
Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Numerical Optimization for Machine Learning
Group Sparsity, Structured Regularization, Kernel Methods

Mark Schmidt

University of British Columbia

Summer 2022 - Summer 2023

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Outline

1 Group Sparsity

2 Structured Regularization

3 Kernel Trick

4 Valid Kernels and Representer Theorem

5 Large-Scale Kernel Methods

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Motivation for Group Sparsity
Recall that multi-class logistic regression uses

ŷi = argmax
c
{w>c xi},

where we have a parameter vector wc for each class c.
We typically use softmax loss and write our parameters as a matrix,

W =

w1 w2 w3 · · · wk


Suppose we want to use L1-regularization for feature selection,

argmin
W∈Rd×k

f(W)︸ ︷︷ ︸
softmax loss

+ λ

k∑
c=1

‖wc‖1︸ ︷︷ ︸
L1-regularization

.

Unfortunately, setting elements of W to zero may not select features.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Motivation for Group Sparsity

Suppose L1-regularization gives a sparse W with a non-zero in each row:

W =


−0.83 0 0 0

0 0 0.62 0
0 0 0 −0.06
0 0.72 0 0

 .
Even though it’s very sparse, it uses all features.

Remember that classifier multiplies feature j by each value in row j.
Feature 1 is used in w1.
Feature 2 is used in w3.
Feature 3 is used in w4.
Feature 4 is used in w2.

In order to remove a feature, we need its entire row to be zero.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Motivation for Group Sparsity

What we want is group sparsity:

W =


−0.77 0.04 −0.03 −0.09

0 0 0 0
0.04 −0.08 0.01 −0.06

0 0 0 0

 .
Each row is a group, and we want groups (rows) of variables that have all zeroes.

If row j is zero, then xj is not used by the model.

Pattern arises in other settings where each row gives parameters for one feature:

Multiple regression, multi-label classification, and multi-task classification.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Motivation for Group Sparsiy

Categorical features are another setting where group sparsity is needed.

Consider categorical features encoded as binary indicator features (“1 of k”):

A linear model would use

ŷi = w1xvan + w2xbur + w3xsur + w4x≤20 + w5x21−30 + w6x>30.

If we want feature selection of original categorical variables, we have 2 groups:

{w1, w2, w3} correspond to “City” and {w4, w5, w6} correspond to “Age”.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Group L1-Regularization

Consider a problem with a set of disjoint groups G.

For example, G = {{1, 2}, {3, 4}}.

Minimizing a function f with group L1-regularization:

argmin
w∈Rd

f(w) + λ
∑
g∈G
‖wg‖p,

where g refers to individual group indices and ‖ · ‖p is some norm.

For certain norms, it encourages sparsity in terms of groups g.

Variables x1 and x2 will either be both zero or both non-zero.
Variables x3 and x4 will either be both zero or both non-zero.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Group L1-Regularization

Why is it called group L1-regularization?

Consider G = {{1, 2}, {3, 4}} and using L2-norm,∑
g∈G
‖wg‖2 =

√
w2
1 + w2

2 +
√
w2
3 + w2

4.

If vector v contains the group norms, it’s the L1-norm of v:

If v ,

[
‖w12‖2
‖w34‖2

]
then

∑
g∈G
‖wg‖2 = ‖w12‖2+‖w34‖2 = v1+v2 = |v1|+|v2| = ‖v‖1.

So group L1-regularization encourages sparsity in the group norms.

When the norm of the group is 0, all group elements are 0.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Group L1-Regularization: Choice of Norm

The group L1-regularizer is sometimes written as a “mixed” norm,

‖w‖1,p ,
∑
g∈G
‖wg‖p.

The most common choice for the norm is the L2-norm:
If G = {{1, 2}, {3, 4}} we obtain

‖w‖1,2 =
√
w2

1 + w2
2 +

√
w2

3 + w2
4.

Another common choice is the L∞-norm,

‖w‖1,∞ = max{|w1|, |w2|}+ max{|w3|, |w4|}.

