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Admin

• Assignment 3 will be out tomorrow.

– Start early, this is usually the longest assignment.

• Assignment 1 grades are up?

• We’re going to start using calculus and linear algebra a lot.

– You should start reviewing these ASAP if you are rusty.

– A review of relevant calculus concepts is here.

– A review of relevant linear algebra concepts is here.

https://www.cs.ubc.ca/~schmidtm/Courses/Notes/calculus.pdf
https://www.cs.ubc.ca/~schmidtm/Documents/2009_Notes_LinearAlgebra.pdf


Supervised Learning Round 2: Regression

• We’re going to revisit supervised learning:

• Previously, we considered classification: 

– We assumed yi was discrete: yi = ‘spam’ or yi = ‘not spam’.

• Now we’re going to consider regression:

– We allow yi to be numerical: yi = 10.34cm.



Example: Dependent vs. Explanatory Variables

• We want to discover relationship between numerical variables:

– Does number of lung cancer deaths change with number of cigarettes?

– Does number of skin cancer deaths change with latitude?

http://www.cvgs.k12.va.us:81/digstats/main/inferant/d_regrs.html
https://onlinecourses.science.psu.edu/stat501/node/11



Example: Dependent vs. Explanatory Variables

• We want to discover relationship between numerical variables:

– Do people in big cities walk faster?

– Is the universe expanding or shrinking or staying the same size?

http://hosting.astro.cornell.edu/academics/courses/astro201/hubbles_law.htm
https://www.nature.com/articles/259557a0.pdf



Example: Dependent vs. Explanatory Variables

• We want to discover relationship between numerical variables:

– Does number of gun deaths change with gun ownership?

– Does number violent crimes change with violent video games?

http://www.vox.com/2015/10/3/9444417/gun-violence-united-states-america
https://www.soundandvision.com/content/violence-and-video-games



Handling Numerical Labels

• One way to handle numerical yi: discretize.

– E.g., for ‘age’ could we use {‘age ≤ 20’, ‘20 < age ≤ 30’, ‘age > 30’}.

– Now we can apply methods for classification to do regression.

– But coarse discretization loses resolution.

– And fine discretization requires lots of data.

• There exist regression versions of classification methods:

– Regression trees, probabilistic models, non-parametric models.

• Today: one of oldest, but still most popular/important methods:

– Linear regression based on squared error.

– Very interpretable and the building block for more-complex methods.



Linear Regression in 1 Dimension

• Assume we only have 1 feature (d = 1):

– E.g., xi is number of cigarettes and yi is number of lung cancer deaths.

• Linear regression makes predictions ො𝑦i using a linear function of xi:

• The parameter ‘w’ is the weight or regression coefficient of xi.

– We’re temporarily ignoring the y-intercept.

• As xi changes, slope ‘w’ affects the rate that ො𝑦i increases/decreases:

– Positive ‘w’: ො𝑦i increase as xi increases.

– Negative ‘w’: ො𝑦i decreases as xi increases.



Linear Regression in 1 Dimension



Aside: terminology woes

• Different fields use different terminology and symbols.

– Data points = objects = examples = rows = observations.

– Inputs = predictors = features = explanatory variables= regressors = 
independent variables = covariates = columns.

– Outputs = outcomes = targest = response variables = dependent variables 
(also called a “label” if it’s categorical).

– Regression coefficients = weights = parameters = betas.

• With linear regression, the symbols are inconsistent too:

– In ML, the data is X and the weights are w.

– In statistics, the data is X and the weights are β.

– In optimization, the data is A and the weights are x.



Least Squares Objective

• Our linear model is given by:

• So we make predictions for a new example by using:

• But we can’t use the same error as before:



Least Squares Objective

• We need a way to evaluate numerical error.

• Classic way is setting slope ‘w’ to minimize sum of squared errors:

• There are some justifications for this choice.

– A probabilistic interpretation is coming later in the course.

• But usually, it is done because it is easy to minimize.



Least Squares Objective

• Classic way to set slope ‘w’ is minimizing sum of squared errors:



Least Squares Objective

• Classic way to set slope ‘w’ is minimizing sum of squared errors:



Minimizing a Differential Function

• Math 101 approach to minimizing a differentiable function ‘f’:

1. Take the derivative of ‘f’.

2. Find points ‘w’ where the derivative f’(w) is equal to 0.

3. Choose the smallest one (and check that f’’(w) is positive). 



Digression: Multiplying by a Positive Constant

• Note that this problem:

• Has the same set of minimizers as this problem:

• And these also have the same minimizers:

• I can multiply ‘f’ by any positive constant and not change solution.
– Gradient will still be zero at the same locations.
– We’ll use this trick a lot!

(Quora trolling on ethics of this)

https://www.reddit.com/r/AIethics/comments/4qvi4m/is_it_ethical_to_remove_constants_from_your_loss/


Finding Least Squares Solution

• Finding ‘w’ that minimizes sum of squared errors:



Finding Least Squares Solution

• Finding ‘w’ that minimizes sum of squared errors:

• Let’s check that this is a minimizer by checking second derivative:

– Since (anything)2 is non-negative, f’’(w) ≥ 0 and this is a minimizer.



