CPSC 340:
Machine Learning and Data Mining



Admin

* Assignment 3 will be out tomorrow.
— Start early, this is usually the longest assignment.

* Assignment 1 grades are up?

 We’re going to start using calculus and linear algebra a lot.
— You should start reviewing these ASAP if you are rusty.
— A review of relevant calculus concepts is here.
— A review of relevant linear algebra concepts is here.


https://www.cs.ubc.ca/~schmidtm/Courses/Notes/calculus.pdf
https://www.cs.ubc.ca/~schmidtm/Documents/2009_Notes_LinearAlgebra.pdf

Supervised Learning Round 2: Regression

 We're going to revisit supervised learning:
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* Previously, we considered classification:

— We assumed y. was discrete: y;, = ‘spam’ or y. = ‘not spam’.
* Now we’re going to consider regression:

— We allow y, to be numerical: y, = 10.34cm.



Example: Dependent vs. Explanatory Variables

 We want to discover relationship between numerical variables:
— Does number of lung cancer deaths change with number of cigarettes?
— Does number of skin cancer deaths change with latitude?

okin cancer mortality versus State latitude
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Example: Dependent vs. Explanatory Variables

 We want to discover relationship between numerical variables:
— Do people in big cities walk faster?

— |s the universe expanding or shrinking or staying the same size?
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Example: Dependent vs. Explanatory Variables

 We want to discover relationship between numerical variables:

— Does number of gun deaths change with gun ownership?

— Does number violent crimes change with violent video games?

Gun ownership vs. gun deaths, by state
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Handling Numerical Labels

* One way to handle numerical y;: discretize.
— E.g., for ‘age’ could we use {‘age < 20’, 20 < age < 30’, ‘age > 30'}.
— Now we can apply methods for classification to do regression.
— But coarse discretization loses resolution.

— And fine discretization requires lots of data.

* There exist regression versions of classification methods:
— Regression trees, probabilistic models, non-parametric models.

* Today: one of oldest, but still most popular/important methods:
— Linear regression based on squared error.
— Very interpretable and the building block for more-complex methods.



Linear Regression in 1 Dimension

Assume we only have 1 feature (d = 1):
— E.g., x; is number of cigarettes and y, is number of lung cancer deaths.

Linear regression makes predictions ¥ using a linear function of x:
A
Y, = WX

The parameter ‘w’ is the weight or regression coefficient of x..
— We're temporarily ignoring the y-intercept.
As x. changes, slope ‘w’ affects the rate that y. increases/decreases:

— Positive ‘W’: . increase as x; increases.

— Negative ‘w’: J. decreases as x. increases.



Linear Regression in 1 Dimension
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Aside: terminology woes

* Different fields use different terminology and symbols.
— Data points = objects = examples = rows = observations.

— Inputs = predictors = features = explanatory variables= regressors =
independent variables = covariates = columns.

— Outputs = outcomes = targest = response variables = dependent variables
(also called a “label” if it’s categorical).

— Regression coefficients = weights = parameters = betas.
* With linear regression, the symbols are inconsistent too:
— In ML, the data is X and the weights are w.

— |n statistics, the data is X and the weights are B.
— In optimization, the data is A and the weights are x.



Least Squares Objective
Our linear model is given by:
/N
Y, = wx,

So we make predictions for a new example by using:
N
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Least Squares Objective

* We need a way to evaluate numerical error.

e Classic way is setting slope ‘w’ to minimize sum of squared errors:
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* There are some justifications for this choice. valae Ffor exanple
— A probabilistic interpretation is coming later in the course.

e But usually, it is done because it is easy to minimize.



Least Squares Objective

e Classic way to set slope ‘W’ is minimizing sum of squared errors:
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Least Squares Objective

e Classic way to set slope ‘W’ is minimizing sum of squared errors:
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Minimizing a Differential Function

 Math 101 approach to minimizing a differentiable function f’:
1. Take the derivative of .
2. Find points ‘w’ where the derivative f’(w) is equal to 0.
3. Choose the smallest one (and check that f”’(w) is positive).
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Digression: Multiplying by a Positive Constant

Note that this problem:

F(w> = é (Wxi \ }’u)z

Has the same set of minimizers as this problem:
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| can multiply ‘f” by any positive constant and not change solution.
— Gradient will still be zero at the same locations.
— We'll use this trick a lot!

