
Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Numerical Optimization for Machine Learning
Proximal-Gradient, Fenchel Duality, and ADMM

Mark Schmidt

University of British Columbia

Summer 2022 - Summer 2023

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Last Time: Subgradient-Based Methods
We discussed subgradients. Given a w these are vectors d satisfying

f(v) ≥ f(w) + dT (v − w), for all v.

Sub-differential ∂f(w) is set of subgradients at w.
If differentiable at w, only contains gradient.
Non-empty for non-degenerate points of convex functions.

Subgradient method uses subgradient within gradient descent.
Requires step size to go to zero as in SGD (though can use Polyak step size).
Optimal dimension-independent rates for convex and strongly-convex Lipshitz f .
Same rates are achieved for projected and stochastic subgradient methods.

We discussed various ways to go faster than subgradient methods:
Ignore non-smoothness (particularly if smooth at solution).
Use a smooth approximation (if not worried about non-smooth structure at solution).
Cutting plane methods have faster dimension-dependent rates (but high cost).
Bundle methods use multiple subgradients to better approximate function.
Minimum-norm subgradient methods choose steepest descent subgradient.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Faster Non-Smooth Optimization by Exploiting Structure
Last time we saw that non-smooth methods are slower than smooth methods.

For strongly-convex functions we need O(1/ϵ) iterations instead of O(log(1/ϵ)).

But we typically do not optimize generic black-box non-smooth functions.
For example, we might only be non-smooth because of an L1-regularizer,

F (w) =
1

2
∥Xw − y∥2︸ ︷︷ ︸

smooth

+λ∥w∥1︸ ︷︷ ︸
“simple”

.

Proximal-gradient methods apply to functions of the form

F (w) = f(w)︸ ︷︷ ︸
smooth

+ r(w)︸︷︷︸
“simple”

,

and have convergence rates of gradient descent for such problems.
Even though the “simple” term may be non-smooth.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

From Gradient Descent to Proximal Gradient
We want to minimize a smooth function f :

argmin
w∈Rd

f(w).

Iteration wk works with a quadratic approximation to f :

f(v) ≈ f(wk) +∇f(wk)⊤(v − wk) +
1

2αk
∥v − wk∥2,

wk+1 ∈ argmin
v∈Rd

{
f(wk) +∇f(wk)⊤(v − wk) +

1

2αk
∥v − wk∥2

}
.

We can equivalently write this as the quadratic optimization:

wk+1 ∈ argmin
v∈Rd

{
1

2
∥v − (wk − αk∇f(wk))∥2

}
,

and the solution is the gradient algorithm:

wk+1 = wk − αk∇f(wk).

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

From Gradient Descent to Proximal Gradient
We want to minimize a smooth function f plus a non-smooth convex function r:

argmin
w∈Rd

f(w)+r(w).

Iteration wk works with a quadratic approximation to f :

f(v)+r(v) ≈ f(wk) +∇f(wk)⊤(v − wk) +
1

2αk
∥v − wk∥2+r(v),

wk+1 ∈ argmin
v∈Rd

{
f(wk) +∇f(wk)⊤(v − wk) +

1

2αk
∥v − wk∥2+r(v)

}
.

We can equivalently write this as the proximal optimization:

wk+1 ∈ argmin
v∈Rd

{
1

2
∥v − (wk − αk∇f(wk))∥2+αkr(v)

}
,

and the solution is the proximal-gradient algorithm:

wk+1 = proxαkr
[wk − αk∇f(wk)].

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Proximal-Gradient Method
The proximal-gradient algorithm:

wk+ 1
2 = wk − αk∇f(wk), wk+1 = argmin

v∈Rd

{
1

2
∥v − wk+ 1

2 ∥2 + αkr(v)

}
.

Right side is called proximal operator with respect to a convex function αkr.
We say that r is “simple” if you can efficiently compute proximal operator.

Very similar properties to projected-gradient when ∇f is Lipschitz-continuous:
Guaranteed improvement for αk < 2/L, practical backtracking methods work better.
Solution if a fixed point, w∗ = proxr(w

∗ − α∇f(w∗)) for any α > 0.
If f is strongly-convex then using αk = 1/L gives

F (wk)− F ∗ ≤
(
1− µ

L

)k [
F (w0)− F ∗] ,

where F (w) = f(w) + r(w) (while for convex f we get a O(1/k) rate).