(pause)



Motivation: Combining Explanatory Variables

• Smoking is not the only contributor to lung cancer.

– For example, there environmental factors like exposure to asbestos.

• How can we model the combined effect of smoking and asbestos?

• A simple way is with a 2-dimensional linear function:

• We have a weight w1 for feature ‘1’ and w2 for feature ‘2’:



Least Squares in 2-Dimensions

• Linear model:

• This defines a
two-dimensional
hyper-plane.



Least Squares in 2-Dimensions

• Linear model:

• This defines a
two-dimensional
hyper-plane.

• Not just a line!



Why don’t we have a y-intercept?

– Linear model is ො𝑦i = wxi instead of ො𝑦i = wxi + w0 with y-intercept w0.

– Without an intercept, if xi = 0 then we must predict ො𝑦i = 0.



Why don’t we have a y-intercept?
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Adding a Bias Variable

• Simple trick to add a y-intercept (“bias”) variable:
– Make a new matrix “Z” with an extra feature that is always “1”.

• Now use “Z” as your features in linear regression.
– We’ll use ‘v’ instead of ‘w’ as regression weights when we use features ‘Z’.

• So we can have a non-zero y-intercept by changing features.
– This means we can ignore the y-intercept in our derivations, which is cleaner.



Different Notations for Least Squares

• If we have ‘d’ features, the d-dimensional linear model is:

– In words, our model is that the output is a weighted sum of the inputs.

• We can re-write this in summation notation:

• We can also re-write this in vector notation:



Notation Alert (again)

• In this course, all vectors are assumed to be column-vectors:

• So wTxi is a scalar:

• So rows of ‘X’ are actually transpose of column-vector xi:



Least Squares in d-Dimensions

• The linear least squares model in d-dimensions minimizes:

• Dates back to 1801: Gauss used it to predict location of Ceres.

• How do we find the best vector ‘w’ in ‘d’ dimensions?

– Set the derivative of each variable (“partial derivative”) to 0?



Partial Derivatives

http://msemac.redwoods.edu/~darnold/math50c/matlab/pderiv/index.xhtml



Partial Derivatives

http://msemac.redwoods.edu/~darnold/math50c/matlab/pderiv/index.xhtml



Gradient and Critical Points in d-Dimensions

• Generalizing “set the derivative to 0 and solve” in d-dimensions:

– Find ‘w’ where the gradient vector equals the zero vector.

• Gradient is vector with partial derivative ‘j’ in position ‘j’: 

http://msemac.redwoods.edu/~darnold/math50c/matlab/pderiv/index.xhtml



Least Squares Partial Derivatives (1 Example)

• The linear least squares model in d-dimensions for 1 example:

• Computing the partial derivative for variable ‘1’:



Least Squares Partial Derivatives (‘n’ Examples)

• Linear least squares partial derivative for variable 1 on example ‘i’:

• For a generic variable ‘j’ we would have:

• And if ‘f’ summed over all ‘n’ examples we would have:

• Unfortunately, the partial derivative for wj depends on all {w1, w2,…, wd}
– I can’t just “set equal to 0 and solve for wj”.



Gradient and Critical Points in d-Dimensions

• Generalizing “set the derivative to 0 and solve” in d-dimensions:

– Find ‘w’ where the gradient vector equals the zero vector.

• Gradient is vector with partial derivative ‘j’ in position ‘j’: 

http://msemac.redwoods.edu/~darnold/math50c/matlab/pderiv/index.xhtml



Matrix/Norm Notation (MEMORIZE/STUDY THIS)

• To solve the d-dimensional least squares, we use matrix notation:

– We use ‘y’ as an “n times 1” vector containing target ‘yi’ in position ‘i’.

– We use ‘xi’ as a “d times 1” vector containing features ‘j’ of example ‘i’.

• We’re now going to be careful to make sure these are column vectors.

– So ‘X’ is a matrix with the xi
T in row ‘i’.



Matrix/Norm Notation (MEMORIZE/STUDY THIS)

• To solve the d-dimensional least squares, we use matrix notation:

– Our prediction for example ‘i’ is given by the scalar wTxi.

– Our predictions for all ‘i’ (n times 1 vector) is the matrix-vector product Xw.



Matrix/Norm Notation (MEMORIZE/STUDY THIS)

• To solve the d-dimensional least squares, we use matrix notation:

– Our prediction for example ‘i’ is given by the scalar wTxi.

– Our predictions for all ‘i’ (n times 1 vector) is the matrix-vector product Xw.

– Residual vector ‘r’ gives difference between prediction and yi (n times 1).

– Least squares can be written as the squared L2-norm of the residual.



Summary

• Regression considers the case of a numerical yi.

• Least squares is a classic method for fitting linear models.

– With 1 feature, it has a simple closed-form solution.

– Can be generalized to ‘d’ features.

• Gradient is vector containing partial derivatives of all variables.

• Matrix notation for expressing least squares problem.

• Next time:


