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Last Time: Subgradient-Based Methods

@ We discussed subgradients. Given a w these are vectors d satisfying
f() > f(w) +d" (v —w), forallv.

e Sub-differential Of(w) is set of subgradients at w.
o If differentiable at w, only contains gradient.
e Non-empty for non-degenerate points of convex functions.
@ Subgradient method uses subgradient within gradient descent.
o Requires step size to go to zero as in SGD (though can use Polyak step size).
e Optimal dimension-independent rates for convex and strongly-convex Lipshitz f.
e Same rates are achieved for projected and stochastic subgradient methods.
@ We discussed various ways to go faster than subgradient methods:
e Ignore non-smoothness (particularly if smooth at solution).
Use a smooth approximation (if not worried about non-smooth structure at solution).
Cutting plane methods have faster dimension-dependent rates (but high cost).
Bundle methods use multiple subgradients to better approximate function.
Minimum-norm subgradient methods choose steepest descent subgradient.
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Faster Non-Smooth Optimization by Exploiting Structure

@ Last time we saw that non-smooth methods are slower than smooth methods.
o For strongly-convex functions we need O(1/¢) iterations instead of O(log(1/¢)).

@ But we typically do not optimize generic black-box non-smooth functions.
e For example, we might only be non-smooth because of an L1-regularizer,

1
F(w) = 5[ Xw = yl* + Allw]s -
< N——

“simple”
smooth P

@ Proximal-gradient methods apply to functions of the form
F(w) = f(w) + r(w) ,
S~~~ ~—~
smooth  “simple”

and have convergence rates of gradient descent for such problems.
e Even though the “simple” term may be non-smooth.
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From Gradient Descent to Proximal Gradient

@ We want to minimize a smooth function f :

argmin f(w).
weRd

o lteration w* works with a quadratic approximation to f:

F(0) ~ Fh) + T Fh) T (0 — uh) + 2;€|rv WIS

1
wh*! € argmin {f(wk) + VP (v —wh) + v - wkHQ} :
vERL 200k

We can equivalently write this as the quadratic optimization:

1
W+ € argmin {rv (k= an(w'f))F} 7
vERY 2

and the solution is the gradient algorithm:

Wit = wk — o V f (wh).
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From Gradient Descent to Proximal Gradient

@ We want to minimize a smooth function f plus a non-smooth convex function r:

argmin f(w)+r(w).
weRd

o lteration w* works with a quadratic approximation to f:

Fo)+r(v) = f(wF) + V() (0 —w*) + Q;kHv — w®|*+r(v),

1
w1 € argmin {f(wk) + V(T (v —w*) + —]v - wk||2+r(v)} .
veERA 2a,

We can equivalently write this as the proximal optimization:
) 1
w1 € argmin {Hv — (w* - aka(wk))szLakr(v)} ,
veRd 2
and the solution is the proximal-gradient algorithm:

wht! = proxaw[wk — aka(wk)].
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Proximal-Gradient Method
@ The proximal-gradient algorithm:

1
Wt = wh — Vi), wht = argmin {||v — ke 1% + akr(v)} .
vERM 2

@ Right side is called proximal operator with respect to a convex function ayr.
o We say that 7 is “simple” if you can efficiently compute proximal operator.

@ Very similar properties to projected-gradient when V f is Lipschitz-continuous:
o Guaranteed improvement for a, < 2/L, practical backtracking methods work better.
e Solution if a fixed point, w* = prox,.(w* — aV f(w*)) for any a > 0.
o If f is strongly-convex then using a, = 1/L gives

Fluh) - F* < (1- %)k [F(u®) — F*],

where F(w) = f(w) 4+ r(w) (while for convex f we get a O(1/k) rate).
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Projected-Gradient is Special case of Proximal-Gradient

o greProjected-gradient method is a special case of proximal-gradient:

0 ifweC
r(w) = { s (indicator function for convex set C)

o ifwe¢l’
1
wht € argmin < ||v — w’”%”2 + agr(v) = argmin |jv — wk+%|| .
veER 2 vel
proximanperator projection

@ Similar to projection, proximal operator is non-expansive:
[[prox,.(w) — prox,.(v)|| < [lw — .
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Proximal-Gradient for L1-Regularization

@ The proximal operator for L1-regularization when using step-size ay,
.1 9
proxak/\H,Hl[w] € argmin §Hv —w||* + agA||v|1 ¢,
veRd
involves solving a simple (strongly-convex) 1D problem for each variable j:

1

w; € argmin {(vj —w;)? + ozk)\|vj]} :
’UjER 2

@ We can find the argmin by finding the unique v; with 0 in the sub-differential.