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Projected-Gradient is Special case of Proximal-Gradient
greProjected-gradient method is a special case of proximal-gradient:

r(w) =

{
0 if w ∈ C
∞ if w /∈ C

, (indicator function for convex set C)

wk+1 ∈ argmin
v∈Rd

1

2
∥v − wk+ 1

2 ∥2 + αkr(v)︸ ︷︷ ︸
proximal operator

≡ argmin
v∈C

∥v − wk+ 1
2 ∥︸ ︷︷ ︸

projection

.

Feasible Set

x+

f(x)

x

x - !f’(x)

Similar to projection, proximal operator is non-expansive:
∥proxr(w)− proxr(v)∥ ≤ ∥w − v∥.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Proximal-Gradient for L1-Regularization
The proximal operator for L1-regularization when using step-size αk,

proxαkλ∥·∥1 [w] ∈ argmin
v∈Rd

{
1

2
∥v − w∥2 + αkλ∥v∥1

}
,

involves solving a simple (strongly-convex) 1D problem for each variable j:

wj ∈ argmin
vj∈R

{
1

2
(vj − wj)

2 + αkλ|vj |
}
.

We can find the argmin by finding the unique vj with 0 in the sub-differential.

The solution is given by applying the “soft-threshold” operation:
1 If |wj | ≤ αkλ, set wj = 0 (“threshold” small values of wj).
2 Otherwise, shrink |wj | by αkλ (variables not thresholded move towards 0).

So proximal-gradient takes gradient step then “shrinks” the wj towards 0 by αkλ.
Unlike subgradient method, this yields iterations that are sparse (have exact zeros).

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Active-Set Identification
For L1-regularization, proximal-gradient “identifies” active set in finite time:

(under mild assumptions)

For all sufficiently large k, sparsity pattern of xk matches sparsity pattern of x∗.

w0 =

w0
1

w0
2

w0
3

w0
4

w0
5

−−−−−−−−−−−−−−→

after finite k iterations wk =

wk
1

0

0

wk
4

0

, where w∗ =

w∗
1

0

0

w∗
4

0

Proof under constant step-size similar to what we showed for projected-gradient.

Differences discussed in bonus (uses “distance to subdifferential boundary”).
Can bound number of iterations before this happens (“active set complexity”).
Can also be shown for backtracking along the “proximal arc”.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Proximal-Gradient Linear Convergence Rate
Simplest linear convergence proofs are based on the proximal-PL inequality,

1

2
Dr(w,L) ≥ µ(F (w)− F ∗),

where ∥∇f(w)∥2 in the PL inequality is generalized to this mess:

Dr(w,L) = −2αmin
v

[
∇f(w)⊤(v − w) +

L

2
∥v − w∥2 + r(v)− r(w)

]
,

and recall that F (w) = f(w) + r(w).
Other assumptions include KL inequality and error bounds (bonus).

This non-intuitive property holds for some important problems:
Any time f is strong-convex (could add an L2-regularizer as part of f).
Any f = g(Aw) for strongly-convex g and r being indicator for polyhedral set.
L1-regularized least squares.

But it can be painful to show that functions satisfy this property.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Proximal-Gradient Convergence under Proximal-PL

Linear convergence if ∇f is Lipschitz and F is proximal-PL:

F (wk+1) = f(wk+1) + r(wk+1)

≤ f(wk) + ⟨∇f(wk), wk+1 − wk⟩+
L

2
||wk+1 − wk||2︸ ︷︷ ︸

descent lemma on f

+r(wk+1)

= F (wk) + ⟨∇f(wk), wk+1 − wk⟩+
L

2
||wk+1 − wk||2 + r(wk+1)− r(wk)︸ ︷︷ ︸

minimized by proximal-gradient, so equal to −(1/2L) times Dr(wk, L)

≤ F (wk)−
1

2L
Dr(wk, L)

≤ F (wk)−
µ

L
[F (wk)− F ∗] from proximal-PL,

and then we can take our usual steps to show linear rate.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Outline

1 Proximal-Gradient

2 Faster Proximal Methods

3 SVM Dual

4 Fenchel Duality

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Application: Group L1-Regularization

Proximal-gradient methods are often used for group L1-regularization.

We want sparsity in terms pre-defined groups, like sparse rows of parameter matrix,

W =

−0.77 0.04 −0.03 −0.09

0 0 0 0
0.04 −0.08 0.01 −0.06
0 0 0 0

 .