But note that the L1-norm does not give group sparsity,

‖w‖1,1 = |w1|+ |w2|+ |w3|+ |w4| = ‖w‖1,

as it’s equivalent to non-group L1-regularization.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Sparsity from the L2-Norm?

Didn’t we say sparsity comes from the L1-norm and not the L2-norm?

Yes, but we were using the squared L2-norm.

Squared vs. non-squared L2-norm in 1D:

Non-squared L2-norm is absolute value.

Non-squared L2-regularizer will set all wj = 0 for some finite λ.

Squaring the L2-norm gives a smooth function but destroys sparsity.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Sparsity from the L2-Norm?

Squared vs. non-squared L2-norm in 2D:

The squared L2-norm is smooth and has no sparsity.

Non-squared L2-norm is non-smooth at the zero vector.

It doesn’t encourage us to set any wj = 0 as long as one wj′ 6= 0.
But if λ is large enough it encourages all wj to be set to 0.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

L2 and L1 Regularization Paths
The regularization path is the set of w values as λ varies,

wλ = argmin
w∈Rd

f(w) + λr(w),

Squared L2-regularization path vs. L1-regularization path:

With r(w) = ‖w‖2, each wj gets close to 0 but is never exactly 0.
With r(w) = ‖w‖1, each wj gets set to exactly zero for a finite λ.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

L22 and L2 Regularization Paths
The regularization path is the set of w values as λ varies,

wλ = argmin
w∈Rd

f(w) + λr(w),

Squared L2-regularization path vs. non-squared path:

With r(w) = ‖w‖2, each wj gets close to 0 but is never exactly 0.
With r(w) = ‖w‖2, all wj get set to exactly zero for same finite λ.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Group L1-Regularization Paths

The regularization path for group L1-regularization for different p values:

With p = 1 there is no grouping effect.

With p = 2 the groups become zero at the same time.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Group L1-Regularization Paths
The regularization path for group L1-regularizaiton for different p values:

With p = 1 there is no grouping effect.
With p = 2 the groups become zero at the same time.
With p =∞ the groups converge to same magnitude which then goes to 0.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Sub-differential of Group L1-Regularization

For our group L1-regularization objective with the 2-norm,

F (w) = f(w) + λ
∑
g∈G
‖wg‖2,

the indices g in the sub-differential are given by

∂gF (w) ≡ ∇gf(w) + λ∂‖wg‖2.

In order to have 0 ∈ ∂F (w), we thus need for each group that

0 ∈ ∇gf(w) + λ∂‖wg‖2,

and subtracting ∇gf(w) from both sides gives

−∇gf(w) ∈ λ∂‖wg‖2.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Sub-differential of Group L1-Regularization

So at minimizer w∗ we must have for all groups that

−∇gf(w∗) ∈ λ∂‖w∗g‖2.

The sub-differential of the scaled L2-norm is given by the “signum” function,

∂‖w‖2 =

{{
w
‖w‖2

}
w 6= 0

{v | ‖v‖2 ≤ 1} w = 0.

So at a solution w∗ we have for each group that{
−∇gf(w∗) = λ

w∗g
‖w∗g‖2

wg 6= 0,

‖∇gf(w∗)‖ ≤ λ w∗g = 0.

For sufficiently-large λ we’ll set the group to zero.
With squared group norms we would need ∇gf(w∗) = 0 with w∗g = 0 (unlikely).

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Proximal-Gradient for Group L1-Regularization
The proximal operator for group L1-regularization,

argmin
v∈Rd

1

2
‖v − w‖2 + αkλ

∑
g∈G
‖v‖2

 ,

applies a soft-threshold group-wise,

wg ←
wg
‖wg‖2

max{0, ‖wg‖2 − αkλ}.

So we can solve group L1-regularization problems as fast as smooth problems.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Proximal-Gradient for Group L1-Regularization
The proximal operator for group L1-regularization,

argmin
v∈Rd

1

2
‖v − w‖2 + αkλ

∑
g∈G
‖v‖2

 ,

applies a soft-threshold group-wise,

wg ←
wg
‖wg‖2

max{0, ‖wg‖2 − αkλ}.