@ The solution is given by applying the “soft-threshold” operation:

Q If |wj| < agA, set w; = 0 (“threshold” small values of w;).
@ Otherwise, shrink |w;| by aiA (variables not thresholded move towards 0).

@ So proximal-gradient takes gradient step then “shrinks” the w; towards 0 by azA.
o Unlike subgradient method, this yields iterations that are sparse (have exact zeros).
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Active-Set ldentification

@ For L1-regularization, proximal-gradient “identifies” active set in finite time:
(under mild assumptions)
o For all sufficiently large k, sparsity pattern of ¥ matches sparsity pattern of x*.

w] w} w}
w) 0 0
w’ = wg after finite k iterations w®* =] 0 |, where w*=| 0
w wy w)
w? 0 0

@ Proof under constant step-size similar to what we showed for projected-gradient.
o Differences discussed in bonus (uses “distance to subdifferential boundary”).
o Can bound number of iterations before this happens (“active set complexity”).
e Can also be shown for backtracking along the “proximal arc”.
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Proximal-Gradient Linear Convergence Rate

@ Simplest linear convergence proofs are based on the proximal-PL inequality,
SDu(w, L) > p(Fw) ~ ),
where ||V f(w)||? in the PL inequality is generalized to this mess:
D, (w, L) = -2« H%}in Viw) (v—w)+ gHU —w||? + @) —rw)]|,

and recall that F(w) = f(w) + r(w).
o Other assumptions include KL inequality and error bounds (bonus).

@ This non-intuitive property holds for some important problems:
o Any time f is strong-convex (could add an L2-regularizer as part of f).
o Any f = g(Aw) for strongly-convex g and r being indicator for polyhedral set.
o Ll-regularized least squares.

@ But it can be painful to show that functions satisfy this property.



Proximal-Gradient
Proximal-Gradient Convergence under Proximal-PL
@ Linear convergence if Vf is Lipschitz and F' is proximal-PL:
F(wgs1) = f(wh) +r(whth)

L
< flwg) +(Vf(wg), wey1 — wi) + §Hwk+1 — wi||? +r(wk+1)

descent lemma on f

L
= F(wg) +(Vf(wr), wpy1 — wg) + EHwarl — wi|]? + r(wpp1) — r(wg)

minimized by proximal-gradient, so equal to —(1/2L) times D, (wy, L)

1
< F(wyg) — E,Dr(wka L)
< F(wg) — %[F(wk) — F*] from proximal-PL,

and then we can take our usual steps to show linear rate.
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Application: Group L1-Regularization

@ Proximal-gradient methods are often used for group L1-regularization.
o We want sparsity in terms pre-defined groups, like sparse rows of parameter matrix,

—-0.77 0.04 —-0.03 -0.09

0 0 0 0
W= 0.04 -0.08 0.01 —0.06
0 0 0 0

o Group L1-regularization generalizes L1-regularization to this setting,

F(w) = f(w) + A llwgll2,

9geg

e Applications include:
o Variable selection using “1 of kK" encodings.
o Feature selection in multi-label or multi-class problems.
o Graphical model structure learning.
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Proximal-Gradient for Group L1-Regularization
@ The proximal operator for group L1-regularization,

o)1
argmin §||v —w|? + ap) Z lvll2 ¢,
vERY
geG
applies a soft-threshold group-wise,
Wy

wy
“ 7 Jwgll2

max{0, [lwgll2 — arA}.

)

3

@ So we can solve group L1-regularization problems as fast as smooth problems.
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Proximal-Gradient for Group L1-Regularization
@ The proximal operator for group L1-regularization,

. 1
argmin §||v—w|]2+ak)\z vl ¢,
’UERd geG

applies a soft-threshold group-wise,

Wy

Wy max{0, ||wg|l2 — crA}.

[[wg]l2

Wy

x‘,{{ 7

@ So we can solve group L1-regularization problems as fast as smooth problems.
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Proximal-Gradient for Group L1-Regularization
@ The proximal operator for group L1-regularization,

. 1
argmin §||v—w|]2+ak)\z vl ¢,
veR? geG
applies a soft-threshold group-wise,

Wy <

m max{0, [|wg|l2 — crA}.
g

><‘/,] 7

prox W,J

@ So we can solve group L1-regularization problems as fast as smooth problems.
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Structured Regularization

There are many other patterns that regularization can encourage.

o Total-variation regularization encourages slow/sparse changes in w.
o Nuclear-norm regularization encourages sparsity in rank of matrices.
e Structured sparsity encourages sparsity in variable patterns.

Details on group L1 and strutured regularization added as note on webpage.

Can efficiently approximate proximal operator for these problems.

Inexact proximal-gradient methods:

e Proximal-gradient methods with an approximation to the proximal operator.
o If approximation error decreases fast enough, same convergence rate:

o To get O(p") rate, error must be in o(p").

A related approach is the “proximal average” for sum of “simple”:
o Replace proximal operator of sum with average of proximal operators for each term.



(]

Faster Proximal Methods

Alternating Direction Method of Multipliers
ADMM is also popular for structured sparsity problems

Alternating direction method of multipliers (ADMM) solves:

witBio T H )

Alternates between proximal operators with respect to f and 7.
e We usually introduce new variables and constraints to convert to this form.

We can apply ADMM to L1-regularization with an easy prox for f using
.1 .1
min || Xw —y|> + Alwli & min Sflv -yl + w1,
w 2 v=Xw 2
For total-variation and structured sparsity we can use
min f(w) + [|[Aw|; < min f(w) + [|v].
w v=Aw

If prox can not be computed exactly: linearized ADMM.
e But ADMM rate depends on tuning parameter(s) and iterations are not sparse.
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Coordinate-Wise and Stochastic Proximal-Gradient
@ We can apply coordinate-wise proximal-gradient when ¢ is separable,

F(w) = f(w)+ > gj(wy),
j=1

which includes L1-regularization methods (this is a popular/simple approach).
e Same convergence rate as smooth randomized coordinate descent.

@ We can add proximal operator to SGD,
warl = proxakr[wk - oszf(wk)],

although this is not obviously better than the subgradient method.
o We learned earlier that SGD does not converge faster for smooth problems.
e This method loses the active set identification property.
@ Method like regularized dual averaging that use average gradient restore this.
@ Adding prximal operator for variance-reduced SGD:
o Leads to rates of smooth setting and active set identification.



e o

Faster Proximal Methods

Proximal-Newton

We can define accelerated proximal-gradient in a straightforward way.
o Replace projection with proximal operator in accelerated projected gradient.

We can define proximal-Newton methods using

1

whr2 = w® — o [Hy] IV f(w®) (Newton step)
1

w** = argmin {HU _wkts ”%{k + akr(v)} (proximal step)
vER 2

Local superlinear convergence rate if f is locally nice at w*.

This proximal operator is expensive even for simple r like L1-regularization.
But there are analogous tricks to projected-Newton methods:

e Diagonal or Barzilai-Borwein or diagonal plus rank-1 Hessian approximation.
o Inexact methods use approximate proximal operator.

@ Most useful when computing f is much more expensive than proximal operator.
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Proximal Point Algorithm

@ A related method is the proximal point method for minimizing a function f,

1
L —— {f(w) T T w’fu2},
veERI 2ay,

where we compute proximal operator with respect to f (may be non-smooth).

@ Obvious issue:

e Computing the iteration might be as hard as solving original problem.
@ However, in some settings it might be easier:

o If f is convex, then proximal operator is strongly-convex.

e If f is non-convex, proximal operator might be convex.
@ Example usage:

o Catalyst uses SAG/SVRG within inexact accelerated proximal point.

o Achieves an accelerated convergence rate.
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Motivation for Conjugate Functions and Duality

@ We will next cover conjugate functions and duality.