(Quora trolling on ethics of this)



https://www.reddit.com/r/AIethics/comments/4qvi4m/is_it_ethical_to_remove_constants_from_your_loss/

Finding Least Squares Solution

. Finding ‘W’ that minimizes sum of squared errors:
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Finding Least Squares Solution

* Finding ‘W’ that minimizes sum of squared errors:
N
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e Let’s check that this is a minimizer by checking second derivative:
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— Since (anything)? is non-negative, f’’(w) = 0 and this is a minimizer.



(pause)



Motivation: Combining Explanatory Variables

Smoking is not the only contributor to lung cancer.
— For example, there environmental factors like exposure to asbestos.

How can we model the combined effect of smoking and asbestos?
A simple way is with a 2-dimensional linear function:
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Least Squares in 2-Dimensions

* Linear model:

0 = + N
Yi= WXy T WaXig
&
 This defines a
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Least Squares in 2-Dimensions

* Linear model:

0 = +
Yi= WXy T WaXig
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Why don’t we have a y-intercept?

— Linear model is J, = wx; instead of y. = wx, + w, with y-intercept w,,.

— Without an intercept, if x, = 0 then we must predict ), = 0.
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Why don’t we have a y-intercept?

— Linear model is J, = wx; instead of y. = wx, + w, with y-intercept w,,.

— Without an intercept, if x, = 0 then we must predict ), = 0.
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Adding a Bias Variable

e Simple trick to add a y-intercept (“bias”) variable:
— Make a new matrix “Z” with an extra feature that is always “1”.

c(§] =L
am/sl

* Now use “Z” as your features in linear regressmn
— We'll use ‘v’ instead of ‘W’ as regression weights when we use features ‘7.
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* So we can have a non-zero y-intercept by changing features.
— This means we can ignore the y-intercept in our derivations, which is cleaner.



Different Notations for Least Squares

e |f we have ‘d’ fez/a\tures, the d-dimensional linear model is:
YT WX twxg twg Xig F o g xg
— In words, our model is that the output is a weighted sum of the inputs.

e We can re-write this in summation notation:

d
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e We can also re-write this in vector notation:
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Notation Alert (again)

* In this course, all vectors are assumed to be column-vectors:
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Least Squares in d-Dimensions

 The linear least squares model in d-dimensions minimizes:
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e Dates back to 1801: Gauss used it to predict location of Ceres.

* How do we find the best vector ‘w’ in ‘d” dimensions?
— Set the derivative of each variable (“partial derivative”) to 0?



Partial Derivatives
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Gradient and Critical Points in d-Dimensions

* Generalizing “set the derivative to 0 and solve” in d-dimensions:

— Find ‘W’ where the gradient vector equals the zero vector.

e Gradient is vector with partial derivative ‘j" in position ‘j’:
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Least Squares Partial Derivatives (1 Example)

* The linear least squares model in d-dimensions for 1 example:
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Least Squares Partial Derivatives (‘n” Examples)

* Linear least squares partial derivative for variable 1 on example ‘i’:
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* For a generic variable ‘j” we would have:
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5:/_‘ F(W, W2y WJ) = (w X y.))‘g
J
 And if ‘f’ summed over all ‘n” examples we would have:
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* Unfortunately, the partial derivative for W, depends on all {w,, w,,..., wg}
— | can’t just “set equal to 0 and solve for w;".



Gradient and Critical Points in d-Dimensions

* Generalizing “set the derivative to 0 and solve” in d-dimensions:

— Find ‘W’ where the gradient vector equals the zero vector.

e Gradient is vector with partial derivative ‘j" in position ‘j’:
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* To solve the d-dimensional least squares, we use matrix notation:
— We use ‘y’ as an “n times 1” vector containing target ‘y.” in position ‘i’.
— We use ‘x.” as a “d times 1” vector containing features ‘j’ of example “".

* We're now going to be careful to make sure these are column vectors.

— So ‘X’ is @ matrix with the x." in row 7".




Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* To solve the d-dimensional least squares, we use matrix notation:

— Our prediction for example ‘i’ is given by the scalar w'x..

— Our predictions for all i’ (n times 1 vector) is the matrix-vector product Xw.
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* To solve the d-dimensional least squares, we use matrix notation:
— Our prediction for example ‘i’ is given by the scalar w'x..
— Our predictions for all i’ (n times 1 vector) is the matrix-vector product Xw.
— Residual vector ‘r’ gives difference between prediction and y; (n times 1).
— Least squares can be written as the squared L2-norm of the residual.
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Summary

Regression considers the case of a numerical y..

Least squares is a classic method for fitting linear models.

— With 1 feature, it has a simple closed-form solution.

— Can be generalized to ‘d’ features.

Gradient is vector containing partial derivatives of all variables.
Matrix notation for expressmg least squares problem.
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