The minimizers of this objective are solutions to the linear system:
\[
X^T X w = X^T y
\]

The following are not the solutions to the least squares problem:
\[
w = (X^T X)^{-1} (X^T y) \quad \text{(only true if } X^T X \text{ is invertible)}
\]
\[
w X^T X = X^T y \quad \text{(matrix multiplication is not commutative, dimensions don't even match)}
\]
\[
w = \frac{X^T y}{X^T X} \quad \text{(you cannot divide by a matrix)}
\]
Least Squares Cost

- **Cost** of solving “normal equations” $X^T X w = X^T y$?
- Forming $X^T y$ vector costs $O(nd)$.
 - It has ‘d’ elements, and each is an inner product between ‘n’ numbers.
- Forming matrix $X^T X$ costs $O(nd^2)$.
 - It has d^2 elements, and each is a sum of ‘n’ numbers.
- Solving a $d \times d$ system of equations costs $O(d^3)$.
 - Cost of Gaussian elimination on a d-variable linear system.
 - Other standard methods have the same cost.
- Overall cost is $O(nd^2 + d^3)$.
 - Which term dominates depends on ‘n’ and ‘d’.
Least Squares Issues

• Issues with least squares model:
 – Solution might not be unique.
 – It is sensitive to outliers.
 – It always uses all features.
 – Data can might so big we can’t store X^TX.
 • Or you can’t afford the $O(nd^2 + d^3)$ cost.
 – It might predict outside range of y_i values.
 – It assumes a linear relationship between x_i and y_i.

X is $n \times d$

so X^T is $d \times n$

and X^TX is $d \times d$.

Non-Uniqueness of Least Squares Solution

• Why isn’t solution unique?
 – Imagine having two features that are identical for all examples.
 – This is special case of features being “collinear”
 • One feature is a linear function of the others.
 – I can increase weight on one feature, and decrease it on the other, without changing predictions.

\[
\hat{y}_i = w_1 x_{i1} + w_2 x_{i1} = (w_1 + w_2) x_{i1} + 0 x_{i1}
\]

 – Thus, if \((w_1,w_2)\) is a solution then \((w_1+w_2, 0)\) is a solution.

• But, any ‘w’ where \(\nabla f(w) = 0\) is a global optimum.
 – This is due to convexity of ‘f’, which we’ll discuss later.
(pause)
Motivation: Non-Linear Progressions in Athletics

• Are top athletes going faster, higher, and farther?

http://www.at-a-lanta.nl/weia/Progressie.html
http://www.britannica.com/biography/Florence-Griffith-Joyner
Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:
Adapting Counting/Distance-Based Methods

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.

http://www.at-a-lanta.nl/weia/Progressie.html
Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:
 – Regression tree: tree with mean value or linear regression at leaves.
 – Probabilistic models: fit \(p(x_i \mid y_i) \) and \(p(y_i) \) with Gaussian or other model.

• CPSC 540.

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
Adapting Counting/Distance-Based Methods

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Probabilistic models: fit $p(x_i \mid y_i)$ and $p(y_i)$ with Gaussian or other model.
 - Non-parametric models:
 - KNN regression:
 - Find ‘k’ nearest neighbours of x_i.
 - Return the mean of the corresponding y_i.

Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:
 – Regression tree: tree with mean value or linear regression at leaves.
 – **Probabilistic** models: fit $p(x_i \mid y_i)$ and $p(y_i)$ with Gaussian or other model.
 – Non-parametric models:
 • KNN regression.
 • Could be weighted by distance.
 – Close points ‘j’ get more “weight” w_{ij}.

Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:
 – Regression tree: tree with mean value or linear regression at leaves.
 – **Probabilistic** models: fit $p(x_i \mid y_i)$ and $p(y_i)$ with Gaussian or other model.
 – Non-parametric models:
 • KNN regression.
 • Could be weighted by distance.
 • ‘Nadaraya-Waston’: weight *all* y_i by distance to x_i.

$$\hat{y}_i = \frac{\sum_{j=1}^{n} w_{ij} y_j}{\sum_{j=1}^{n} w_{ij}}$$

http://www.mathworks.com/matlabcentral/fileexchange/35316-kernel-regression-with-variable-window-width/content/ksr_vw.m
Adapting Counting/Distance-Based Methods

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Probabilistic models: fit \(p(x_i \mid y_i) \) and \(p(y_i) \) with Gaussian or other models.
 - Non-parametric models:
 - KNN regression.
 - Could be weighted by distance.
 - ‘Nadaraya-Waston’: weight all \(y_i \) by distance.
 - ‘Locally linear regression’: for each \(x_i \), fit a linear model weighted by distance.
 (Better than KNN and NW at boundaries.)

Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:
 – Regression tree: tree with mean value or linear regression at leaves.
 – Probabilistic models: fit $p(x_i \mid y_i)$ and $p(y_i)$ with Gaussian or other model.
 – Non-parametric models:
 • KNN regression.
 • Could be weighted by distance.
 • ‘Nadaraya-Waston’: weight all y_i by distance to x_i.
 • ‘Locally linear regression’: for each x_i, fit a linear model weighted by distance.
 (Better than KNN and NW at boundaries.)
 – Ensemble methods:
 • Can improve performance by averaging across regression models.
Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression.

• Applications:
 – Regression forests for fluid simulation:
 • https://www.youtube.com/watch?v=kGB7Wd9CudA
 – KNN for image completion:
 • http://graphics.cs.cmu.edu/projects/scene-completion
 • Combined with “graph cuts” and “Poisson blending”.
 – KNN regression for “voice photoshop”:
 • https://www.youtube.com/watch?v=I3l4XLZ59iw
 • Combined with “dynamic time warping” and “Poisson blending”.

• But we’ll focus on linear models with non-linear transforms.
 – These are the building blocks for more advanced methods.
Motivation: Limitations of Linear Models

• On many datasets, y_i is not a linear function of x_i.

• Can we use least square to fit non-linear models?
Non-Linear Feature Transforms

• Can we use linear least squares to fit a quadratic model?
 \[\hat{y}_i = w_0 + w_1 x_i + w_2 x_i^2 \]

• You can do this by changing the features (change of basis):

 \[X = \begin{bmatrix} 0.2 \\ -0.5 \\ 4 \end{bmatrix} \quad Z = \begin{bmatrix} \hat{y}_i \\ \frac{y_i - \inf y} \end{bmatrix} \]

 \[\begin{bmatrix} 1 & 0.2 & (0.2)^2 \\ 1 & -0.5 & (0.5)^2 \\ 1 & 4 & 4^2 \end{bmatrix} \]

• Fit new parameters ‘v’ under “change of basis”: solve \(Z^T Z v = Z^T y \).

• It’s a linear function of w, but a quadratic function of \(x_i \).

 \[\hat{y}_i = v_1 z_{i1} + v_2 z_{i2} + v_3 z_{i3} \]

 \[\begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} \begin{bmatrix} 1 \\ x_i \\ x_i^2 \end{bmatrix} \]
Non-Linear Feature Transforms

\[y_i = w_0 + w_1 x_i \]

To predict on new data \(\tilde{X} \), form \(\tilde{Z} \) from \(\tilde{X} \) and take \(y = \tilde{Z} v \)
General Polynomial Features (d=1)

- We can have a polynomial of degree ‘p’ by using these features:

\[Z = \begin{bmatrix} 1 & x_1 & (x_1)^2 & \cdots & (x_1)^p \\ 1 & x_2 & (x_2)^2 & \cdots & (x_2)^p \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_n & (x_n)^2 & \cdots & (x_n)^p \end{bmatrix} \]

- There are polynomial basis functions that are numerically nicer:
 - E.g., Lagrange polynomials (see CPSC 303).
• If you have more than one feature, you can include interactions:
 – With $p=2$, in addition to $(x_{i1})^2$ and $(x_{i2})^2$ you would include $x_{i1}x_{i2}$.
“Change of Basis” Terminology

• Instead of “nonlinear feature transform”, in machine learning it is common to use the expression “change of basis”.
 – The z_i are the “coordinates in the new basis” of the training example.

• “Change of basis” means something different in math:
 – Math: basis vectors must be linearly independent (in ML we don’t care).
 – Math: change of basis must span the same space (in ML we change space).

• Unfortunately, saying “change of basis” in ML is common.
 – When I say “change of basis”, just think “nonlinear feature transform”.

Change of Basis Notation (MEMORIZE)

- **Linear regression with original features:**
 - We use ‘X’ as our “n by d” data matrix, and ‘w’ as our parameters.
 - We can find d-dimensional ‘w’ by minimizing the squared error:
 \[\ell(w) = \frac{1}{2} \| Xw - y \|^2 \]

- **Linear regression with nonlinear feature transforms:**
 - We use ‘Z’ as our “n by k” data matrix, and ‘v’ as our parameters.
 - We can find k-dimensional ‘v’ by minimizing the squared error:
 \[\ell(v) = \frac{1}{2} \| Zv - y \|^2 \]

- Notice that in both cases the target is still ‘y’.
Degree of Polynomial and Fundamental Trade-Off

• As the polynomial degree increases, the training error goes down.

But approximation error goes up: we start overfitting with large ‘p’.
• Usual approach to selecting degree: validation or cross-validation.

Beyond Polynomial Transformations

- Polynomials are not the only possible transformation:
 - Exponentials, logarithms, trigonometric functions, etc.
 - The right non-linear transform will vastly improve performance.
- The above bases are parametric models:
 - The size of the model does not depend on the number of training examples 'n'.
 - As 'n' increases, you can estimate the model more accurately.
 - But at some point, more data doesn't help because model is too simple.
- Alternative is non-parametric models:
 - Size of the model grows with the number of training examples.
 - Model gets more complicated as you get more data.
 - You can model very complicated functions where you don't know the right basis.
Summary

• Normal equations: solution of least squares as a linear system.
 – Solve $(X^TX)w = (X^Ty)$.

• Solution might not be unique because of collinearity.
 – But any solution is optimal because of “convexity”.

• Tree/probabilistic/non-parametric/ensemble regression methods.

• Non-linear transforms:
 – Allow us to model non-linear relationships with linear models.

• Next time: how to do least squares with a million features.
Linear Least Squares: Expansion Step

\[f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^T x_i - y_i)^2 = \frac{1}{2} \|Xw - y\|^2 \]

Let's expand and then compute the gradient.

\[= \frac{1}{2} (Xw - y)^T (Xw - y) \]
\[= \frac{1}{2} ((w^T X^T - y^T)(Xw - y)) \]
\[= \frac{1}{2} (w^T X^T (Xw - y) - y^T (Xw - y)) \]
\[= \frac{1}{2} (w^T X^T x_w - w^T X^T y - y^T Xw + y^T y) \]
\[= \frac{1}{2} w^T X^T x_w - \frac{1}{2} w^T X^T y + \frac{1}{2} y^T y \]

Rule:
\[\|a\|^2 = a^T a \]
\[(A+B)^T = (A^T + B^T) \]
\[(AB)^T = B^T A^T \]
\[(A+B)C = AC + BC \]
\[A(B+C) = AB + BC \]
\[a^T Ab = b^T A^T a \]

Sanity check: all of these are scalars.
Bonus Slide: Householder(-ish) Notation

- **Householder notation:** set of (fairly-logical) conventions for math.

 Use **greek letters** for **scalars**: \(\alpha = 1, \beta = 3.5, \gamma = 7 \).

 Use **first/last lowercase** letters for **vectors**: \(w = \begin{bmatrix} 0 & 1 \end{bmatrix}, x = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, y = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, a = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, b = \begin{bmatrix} 0 & 0.5 \end{bmatrix} \).

 Assumed to be column-vectors.

 Use **first/last uppercase** letters for **matrices**: \(X, Y, W, A, B \).

 Indices use \(i, j, k \).

 Sizes use \(m, n, d, p \), and \(k \) is obvious from context.

 Sets use \(S, T, U, V \).

 Functions use \(f, g, h \).

 When I write \(x_i \), **I mean** "grab row \(i \) of \(X \) and make a column-vector with its values."
Bonus Slide: Householder(-ish) Notation

- **Householder notation**: set of (fairly-logical) conventions for math:

 Our ultimate least squares notation:
 \[f(w) = \frac{1}{2} \| Xw - y \|^2 \]

 But if we agree on notation we can quickly understand:
 \[g(x) = \frac{1}{2} \| Ax - b \|^2 \]

 If we use random notation we get things like:
 \[h(\beta) = \frac{1}{2} \| R\beta - P \|^2 \]

 Is this the same model?
When does least squares have a unique solution?

- We said that least squares solution is not unique if we have repeated columns.
- But there are other ways it could be non-unique:
 - One column is a scaled version of another column.
 - One column could be the sum of 2 other columns.
 - One column could be three times one column minus four times another.

- Least squares solution is unique if and only if all columns of X are “linearly independent”.
 - No column can be written as a “linear combination” of the others.
 - Many equivalent conditions (see Strang’s linear algebra book):
 - X has “full column rank”, X^TX is invertible, X^TX has non-zero eigenvalues, $\det(X^TX) > 0$.
 - Note that we cannot have independent columns if $d > n$.