@ For many people, including myself, these are not particularly fun topics!
o | failed Michael Friedlander's midterm due to jetlag and duality questions.

@ To give us some motivation, here are some things you can do with duality:
Construct smooth approximations to non-smooth convex functions.
o Write smooth re-formulations to non-smooth strongly-convex problems.
Make faster predictions with non-parametric features for some models.

@ Support vectors.
Use an update similar to stochastic subgradient with an optimal step size.

@ Based on progress in the dual objective.
Guarantee that a given iterate is within € of optimal value.

@ By using the duality gap.
o Guarantee that a variable is zero in solution.
@ Safe screening for variable selection.
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Example: SVM Primal vs. Dual Problem

@ Consider the support vector machine optimization problem,

argmin C’Zmax{o 1 —yawl e} + = ||w||2

d
weR i—i

where C'is the regularization parameter (A = 1/C).
e Non-smooth but strongly-convex, and proximal operator is not simple.
e We could use stochastic subgradient, but:
@ It converges slowly, it is hard to set step size, and deciding when to stop is annoying.

@ A Fenchel dual to the SVM problem is given by
T 2
argmax zi —fHX Yz|*%,
z€R™ | O<z<CZ '
T

where X has vectors z; as rows and Y is diagonal with the y; along diagonal.
o Written in terms of n variables z; constrained to be in [0, C].
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Properties of SVM Dual

@ For the d x n matrix A = X1V, the SVM dual problem can be written:

1
argmax 211 — = || Az||2.
0<2<C 2

@ Relevant properties of this constrained quadratic optimization:
e For any dual solution z*, the primal solution is w* = Az*.
@ We can solve the dual problem to solve the primal problem.
The dual is Lipschitz-smooth (L is max eigenvalue of AT A).
@ And since the constraints are simple we can apply projected gradient.
The dual satisfies proximal-PL (u is min non-zero singular values of AT A).
@ So projected-gradient has linear convergence rate.
o Constraints are separable and dual is friendly to random coordinate optimization.
@ So projected randomized coordinate optimization gets linear convergence rate.
It is simple to derive optimal step size.
@ So we do not need backtracking.
In the usual case where A is dense, it is friendly to greedy coordinate descent.
@ So we can greedily pick the variable to update.
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Duality Gap and Safe Termination

@ To summarize advantages of solving dual problem:
e Returns same solution, but can use faster algorithm with optimal step size.

o LIBSVM is a greedy dual coordinate optimization method for fitting SVMs.
e Probably the most-used coordinate descent method in history.

@ Tracking primal vector w* = Az* can also help decide when to stop:
o We can show that D(z%) < f* (weak duality).
o Soif f(w") — D(z") < ¢, we are guaranteed to have f(w*) — f* <e.
duality gap
o Further, we have f(w*) = D(z*) (strong duality) so duality gap does converge to 0.



SVM Dual

Support Vectors and Safe Screening

@ Due to the lower bounds on dual variables z;, solution will tend to be sparse.

e Many z; will be zero.

e The non-zero values are called support vectors.
o We know projected gradients and variants eventually identify the support vectors.

e Many implementations try to identify support vectors to reduce cost ( “shrinking”)
e This also speeds up prediction when using the kernel trick with SVMs (see bonus).

@ Duality gap can be used to give a safe screening rule for removing z;.

o For example, if it holds for any z that
ViD(2) < —/{ai,a:)(f(A2) — D(2)),

then we are guaranteed to have z' = 0 in the solution (a; is row i of A).

o Gradient is too large compared to sub-optimality for 0 to not be the solution.
@ At this point, you can permanently remove the variable from the problem.
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Digression: Supremum and Infimum

e Infimum (inf) is a generalization of min that includes limits:

minz? =0, inf z? =0,
z€R zeR

but

mine® = DNE, inf e* = 0.
z€R z€eR

@ Formally, the infimum of a function f is its largest lower-bound,

inf f(z) = max
/(@) yly<f(z)

@ The analogous function for max is called the supremum (sup).
e Supremum is the smallest upper-bound on the function.
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Convex Conjugate
@ The convex conjugate f* of a function f is given by

Fiy) = sup{y'x — f(2)},
rxeX

where X is values where sup is finite.

\f(x) /

\ LzY
“ Maximurn ,
VT e -

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
@ It's the maximum that the linear function 3"z can get above f(x).


http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
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Convex Conjugate Examples
o If f(z) = 3||z[? we have

o f*(y) =sup,{y"x — 3[|z||*} or equivalently (by taking derivative and setting to 0):
O=y—uwx,
and pluggin in z = y we get
. 1 1
P =y y = Sllvl* = Slvl*.

e If f is differentable, then sup occurs at x where y = V f(x).

o If f(z) =a'z we have

0 y=a

fly) = Sl;p{yTw —a'z} = sup{(y — a)'z} = {OO theruice
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Convex Conjugate Examples

e For norms, f(z) = ||z||, convex conjuage is dual-norm unit ball,

oo otherwise

@ For logistic loss, f(z) = log(1 + exp(x)), conjugate is negative entropy,

F(y) = ylog(y) + (1 —y)log(l —y) ye€(0,1)
v= 0 y=0ory=1

(the sup is unbounded when y < 0 or y > 1)

@ For other examples, see Boyd & Vandenberghe's “Convex Optimization” book.
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Properties of Convex Conjugate

@ Properties of conve conjugate:

If f is differentable, then sup occurs at « where y = V f(x).

Conjugate f* is convex, even if f is not (max over linear functions of y).

If fis convex and closed, then f** = f.

Connection with Lipschitz-smoothness and strong-convexity:
o If f is strongly-convex and closed, then f* is Lipschitz smooth with L = 1/ .
o If f is Lipschitz smooth, then f* is strongly-convex with = 1/L.

@ The f = f** property gives us an alternative way to write a closed and convex f,
f(a) = sup{y"z — f*(y)},
yey

in terms of of a “dual space” (which is space of gradients for differentiable f).
o Get L-smooth approximation to non-smooth f by adding strongly-concave term,

. 1
flz) = ztelg{yTx = @) = 57 Ivl},

which (for example) gives Huber loss as approximation to L1-norm.
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Fenchel Dual

@ In machine learning our primal problem is usually (for convex f and r)

argmin P(w) = f(Xw) + r(w).
weRd

@ If we introduce equality constraints,

argmin f(v) + r(w).

v=Xw

then Lagrangian dual has a special form called the Fenchel dual (see bonus).

argmax D(z) = —f*(—2) — r*(X T 2),
z€R™

where we're maximizing the (negative) convex conjugates f* and r*.
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Fenchel Dual Properties

@ Primal and dual functions:
P(w) = f(Xw) +r(w), D(z) = —f*(—=2) —r*(X " 2).

@ Properties:
o Number of dual variables is n instead of d.
@ Dual may be a lower-dimensional problem.
o Weak duality is that P(w) > D(z) for all w and z (assuming P is bounded below).
@ So any value of dual objective gives lower bound on P(w™).
Strong duality holds when P(w*) = D(z*).
@ This requires an additional assumption.
o Example: f and g convex, exists feasible w with z = Xw where g continuous at z.
o When true, can use duality gap P(w) — D(z) to certify optimality of w and z.
Lipschitz-smoothness and strong-convexity relationship.
o Dual is Lipschitz-smooth if primal is strongly-convex (as in SVMs).
o Dual of loss f* is separable if f is a finite-sum problem.
o Allows us to use dual coordinate optimization for many problems.
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Stochastic Dual Coordinate Ascent (SDCA)

@ If we have an L2-regularized linear model (including SVM case discussed earlier),

n
_ A
argmin E fz‘(’wT%‘) + 5““’”27

weR? i=1

then Fenchel dual is a problem where we can apply coordinate optimization,

n
argmax— 3 f7 (=)~ XTI
z€R™ i—1 SN——
——— 2TXXT2
separable
@ Stochastic dual coordinate ascent (SDCA) applies dual coordinate optimization:
e Only needs to looks at one training example on each iteration.
e Obtains O((L/A)log(1/€)) rate if V f; are L-Lipschitz.
@ And you can do a line-search to set the step size.
@ Performance similar to SAG for many problems, worse if p >> A.
e Obtains O(1/¢) rate for non-smooth f:
@ Same rate/cost as stochastic subgradient, but we can use exact/adaptive step-size.
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SAG vs. SDCA (and Primal Coordinate Descent)
@ We X\ = on the left (RCV1) and A << p on the right (quantum).

Objective minus Optimum

Objective minus Optimum

107

T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes

@ Bonus slides consider SDCA with a particular choice of step size:
e SDCA is equivalent to stochastic subgradient with an adaptive step size.
o Allows allowing SDCA based only on primal operations (“dual free").
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Safe Screening Rules

For many ML problems we want sparse solution (in primal or dual).
o SVMs, L1-regularization, NMF, and so on.

Safe screening rule is a rule that guarantees a variable is 0 in solution.

e Original idea was to do the screening before you run any algorithm.
o Later works incorporate screening as you go to continue removing variables.

Key ingredients in safe screening rules:

o Define a region that contains optimal solutions.
e Bound possible function values when function is non-zero in region.
e Screen variable if function is lower when variable is zero across region.

An example is a gap safe spheres which use duality gap to imply variable must 0.
o With size of spheres shrinking as duality gap shrinks.
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Summary

@ Proximal-gradient for sum of smooth and simple non-smooth.
o Generalization of projected-gradient.
e With L1-regularization as simple regularizer, performs soft-threshold.
e Similar convergence properties to gradient descent.
o Exist coordinate-wise, stochastic, accelerated, Newton-like, SVRG versions.
@ Convex conjugates and Fenchel dual
e Allow constructing smooth approximations and re-formulations.
e Can lead to problems with fewer variables or more-favourable structure.
o Allow certificates of optimality and variable pruning.
o Fenchel dual for SVMs has the above benefits and more (like faster prediction).

o Next time: how do you optimize w*?
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Should we use projected-gradient for non-smooth problems?

@ Some non-smooth problems can be written as smooth problems with simple
constraints.

@ But transforming might make problem harder:
e For L1-regularization least squares,

o1
argmin o || Xw — ylI> + Allwll1,
weR
we can re-write as a smooth problem with bound constraints,

d
argmin [ X (wy —w_) =yl + A (wy +w_).

w4 >0, w_>0 F=il

e Doubles the number of variables.
o Transformed problem is not strongly convex even if the original was.
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Indicator Function for Convex Sets

@ The indicator function for a convex set is

0 ifweC
r(w) = . :
oo ifwégC

o This is a function with “extended-real-valued” output: 7 : R? — {R, cc}.

@ The convention for convexity of such functions:
o The "domain” is defined as the w values where r(w) # oo (in this case C).
o We need this domain to be convex.
e And the function should to be convex on this domain.
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Example of Soft-Threshold

@ An example is sof-threshold operator on absolute value with az\ = 1:

Input Threshold Soft-Threshold
0.6715 0 0
—1.2075 —1.2075 —0.2075
0.7172 0 0
1.6302 1.6302 0.6302
0.4889 0 0

@ Symbolically, the soft-threshold operation computes

- = k l
w;?+1 = 5|gn(wk+%)max {0, \wj+2] = Oék)\} )
—_——

—1or +1
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Active-Set Complexity for Non-Smooth Regularizers

@ Projected-gradient active set identification argument can be extended to

argmin f(w +Zg] wj),
I<w<u S~~~ =

smooth convex

where “active set” is variables at a bound or non-smooth g; value.
o Key differences:
e The set Z will be variables occuring at bounds or non-smooth points.
@ For L1-regularization this is again the variables with w; = 0.
e The quantity ¢ will be the “minimum distance to the sub-differential boundary",

§ = min{min{~V;f(w") — min{dg;(w;)}, max{dg;(wi)} + Vif(z*)}}.

o For Ll-regularization this is § = A — max;ecz{|V fi(w™)[}.

e The non-degeneracy condition is that § > 0.
o For Ll-regularization we require |V; f(w*)| # A for i € Z.

o Proof needs to bound w! from above and below based on dg;(w}).
o For other problems/algorithms, see “Wiggle Room Lemma”.
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Debugging a Proximal-Gradient Code

In general, debugging optimization codes can be difficult.
e The code can appear to work even if it's wrong.

A reasonable strategy is to test things you expect to be true.
o And keep a set of tests that should remain true if you update the code.
For example, for proximal-gradient methods you could check:

e Does it decrease the objective function for a small enough step-size?
o Are the step-sizes sensible (are they much smaller than 1/L)?
e Is the optimality condition going to zero as you run the algorithm?
For group L1-regularization, some other checks that you can do:
e Set A =0 and see if you get the unconstrained solution.
e Assign each variable to its own group and see if you get the L1-regularized solution.
e Assign all variables to the same group and see if you get an L2-regularization
solution (and 0 for large-enough \).
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Implicit subgradient viewpoint of proximal-gradient

@ The proximal-gradient iteration is

1
wFtl e argmin =||v — (wk _ Ozk;Vf(wk))HQ + agr(v).
vERY 2

@ By non-smooth optimality conditions that 0 is in subdifferential, we have that
0 € (W — (W — ap Vf(w®)) + apdr(w*t),
which we can re-write as
wht = wh — ap(Vf(w) + or(w*1)).

@ So proximal-gradient is like doing a subgradient step, with

@ Gradient of the smooth term at w*.
@ A particular subgradient of the non-smooth term at w**1.

o “Implicit” subgradient.
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Proximal-Gradient for LO-Regularization

@ There are some results on proximal-gradient for non-convex 7.

@ Most common case is LO-regularization,

f(w) + Allwllo,

where ||w]|g is the number of non-zeroes.
e Includes AIC and BIC from 340.

@ The proximal operator for aiA||w||o is simple:
o Set w; = 0 whenver |w;| < axA (“hard” thresholding).

@ Analysis is complicated a bit because discontinuity of prox as function of ay.
o If step size is too small then you may not be able to move.
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Faster Rate for Proximal-Gradient

o By analyze ||w* — w*|| and using non-expansive, we can show a slightly faster rate
for proximal-gradient using ap = 2/(pu + L):

@ http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_
ProximalGradient.pdf


http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_ProximalGradient.pdf
http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_ProximalGradient.pdf
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Equivalent Conditions to Proximal-PL

@ When V f is L-Lipschitz continuous, the following 3 conditions are equivalent:
@ Proximal-PL for some p > 0:

1
SDr(w, L) 2 u(F(w) - F*),
@ Error bounds for some ¢ > 0:

lw = wpll < e

W — prox, (w — in(w))

where wy, is the projection of x onto the set of solution.
© Kurdyka-Lojasiewicz for some p > 0:

2 _F*
min sl 2 u(Pw) ~ F),

where OF (w) is the “local” sub-differential.
(Same as usual sub-differential for convex)
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Lagrangian Function for Equality Constraints

@ Consider minimizing a differentiable f with linear equality constraints,

argmin f(x).
Az=b

@ The Lagrangian of this problem is defined by
L(J},Z) = f(:l:) + ZT(AZE - b)7

for a vector z € R™ (with A being n by d).

@ At a solution of the problem we must have

V.L(z,2) =Vf(x)+ AT2=0 (gradient is orthogonal to constraints)
V.L(z,2) = Az —b=0 (constraints are satisfied)

@ So solution is stationary point of Lagrangian.
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Lagrange Dual Function

@ But we can't just minimize with respect to x and z.

@ The solution for convex f is actually a saddle point,

max min L(z, z).
4 x

(in cases where the max and min have solutions)

@ One way to solve this is to eliminate =z,

max D(z),
z

where D(z) = min, L(x, z) is called the dual function.
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Dual function
@ Even for non-smooth convex f solution is a saddle point of the Lagrangian,
maxinf f(z) + z' (Az —b).
z x /

L(z,2)

(restricted to z where the max is finite)

@ We can eliminate z by working with the dual function,

max D(z),
z

with D(z) = inf,{f(z) + 2" (Az — b)}.
o Note that D is concave for any f, so —D is convex.
@ But we may not have strong duality.

e Many constrained qualification guarantee that strong duality holds.

o Example is Slater's condition for convex optimization problems: exists x that satisfies
equality constraints and strictly satisfies inequalities (z is in “relative interior” of
domain).
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Fenchel Dual