Group L1-regularization generalizes L1-regularization to this setting,

F (w) = f(w) + λ
∑
g∈G
∥wg∥2,

Applications include:

Variable selection using “1 of k” encodings.
Feature selection in multi-label or multi-class problems.
Graphical model structure learning.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Proximal-Gradient for Group L1-Regularization
The proximal operator for group L1-regularization,

argmin
v∈Rd

1

2
∥v − w∥2 + αkλ

∑
g∈G
∥v∥2

 ,

applies a soft-threshold group-wise,

wg ←
wg

∥wg∥2
max{0, ∥wg∥2 − αkλ}.

So we can solve group L1-regularization problems as fast as smooth problems.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Proximal-Gradient for Group L1-Regularization
The proximal operator for group L1-regularization,

argmin
v∈Rd

1

2
∥v − w∥2 + αkλ

∑
g∈G
∥v∥2

 ,

applies a soft-threshold group-wise,

wg ←
wg

∥wg∥2
max{0, ∥wg∥2 − αkλ}.

So we can solve group L1-regularization problems as fast as smooth problems.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Proximal-Gradient for Group L1-Regularization
The proximal operator for group L1-regularization,

argmin
v∈Rd

1

2
∥v − w∥2 + αkλ

∑
g∈G
∥v∥2

 ,

applies a soft-threshold group-wise,

wg ←
wg

∥wg∥2
max{0, ∥wg∥2 − αkλ}.

So we can solve group L1-regularization problems as fast as smooth problems.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Structured Regularization
There are many other patterns that regularization can encourage.

Total-variation regularization encourages slow/sparse changes in w.
Nuclear-norm regularization encourages sparsity in rank of matrices.
Structured sparsity encourages sparsity in variable patterns.

Details on group L1 and strutured regularization added as note on webpage.

Can efficiently approximate proximal operator for these problems.

Inexact proximal-gradient methods:
Proximal-gradient methods with an approximation to the proximal operator.
If approximation error decreases fast enough, same convergence rate:

To get O(ρt) rate, error must be in o(ρt).

A related approach is the “proximal average” for sum of “simple”:
Replace proximal operator of sum with average of proximal operators for each term.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Alternating Direction Method of Multipliers
ADMM is also popular for structured sparsity problems

Alternating direction method of multipliers (ADMM) solves:

min
Aw+Bv=c

f(w) + r(v).

Alternates between proximal operators with respect to f and r.
We usually introduce new variables and constraints to convert to this form.

We can apply ADMM to L1-regularization with an easy prox for f using

min
w

1

2
∥Xw − y∥2 + λ∥w∥1 ⇔ min

v=Xw

1

2
∥v − y∥2 + λ∥w∥1,

For total-variation and structured sparsity we can use

min
w

f(w) + ∥Aw∥1 ⇔ min
v=Aw

f(w) + ∥v∥1.

If prox can not be computed exactly: linearized ADMM.
But ADMM rate depends on tuning parameter(s) and iterations are not sparse.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Coordinate-Wise and Stochastic Proximal-Gradient
We can apply coordinate-wise proximal-gradient when g is separable,

F (w) = f(w) +

n∑
j=1

gj(wj),

which includes L1-regularization methods (this is a popular/simple approach).
Same convergence rate as smooth randomized coordinate descent.

We can add proximal operator to SGD,

wk+1 = proxαkr
[wk − αk∇f(wk)],

although this is not obviously better than the subgradient method.
We learned earlier that SGD does not converge faster for smooth problems.
This method loses the active set identification property.

Method like regularized dual averaging that use average gradient restore this.

Adding prximal operator for variance-reduced SGD:
Leads to rates of smooth setting and active set identification.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Proximal-Newton

We can define accelerated proximal-gradient in a straightforward way.

Replace projection with proximal operator in accelerated projected gradient.

We can define proximal-Newton methods using

wk+ 1
2 = wk − αk[Hk]

−1∇f(wk) (Newton step)

wk+1 = argmin
v∈Rd

{
1

2
∥v − wk+ 1

2 ∥2Hk
+ αkr(v)

}
(proximal step)

Local superlinear convergence rate if f is locally nice at w∗.

This proximal operator is expensive even for simple r like L1-regularization.

But there are analogous tricks to projected-Newton methods:

Diagonal or Barzilai-Borwein or diagonal plus rank-1 Hessian approximation.
Inexact methods use approximate proximal operator.

Most useful when computing f is much more expensive than proximal operator.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Proximal Point Algorithm

A related method is the proximal point method for minimizing a function f ,

wk+1 = argmin
v∈Rd

{
f(w) +

1

2αk
∥w − wk∥2

}
,

where we compute proximal operator with respect to f (may be non-smooth).

Obvious issue:

Computing the iteration might be as hard as solving original problem.

However, in some settings it might be easier:

If f is convex, then proximal operator is strongly-convex.
If f is non-convex, proximal operator might be convex.

Example usage:
Catalyst uses SAG/SVRG within inexact accelerated proximal point.

Achieves an accelerated convergence rate.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Outline

1 Proximal-Gradient

2 Faster Proximal Methods

3 SVM Dual

4 Fenchel Duality

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Motivation for Conjugate Functions and Duality
We will next cover conjugate functions and duality.

For many people, including myself, these are not particularly fun topics!
I failed Michael Friedlander’s midterm due to jetlag and duality questions.

To give us some motivation, here are some things you can do with duality:
Construct smooth approximations to non-smooth convex functions.
Write smooth re-formulations to non-smooth strongly-convex problems.
Make faster predictions with non-parametric features for some models.

Support vectors.

Use an update similar to stochastic subgradient with an optimal step size.
Based on progress in the dual objective.

Guarantee that a given iterate is within ϵ of optimal value.
By using the duality gap.

Guarantee that a variable is zero in solution.
Safe screening for variable selection.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Example: SVM Primal vs. Dual Problem
Consider the support vector machine optimization problem,

argmin
w∈Rd

C

n∑
i=i

max{0, 1− yiw
Txi}+

1

2
∥w∥2,

where C is the regularization parameter (λ = 1/C).
Non-smooth but strongly-convex, and proximal operator is not simple.
We could use stochastic subgradient, but:

It converges slowly, it is hard to set step size, and deciding when to stop is annoying.

A Fenchel dual to the SVM problem is given by

argmax
z∈Rn | 0≤z≤C

n∑
i=1

zi −
1

2
∥X⊤Y z∥2,

where X has vectors xTi as rows and Y is diagonal with the yi along diagonal.
Written in terms of n variables zi constrained to be in [0, C].

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Properties of SVM Dual
For the d× n matrix A = XTY , the SVM dual problem can be written:

argmax
0≤z≤C

zT 1− 1

2
∥Az∥2.

Relevant properties of this constrained quadratic optimization:
For any dual solution z∗, the primal solution is w∗ = Az∗.

We can solve the dual problem to solve the primal problem.

The dual is Lipschitz-smooth (L is max eigenvalue of ATA).
And since the constraints are simple we can apply projected gradient.

The dual satisfies proximal-PL (µ is min non-zero singular values of ATA).
So projected-gradient has linear convergence rate.

Constraints are separable and dual is friendly to random coordinate optimization.
So projected randomized coordinate optimization gets linear convergence rate.

It is simple to derive optimal step size.
So we do not need backtracking.

In the usual case where A is dense, it is friendly to greedy coordinate descent.
So we can greedily pick the variable to update.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Duality Gap and Safe Termination

To summarize advantages of solving dual problem:

Returns same solution, but can use faster algorithm with optimal step size.

LIBSVM is a greedy dual coordinate optimization method for fitting SVMs.

Probably the most-used coordinate descent method in history.

Tracking primal vector wk = Azk can also help decide when to stop:
We can show that D(zk) ≤ f∗ (weak duality).

So if f(wk)−D(zk)︸ ︷︷ ︸
duality gap

≤ ϵ, we are guaranteed to have f(wk)− f∗ ≤ ϵ.

Further, we have f(w∗) = D(z∗) (strong duality) so duality gap does converge to 0.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Support Vectors and Safe Screening

Due to the lower bounds on dual variables zi, solution will tend to be sparse.

Many zi will be zero.
The non-zero values are called support vectors.
We know projected gradients and variants eventually identify the support vectors.

Many implementations try to identify support vectors to reduce cost (“shrinking”).
This also speeds up prediction when using the kernel trick with SVMs (see bonus).

Duality gap can be used to give a safe screening rule for removing zi.

For example, if it holds for any z that

∇iD(z) < −
√
⟨ai, ai⟩(f(Az)−D(z)),

then we are guaranteed to have z∗i = 0 in the solution (ai is row i of A).

Gradient is too large compared to sub-optimality for 0 to not be the solution.
At this point, you can permanently remove the variable from the problem.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Outline

1 Proximal-Gradient

2 Faster Proximal Methods

3 SVM Dual

4 Fenchel Duality

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Digression: Supremum and Infimum

Infimum (inf) is a generalization of min that includes limits:

min
x∈R

x2 = 0, inf
x∈R

x2 = 0,

but
min
x∈R

ex = DNE, inf
x∈R

ex = 0.

Formally, the infimum of a function f is its largest lower-bound,

inf f(x) = max
y | y≤f(x)

y.

The analogous function for max is called the supremum (sup).

Supremum is the smallest upper-bound on the function.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Convex Conjugate
The convex conjugate f∗ of a function f is given by

f∗(y) = sup
x∈X
{y⊤x− f(x)},

where X is values where sup is finite.

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf

It’s the maximum that the linear function y⊤x can get above f(x).

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Convex Conjugate Examples
If f(x) = 1

2∥x∥
2 we have

f∗(y) = supx{y⊤x− 1
2∥x∥

2} or equivalently (by taking derivative and setting to 0):

0 = y − x,

and pluggin in x = y we get

f∗(y) = y⊤y − 1

2
∥y∥2 =

1

2
∥y∥2.

If f is differentable, then sup occurs at x where y = ∇f(x).

If f(x) = a⊤x we have

f∗(y) = sup
x
{y⊤x− a⊤x} = sup

x
{(y − a)⊤x} =

{
0 y = a

∞ otherwise.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Convex Conjugate Examples

For norms, f(x) = ∥x∥, convex conjuage is dual-norm unit ball,

f∗(y) =

{
0 ∥x∥∗ ≤ 1

∞ otherwise
.

For logistic loss, f(x) = log(1 + exp(x)), conjugate is negative entropy,

f∗(y) =

{
y log(y) + (1− y) log(1− y) y ∈ (0, 1)

0 y = 0 or y = 1
.

(the sup is unbounded when y < 0 or y > 1)

For other examples, see Boyd & Vandenberghe’s “Convex Optimization” book.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Properties of Convex Conjugate
Properties of conve conjugate:

If f is differentable, then sup occurs at x where y = ∇f(x).
Conjugate f∗ is convex, even if f is not (max over linear functions of y).
If f is convex and closed, then f∗∗ = f .
Connection with Lipschitz-smoothness and strong-convexity:

If f is strongly-convex and closed, then f∗ is Lipschitz smooth with L = 1/µ.
If f is Lipschitz smooth, then f∗ is strongly-convex with µ = 1/L.

The f = f∗∗ property gives us an alternative way to write a closed and convex f ,

f(x) = sup
y∈Y
{yTx− f∗(y)},

in terms of of a “dual space” (which is space of gradients for differentiable f).
Get L-smooth approximation to non-smooth f by adding strongly-concave term,

f(x) ≈ sup
y∈Y
{yTx− f∗(y)− 1

2L
∥y∥2},

which (for example) gives Huber loss as approximation to L1-norm.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Fenchel Dual

In machine learning our primal problem is usually (for convex f and r)

argmin
w∈Rd

P (w) = f(Xw) + r(w).

If we introduce equality constraints,

argmin
v=Xw

f(v) + r(w).

then Lagrangian dual has a special form called the Fenchel dual (see bonus).

argmax
z∈Rn

D(z) = −f∗(−z)− r∗(X⊤z),

where we’re maximizing the (negative) convex conjugates f∗ and r∗.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Fenchel Dual Properties
Primal and dual functions:

P (w) = f(Xw) + r(w), D(z) = −f∗(−z)− r∗(X⊤z).

Properties:
Number of dual variables is n instead of d.

Dual may be a lower-dimensional problem.

Weak duality is that P (w) ≥ D(z) for all w and z (assuming P is bounded below).
So any value of dual objective gives lower bound on P (w∗).

Strong duality holds when P (w∗) = D(z∗).
This requires an additional assumption.
Example: f and g convex, exists feasible w with z = Xw where g continuous at z.
When true, can use duality gap P (w)−D(z) to certify optimality of w and z.

Lipschitz-smoothness and strong-convexity relationship.
Dual is Lipschitz-smooth if primal is strongly-convex (as in SVMs).

Dual of loss f∗ is separable if f is a finite-sum problem.
Allows us to use dual coordinate optimization for many problems.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Stochastic Dual Coordinate Ascent (SDCA)
If we have an L2-regularized linear model (including SVM case discussed earlier),

argmin
w∈Rd

n∑
i=1

fi(w
⊤xi) +

λ

2
∥w∥2,

then Fenchel dual is a problem where we can apply coordinate optimization,

argmax
z∈Rn

−
n∑

i=1

f∗
i (zi)︸ ︷︷ ︸

separable

− 1

2λ
∥X⊤z∥2︸ ︷︷ ︸
z⊤XX⊤z

.

Stochastic dual coordinate ascent (SDCA) applies dual coordinate optimization:
Only needs to looks at one training example on each iteration.
Obtains O((L/λ) log(1/ϵ)) rate if ∇fi are L-Lipschitz.

And you can do a line-search to set the step size.
Performance similar to SAG for many problems, worse if µ >> λ.

Obtains O(1/ϵ) rate for non-smooth f :
Same rate/cost as stochastic subgradient, but we can use exact/adaptive step-size.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

SAG vs. SDCA (and Primal Coordinate Descent)
We λ = µ on the left (RCV1) and λ << µ on the right (quantum).

Bonus slides consider SDCA with a particular choice of step size:
SDCA is equivalent to stochastic subgradient with an adaptive step size.
Allows allowing SDCA based only on primal operations (“dual free”).

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Safe Screening Rules

For many ML problems we want sparse solution (in primal or dual).

SVMs, L1-regularization, NMF, and so on.

Safe screening rule is a rule that guarantees a variable is 0 in solution.

Original idea was to do the screening before you run any algorithm.
Later works incorporate screening as you go to continue removing variables.

Key ingredients in safe screening rules:

Define a region that contains optimal solutions.
Bound possible function values when function is non-zero in region.
Screen variable if function is lower when variable is zero across region.

An example is a gap safe spheres which use duality gap to imply variable must 0.

With size of spheres shrinking as duality gap shrinks.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Summary

Proximal-gradient for sum of smooth and simple non-smooth.

Generalization of projected-gradient.
With L1-regularization as simple regularizer, performs soft-threshold.
Similar convergence properties to gradient descent.
Exist coordinate-wise, stochastic, accelerated, Newton-like, SVRG versions.

Convex conjugates and Fenchel dual

Allow constructing smooth approximations and re-formulations.
Can lead to problems with fewer variables or more-favourable structure.
Allow certificates of optimality and variable pruning.
Fenchel dual for SVMs has the above benefits and more (like faster prediction).

Next time: how do you optimize w4?

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Should we use projected-gradient for non-smooth problems?

Some non-smooth problems can be written as smooth problems with simple
constraints.

But transforming might make problem harder:

For L1-regularization least squares,

argmin
w∈Rd

1

2
∥Xw − y∥2 + λ∥w∥1,

we can re-write as a smooth problem with bound constraints,

argmin
w+≥0, w−≥0

∥X(w+ − w−)− y∥2 + λ

d∑
j=1

(w+ + w−).

Doubles the number of variables.
Transformed problem is not strongly convex even if the original was.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Indicator Function for Convex Sets

The indicator function for a convex set is

r(w) =

{
0 if w ∈ C
∞ if w /∈ C

.

This is a function with “extended-real-valued” output: r : Rd → {R,∞}.

The convention for convexity of such functions:

The “domain” is defined as the w values where r(w) ̸=∞ (in this case C).
We need this domain to be convex.
And the function should to be convex on this domain.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Example of Soft-Threshold

An example is sof-threshold operator on absolute value with αkλ = 1:
Input Threshold Soft-Threshold
0.6715
−1.2075
0.7172
1.6302
0.4889

0
−1.2075

0
1.6302

0

0
−0.2075

0
0.6302

0

Symbolically, the soft-threshold operation computes

wk+1
j = sign(wk+ 1

2)︸ ︷︷ ︸
−1 or +1

max

{
0, |wk+ 1

2
j | − αkλ

}
,

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Active-Set Complexity for Non-Smooth Regularizers
Projected-gradient active set identification argument can be extended to

argmin
l≤w≤u

f(w)︸ ︷︷ ︸
smooth

+

d∑
j=1

gj(wj)︸ ︷︷ ︸
convex

,

where “active set” is variables at a bound or non-smooth gj value.
Key differences:

The set Z will be variables occuring at bounds or non-smooth points.
For L1-regularization this is again the variables with w∗

i = 0.

The quantity δ will be the “minimum distance to the sub-differential boundary”,

δ = min
i∈Z
{min{−∇if(w

∗)−min{∂gi(w∗
i)},max{∂gi(w∗

i)}+∇if(x
∗)}}.

For L1-regularization this is δ = λ−maxi∈Z{|∇fi(w
∗)|}.

The non-degeneracy condition is that δ > 0.
For L1-regularization we require |∇if(w

∗)| ≠ λ for i ∈ Z.
Proof needs to bound wk

i from above and below based on ∂gi(w
∗
i).

For other problems/algorithms, see “Wiggle Room Lemma”.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Debugging a Proximal-Gradient Code

In general, debugging optimization codes can be difficult.

The code can appear to work even if it’s wrong.

A reasonable strategy is to test things you expect to be true.

And keep a set of tests that should remain true if you update the code.

For example, for proximal-gradient methods you could check:

Does it decrease the objective function for a small enough step-size?
Are the step-sizes sensible (are they much smaller than 1/L)?
Is the optimality condition going to zero as you run the algorithm?

For group L1-regularization, some other checks that you can do:

Set λ = 0 and see if you get the unconstrained solution.
Assign each variable to its own group and see if you get the L1-regularized solution.
Assign all variables to the same group and see if you get an L2-regularization
solution (and 0 for large-enough λ).

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Implicit subgradient viewpoint of proximal-gradient
The proximal-gradient iteration is

wk+1 ∈ argmin
v∈Rd

1

2
∥v − (wk − αk∇f(wk))∥2 + αkr(v).

By non-smooth optimality conditions that 0 is in subdifferential, we have that

0 ∈ (wk+1 − (wk − αk∇f(wk)) + αk∂r(w
k+1),

which we can re-write as

wk+1 = wk − αk(∇f(wk) + ∂r(wk+1)).

So proximal-gradient is like doing a subgradient step, with
1 Gradient of the smooth term at wk.
2 A particular subgradient of the non-smooth term at wk+1.

“Implicit” subgradient.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Proximal-Gradient for L0-Regularization

There are some results on proximal-gradient for non-convex r.

Most common case is L0-regularization,

f(w) + λ∥w∥0,

where ∥w∥0 is the number of non-zeroes.

Includes AIC and BIC from 340.

The proximal operator for αkλ∥w∥0 is simple:

Set wj = 0 whenver |wj | ≤ αkλ (“hard” thresholding).

Analysis is complicated a bit because discontinuity of prox as function of αk.

If step size is too small then you may not be able to move.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Faster Rate for Proximal-Gradient

By analyze ∥wk −w∗∥ and using non-expansive, we can show a slightly faster rate
for proximal-gradient using αk = 2/(µ+ L):

http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_

ProximalGradient.pdf

http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_ProximalGradient.pdf
http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_ProximalGradient.pdf

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Equivalent Conditions to Proximal-PL
When ∇f is L-Lipschitz continuous, the following 3 conditions are equivalent:

1 Proximal-PL for some µ > 0:

1

2
Dr(w,L) ≥ µ(F (w)− F ∗),

2 Error bounds for some c > 0:

∥w − wp∥ ≤ c

∣∣∣∣∣∣∣∣w − prox 1
L r

(
w − 1

L
∇f(w)

)∣∣∣∣∣∣∣∣ ,
where wp is the projection of x onto the set of solution.

3 Kurdyka-Lojasiewicz for some µ > 0:

min
s∈∂F (w)

1

2
∥s∥2 ≥ µ(F (w)− F ∗),

where ∂F (w) is the “local” sub-differential.
(Same as usual sub-differential for convex)

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Lagrangian Function for Equality Constraints

Consider minimizing a differentiable f with linear equality constraints,

argmin
Ax=b

f(x).

The Lagrangian of this problem is defined by

L(x, z) = f(x) + z⊤(Ax− b),

for a vector z ∈ Rn (with A being n by d).

At a solution of the problem we must have

∇xL(x, z) = ∇f(x) +A⊤z = 0 (gradient is orthogonal to constraints)

∇zL(x, z) = Ax− b = 0 (constraints are satisfied)

So solution is stationary point of Lagrangian.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Lagrange Dual Function

But we can’t just minimize with respect to x and z.

The solution for convex f is actually a saddle point,

max
z

min
x

L(x, z).

(in cases where the max and min have solutions)

One way to solve this is to eliminate x,

max
z

D(z),

where D(z) = minx L(x, z) is called the dual function.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Dual function
Even for non-smooth convex f solution is a saddle point of the Lagrangian,

max
z

inf
x
f(x) + z⊤(Ax− b)︸ ︷︷ ︸

L(x,z)

.

(restricted to z where the max is finite)

We can eliminate x by working with the dual function,

max
z

D(z),

with D(z) = infx{f(x) + z⊤(Ax− b)}.
Note that D is concave for any f , so −D is convex.

But we may not have strong duality.

Many constrained qualification guarantee that strong duality holds.
Example is Slater’s condition for convex optimization problems: exists x that satisfies
equality constraints and strictly satisfies inequalities (x is in “relative interior” of
domain).

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Fenchel Dual
Lagrangian for constrained problem is

L(v, w, z) = f(v) + r(w) + z⊤(Xw − v),

so the dual function is

D(z) = inf
v,w
{f(v) + r(w) + z⊤(Xw − v)}

For the inf wrt v we have

inf
v
{f(v)− z⊤v} = − sup

v
{v⊤z − f(v)} = −f∗(z).

For the inf wrt w we have

inf
w
{r(w) + z⊤Xw} = −r∗(−X⊤z).

This gives
D(z) = −f∗(z)− r∗(−X⊤z),

or get an alternate dual by replacing (Xw − v) with (v −Xw) in the Lagrangian.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Faster Predictions with Kernels
Recall the kernel trick from 340:

Represent learning and prediction in terms of inner products xT
i xj .

Replace inner products in original feature space with kernel function k(xi, xj).
Which can be an inner product in a high-dimensional feature space.

For details on kernels and the kernel trick, see notes on webpage.

Writing the SVM primal problem using the kernel trick:

argmin
v∈Rn

n∑
i=i

max{0, 1− yi

n∑
j=1

vjk(xi, xj)}+
λ

2
vTKv,

where matrix K has elements Kij = k(xi, xj) and we have n parameters vj .

We make predictions on a new example x̃i using

ŷi =

n∑
i=1

vik(xi, x̃i),

which costs O(nd) in typical case where the kernel function costs O(d).

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Faster Predictions with Kernels

Writing our SVM dual problem using the kernel trick:

argmax
0≤z≤1

zT 1− 1

2λ
zTY KY z.

Due to the lower bounds on the zi, solution will tend to be sparse.

Many zi will be zero. The non-zero values are called support vectors.

We make predictions on a new example x̃i using

ŷi =
1

λ

n∑
i=1

ziyik(xi, x̃i).

If we have m support vectors, this only costs O(md).

We only need to use/store the support vectors to make predictions.
So predictions are faster when we predict with dual variables.

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Stochastic Dual Coordinate Ascent vs. Stochastic Subgradient
Consider a primal objective of the form

P (w) =
1

n

n∑
i=1

fi(w
Txi) +

λ

2
∥w∥2,

which includes many models such as SVMs as special cases.

A Fenchel dual has the form

D(z) =
1

n

n∑
i=1

−f∗
i (−zi) +

λ

2
∥ 1

λn

n∑
i=1

zixi∥2,

where can generate a primal variable from the duals using w = 1
λn

∑n
i=1 zixi.

Can show that stochastic dual coordinate ascent with special step size:
Corresponds to a stochastic subgradient method in terms of primal variables.
Does not actually need to know anything about f∗

i (“dual free”).

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Stochastic Dual Coordinate Ascent vs. Stochastic Subgradient
The dual coordinate ascent update written in terms of primal and dual variables,

zk+1
i = zki + δk, wk+1 = wk +

1

λn
δkxi.

Suppose that we choose a δk that can be written in the form

δk = −λnαk(f
′
i(w

Txi) + zi),

for some “step size” αk and f ′
i in subdifferential of f evaluated at wTxi,

wk+1 = wk − αk(fi(w
Txi) + zi)xi = wk − αk(fi(w

Txi)xi + zixi).

Choosing i uniformly (and assuming αk does not depend on i) we have

E[wk+1] = wk − αk(E[fi(wTxi)] + E[zixi])

= wk − αk(
1

n

n∑
i=1

fi(w
Txi) + λw) = wk − αkgk,

where gk is in subdifferential of primal P at wk (we used λw = (1/n)
∑n

i=1 zixi).

Proximal-Gradient Faster Proximal Methods SVM Dual Fenchel Duality

Stochastic Dual Coordinate Ascent vs. Stochastic Subgradient

So if δk = −λnαk(f
′
i(w

Txi) + zi) for some αk and we choose i randomly,
stochastic dual coordinate ascent is a special case of stochastic subgradient.

Except it can converge with a sufficiently-small step size.

For L-smooth fi, converges linearly if αk = α ≤ 1/(L+ nλ).
Can show that variance of update goes to zero at solution, like SAG/SVRG.
For non-smooth case would need to pick a particular subgradient to cancel with zi.

Allows us to implement stochastic dual coordinate ascent without using dual.

“Dual free” dual coordinate ascent, if you do not want to derive conjugate.

But dual methods are not restricted to the above special case.
We can choose δk to maximize progress in dual.

Should make at least as much progress as stochastic subgradient.

We can greedily choose variable i to update

Which can perform much better than random choice in stochastic subgradient.

	Proximal-Gradient
	Faster Proximal Methods
	SVM Dual
	Fenchel Duality