@ Lagrangian for constrained problem is

L(v,w,2) = f(v) +r(w) + 2" (Xw — v),

so the dual function is

D(z) = inf{f(v) + r(w) + =" (Xw - v)}

@ For the inf wrt v we have
int{f(v) — 2T} = —sup{vTz — f()} = —f"(2).
@ For the inf wrt w we have
1nf{r( + 2" Xw} = —r* (=X " 2).

o This gives
D(z) = —f*(2) =" (=X "2),

or get an alternate dual by replacing (Xw — v) with (v — Xw) in the Lagrangian.
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Faster Predictions with Kernels

@ Recall the kernel trick from 340:
o Represent learning and prediction in terms of inner products CEZTl‘J
o Replace inner products in original feature space with kernel function k(z;, x;).
@ Which can be an inner product in a high-dimensional feature space.
o For details on kernels and the kernel trick, see notes on webpage.

@ Writing the SVM primal problem using the kernel trick:

¢ A p
argmanmax{O 1- ylz k(a:z,xj)}—i-—v Kwv,

veR™ T j=1

where matrix K has elements K;; = k(z;,2;) and we have n parameters v;.
@ We make predictions on a new example Z; using

n

gi = Z Uik(ﬂfi, .fl),

i=1

which costs O(nd) in typical case where the kernel function costs O(d).
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Faster Predictions with Kernels

@ Writing our SVM dual problem using the kernel trick:

1
argmax 271 — —2TYKYz.
0<2<1 2\

@ Due to the lower bounds on the z;, solution will tend to be sparse.
e Many z; will be zero. The non-zero values are called support vectors.

o We make predictions on a new example z; using
1 n
9= ; ziyik(@i, T;).

o If we have m support vectors, this only costs O(md).

o We only need to use/store the support vectors to make predictions.
e So predictions are faster when we predict with dual variables.
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Stochastic Dual Coordinate Ascent vs. Stochastic Subgradient
@ Consider a primal objective of the form

1 o A
= Z filw"z;) + §Hw||2,
=1
which includes many models such as SVMs as special cases.
@ A Fenchel dual has the form
1 n
T z_: 2 H Z zzsz
where can generate a primal variable from the duals using w = % o T

@ Can show that stochastic dual coordinate ascent with special step size:
e Corresponds to a stochastic subgradient method in terms of primal variables.
o Does not actually need to know anything about f;* (“dual free”).



Fenchel Duality

Stochastic Dual Coordinate Ascent vs. Stochastic Subgradient

@ The dual coordinate ascent update written in terms of primal and dual variables,

1
Wit = wP 4+ 8.

AN

@ Suppose that we choose a §; that can be written in the form

Ok = —Anag(f] (wlx;) + 2),

k+1 _ _k k+1
2, =z + O,

for some “step size" ay, and f in subdifferential of f evaluated at w’x;,
Wt = wF — ag(fi(wz;) + z)ws = wF — ap(fi(w zi)m; + 2iws).
@ Choosing i uniformly (and assuming «j does not depend on i) we have
E[w**] = w* — ap(B[fi(wl z;)] + Elzzs])
1 n
=k — ak(ﬁ Z;fi(wT@) +Aw) = wh — aggy,
1=

where g is in subdifferential of primal P at w* (we used Aw = (1/n) Y1 | 22;).
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Stochastic Dual Coordinate Ascent vs. Stochastic Subgradient

@ Soif 0 = —)\nak(f{(wai) + z;) for some «aj, and we choose i randomly,
stochastic dual coordinate ascent is a special case of stochastic subgradient.
e Except it can converge with a sufficiently-small step size.
@ For L-smooth f;, converges linearly if ar = o < 1/(L + n).
o Can show that variance of update goes to zero at solution, like SAG/SVRG.
@ For non-smooth case would need to pick a particular subgradient to cancel with z;.

o Allows us to implement stochastic dual coordinate ascent without using dual.
@ “Dual free" dual coordinate ascent, if you do not want to derive conjugate.

@ But dual methods are not restricted to the above special case.
e We can choose §; to maximize progress in dual.
@ Should make at least as much progress as stochastic subgradient.
o We can greedily choose variable i to update
@ Which can perform much better than random choice in stochastic subgradient.
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