So we can solve group L1-regularization problems as fast as smooth problems.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Proximal-Gradient for Group L1-Regularization
The proximal operator for group L1-regularization,

argmin
v∈Rd

1

2
‖v − w‖2 + αkλ

∑
g∈G
‖v‖2

 ,

applies a soft-threshold group-wise,

wg ←
wg
‖wg‖2

max{0, ‖wg‖2 − αkλ}.

So we can solve group L1-regularization problems as fast as smooth problems.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Outline

1 Group Sparsity

2 Structured Regularization

3 Kernel Trick

4 Valid Kernels and Representer Theorem

5 Large-Scale Kernel Methods

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Structured Regularization

There are many other patterns that regularization can encourage.

We’ll call this structured regularization.

The three most common cases:

Total-variation regularization encourages slow/sparse changes in w.
Nuclear-norm regularization encourages sparsity in rank of matrices.
Structured sparsity encourages sparsity in variable patterns.

Cannnot efficiently compute proximal operator, but can approximate them:
For total-variation and overlapping group-L1, we can use Dykstra’s algorithm

Iterative method that computes proximal operator for sum of “simple” functions.

For nuclear-norm regularization, methods approximate top singular vectors.

Krylov subspace methods, randomized SVD approximations.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Total-Variation Regularization
1D total-variation regularization (“fused LASSO”) takes the form

argmin
w∈Rd

f(w) + λ

d−1∑
j=1

|wj − wj+1|.

Encourages consecutive parameters to have same value.
Often used for time-series or sequence data.

http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html

Here we’re trying to estimate de-noised wi of yi at each time xi.

http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Total-Variation Regularization
More generally, we could penalize differences on general graph between variables.

An example is social regularization in recommeder systems:
Penalizing the difference between your parameters and your friends’ parameters.

argmin
W∈Rd×k

f(W) + λ
∑

(i,j)∈Friends

‖wi − wj‖2.

Typically use L2-regularization (we aren’t aiming for identical parameters).

http://asawicki.info/news_1453_social_graph_-_application_on_facebook.html

http://asawicki.info/news_1453_social_graph_-_application_on_facebook.html

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Total-Variation Regularization
Consider applying latent factor models (from 340) on image patches.

Similar to learning first layer of convolutional neural networks.

Latent-factors discovered on patches with/without TV regularization.
Encouraging neighbours in a spatial grid to have similar filters.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

Similar to “cortical columns” theory of visual cortex.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Total-Variation Regularization

Another application is inceptionism.

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Find image x that causes strongest activation of class c in neural network.

argmin
x

f(v>c h(W (m)h(W (m−1) · · ·h(W (1)x) + λ
∑

(xi,xj)∈neigh.

(xi − xj)2,

Total variation based on neighbours in image (needed to get interpretable images).

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Nuclear Norm Regularization
With matrix parameters an alternative is nuclear norm regularization,

argmin
W∈Rd×k

f(W) + λ‖W‖∗,

where ‖W‖∗ is the sum of singular values.

“L1-regularization of the singular values”.
Encourages parameter matrix to have low-rank.

Consider a multi-class logistic regression with a huge number of features/labels,

W =

w1 w2 · · · wk

 = UV >, with U =

u1 u2

 , V =

v1 v2

 ,
U and V can be much smaller, and XW = (XU)V > can be computed faster:

O(ndk) cost reduced to O(ndr + nkr) for rank r, much faster if r < min{d, k}.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

UV > Parameterization for Matrix Problems

We discussed nuclear norm regularization problems,

argmin
W∈Rd×k

f(W) + λ‖W‖∗,

which gives a solution with a low rank representation W = UV >.

But standard algorithms are too costly in many applications.

We often can’t store W .

Many recent approaches directly minimize under UV > parameterization,

argmin
U∈Rd×R,V ∈Rk×R

f(UV >) + λU‖U‖2F + λV ‖V ‖2F ,

and just regularize U and V (here we’re using the Frobenius matrix norm).

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

UV > Parameterization for Matrix Problems

We used this approach in 340 for latent-factor models,

f(W,Z) =
1

2
‖ZW −X‖2F +

λ1
2
‖Z‖2F +

λ2
2
‖W‖2F .

We can sometimes prove these non-convex re-formulation give a global solution.

Includes PCA.

In other cases, people are working hard on finding assumptions where this is true.

These assumptions are typically unrealistically strong.
But it works well enough in practice that practitioners don’t seem to care.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Structured Sparsity
Structured sparsity is variation on group L1-regularization,

argmin
w∈Rd

f(w) +
∑
g∈G

λg‖wg‖p,

where now the groups g can overlap.

Why is this interesting?
Consider the case of two groups, {1} and {1, 2},

argmin
w∈Rd

f(w) + λ1|w1|+ λ2

√
w2

1 + w2
2.

This encourages 3 non-zero “patterns”: {}, {w2}, {w1, w2}.
“You can only take w1 if you’ve already taken w2.”

If w1 6= 0, the third term is smooth and doesn’t encourage w2 to be zero.
If w2 6= 0, we still pay a λ1 penalty for making w1 non-zero.
We can use this type of “ordering” to impose patterns on our sparsity.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Structured Sparsity

Consider a problem with matrix parameters W .
We want W to be “band-limited”:

Non-zeroes only on the main diagonals.

W =



w11 w12 w13 0 0 0 0
w21 w22 w23 w24 0 0 0
w31 w32 w33 w34 w35 0 0
0 w42 w43 w44 w45 w46 0
0 0 w53 w54 w55 w56 w57

0 0 0 w64 w65 w66 w67

0 0 0 0 w75 w76 w77


.

This makes many computations much faster.

We can enforce this with structured sparsity:
Only allow non-zeroes on ±1 diagonal if you are non-zero on main diagonal.
Only allow non-zeroes on ±2 diagonal if you are non-zero on ±1 diagonal.
Only allow non-zeroes on ±3 diagonal if you are non-zero on ±2 diagonal.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Structured Sparsity

Consider a linear model with higher-order terms,

ŷi = w0 + w1x
i
1 + w2x

i
2 + w3x

i
3 + w12x

i
1x
i
2 + w13x

i
1x
i
3 + w23x

i
2x
i
3 + w123x

i
1x
i
2x
i
3.

If d is non-trivial, then the number of higher-order terms is too large.

We can use structured sparsity to enforce a hierarchy.
We only allow w12 6= 0 if w1 6= 0 and w2 6= 0.

You can enforce this using the groups {{w12}, {w1, w12}, {w2, w12}}:

argmin
w

f(w) + λ12|w12|+ λ1

√
w2

1 + w2
12 + λ2

√
w2

2 + w2
12.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Structured Sparsity

We can use structured sparsity to enforce a hierarchy.

We only allow w12 6= 0 if w1 6= 0 and w2 6= 0.
We only allow w123 6= 0 if w12 6= 0, w13 6= 0, and w23 6= 0.
We only allow w1234 6= 0 if all threeway interactions are present.

http://arxiv.org/pdf/1109.2397v2.pdf

For certain bases, you can work with the full hierarchy in polynomial time.

Otherwise, a heuristic is to gradually “grow” the set of allowed bases.

http://arxiv.org/pdf/1109.2397v2.pdf

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Structured Sparsity
Structured sparsity encourages zeroes to be any intersections of groups.

Possible non-zeroes are given by ∩g∈G′gc for all G′ ⊆ G.
Equivalently, the set of zeroes is any ∪g∈G′g.

Our first example used {1} and {1, 2} so possible non-zeroes {}, {2}, or {1, 2}.
E.g., {2} is {1, 2} ∩ {1}c = {1, 2} ∩ {2}.

Example is enforcing convex non-zero patterns:

https://arxiv.org/pdf/1109.2397v2.pdf

There is also a variant (“over-LASSO”) that considers unions of groups.
Left-to-right: data, NMF, sparse PCA, and PCA with structured sparsity.

https://arxiv.org/pdf/1109.2397v2.pdf

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Structured Sparsity
Structured sparsity encourages zeroes to be any intersections of groups.

Possible non-zeroes are given by ∩g∈G′gc for all G′ ⊆ G.
Equivalently, the set of zeroes is any ∪g∈G′g.

Our first example used {1} and {1, 2} so possible non-zeroes {}, {2}, or {1, 2}.
E.g., {2} is {1, 2} ∩ {1}c = {1, 2} ∩ {2}.

Example is enforcing convex non-zero patterns:

https://arxiv.org/pdf/1109.2397v2.pdf

There is also a variant (“over-LASSO”) that considers unions of groups.
Left-to-right: data, NMF, sparse PCA, and PCA with structured sparsity.

https://arxiv.org/pdf/1109.2397v2.pdf

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Structured Sparsity
Structured sparsity encourages zeroes to be any intersections of groups.

Possible non-zeroes are given by ∩g∈G′gc for all G′ ⊆ G.
Equivalently, the set of zeroes is any ∪g∈G′g.

Our first example used {1} and {1, 2} so possible non-zeroes {}, {2}, or {1, 2}.
E.g., {2} is {1, 2} ∩ {1}c = {1, 2} ∩ {2}.

Example is enforcing convex non-zero patterns:

https://arxiv.org/pdf/1109.2397v2.pdf

There is also a variant (“over-LASSO”) that considers unions of groups.

Left-to-right: data, NMF, sparse PCA, and PCA with structured sparsity.

https://arxiv.org/pdf/1109.2397v2.pdf

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Structured Sparsity
Structured sparsity encourages zeroes to be any intersections of groups.

Possible non-zeroes are given by ∩g∈G′gc for all G′ ⊆ G.
Equivalently, the set of zeroes is any ∪g∈G′g.

Our first example used {1} and {1, 2} so possible non-zeroes {}, {2}, or {1, 2}.
E.g., {2} is {1, 2} ∩ {1}c = {1, 2} ∩ {2}.

Example is enforcing convex non-zero patterns:

www.di.ens.fr/~fbach/icml2010a.pdf

There is also a variant (“over-LASSO”) that considers unions of groups.

Left-to-right: data, NMF, sparse PCA, and PCA with structured sparsity.

www.di.ens.fr/~fbach/icml2010a.pdf

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Outline

1 Group Sparsity

2 Structured Regularization

3 Kernel Trick

4 Valid Kernels and Representer Theorem

5 Large-Scale Kernel Methods

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Motivation: Multi-Dimensional Polynomial Basis

Consider quadratic polynomial basis with only have two features (xi ∈ R2):

ŷi = w0 + w1x
i
1 + w2x

i
2 + w2(x

i
1)

2 + w3(x
i
2)

2 + w4x
i
1x
i
2.

In 340 we saw that we can fit this model using a change of basis:

X =

 0.2 0.3
1 0.5
−0.5 −0.1

⇒ Z =

1 0.2 0.3 (0.2)2 (0.3)2 0.2 · 0.3
1 1 0.5 (1)2 (0.5)2 1 · 0.5
1 −0.5 −0.1 (−0.5)2 (−0.1)2 −0.5 · −0.1


If you have d = 100 and p = 5, there are O(1005) possible degree-5 terms:

(xi1)
5, (xi1)

4xi2, (x1)
4xi3, . . . , (x

i
1)

3(xi2)
2, (xi1)

3(xi2)
2, . . . , (xi1)

3xi2x
i
3, . . .

How can we do this when number of features k in basis is huge?

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

The ”Other” Normal Equations

Recall the L2-regularized least squares model with basis Z,

argmin
v∈Rd

1

2
‖Zv − y‖2 +

λ

2
‖v‖2.

By solving for ∇f(v) = 0 we get that

v = (Z>Z︸ ︷︷ ︸
k by k

+λId)
−1Z>y,

where Id is the k by k identity matrix.

An equivalent way to write the solution is:

v = Z>(ZZ>︸ ︷︷ ︸
n by n

+λIn)−1y,

by using a variant of the matrix inversion lemma (bonus slide).
Computing v with this formula is faster if n << k:

ZZ> is n by n while Z>Z is k by k.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Equivalent Form of Ridge Regression

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Predictions using Equivalent Form

Given test data X̃, we predict ŷ using:

ŷ = Z̃v

= Z̃ Z>(ZZ> + λIn)−1y︸ ︷︷ ︸
“other” normal equations

If we define K = ZZ> (Gram matrix) and K̃ = Z̃Z>, then we have

ŷ = K̃(K + λIn)−1y,

where K is n× n and K̃ is t× n.

Key observation behind kernel trick:

If we can directly compute K and K̃, we don’t need to form Z or Z̃.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Gram Matrix

The Gram matrix K is defined by:

K = ZZ> =


— (z1)> —
— (z2)> —

...
— (zn)> —


 · · ·
z1 z2 z3 · · · zn

· · ·



=


〈z1, z1〉 〈z1, z2〉 · · · 〈z1, zn〉
〈z2, z1〉 〈z2, z2〉 · · · 〈z2, zn〉

...
...

. . .
...

〈zn, z1〉 〈zn, z2〉 · · · 〈zn, zn〉

=


k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
...

. . .
...

k(xn, x1) k(xn, x2) · · · k(xn, xn)


K contains the inner products between all training examples in basis z

K̃ contains the inner products between training and test examples.
Kernel trick: if we can compute k(xi, xj) = 〈zi, zj〉, we don’t need zi and zj .

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Polynomial Kernel

In 340 we saw the polynomial kernel of degree p,

k(xi, xj) = (1 + 〈xi, xj〉)p,

which corresponds to a general degree-p polynomial zi.

You can make predictions with these zi using

ŷ = K̃(K + λI)−1y.

Total cost is only O(n2d+ n3) even though number of features is O(dp).

Kernel trick:
We have kernel function k(xi, xj) that gives 〈zi, zj〉.
Skip forming Z and directly form K and K̃.
Size of K is n by n even if Z has exponential or infinite columns.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Guasian-RBF Kernels
The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,

k(xi, xj) = exp

(
−‖x

i − xj‖2

2σ2

)
.

What features zi would lead to this as the inner-product?
To simplify, assume d = 1 and σ = 1,

k(xi, xj) = exp

(
−1

2
(xi)2 + xixj − 1

2
(xj)2

)
= exp

(
−1

2
(xi)2

)
exp(xixj) exp

(
−1

2
(xj)2

)
,

so we need zi = exp(− 1
2 (xi)2)ui where uiuj = exp(xixj).

For this to work for all xi and xj , zi must be infinite-dimensional.

If we use that

exp(xixj) =
∞∑
k=0

(xi)k(xj)k

k!
,

then we obtain

zi = exp

(
−1

2
(xi)2

)[
1 1√

1!
xi 1√

2!
(xi)2 1√

3!
(xi)3 · · ·

]
.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Kernel Trick for Structured Data

Kernel trick can be useful for structured data:

Consider data doesn’t look like this:

X =


0.5377 0.3188 3.5784
1.8339 −1.3077 2.7694
−2.2588 −0.4336 −1.3499
0.8622 0.3426 3.0349

 , y =


+1
−1
−1
+1

 ,
but instead looks like this:

X =


Do you want to go for a drink sometime?

J’achète du pain tous les jours.
Fais ce que tu veux.

There are inner products between sentences?

 , y =


+1
−1
−1
+1

 .
It might be easier to define a “similarity” between sentences than to define features.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Kernel Trick for Structured Data
A classic “string kernel”:

We want to compute k(“cat”, “cart”).
Find common subsequences: ‘c’, ‘a’, ‘t’, ‘ca’, ‘at’, ‘ct’, ‘cat’.
Weight them by total length in original strings:

‘c’ is has lengths (1,1), ‘ca’ has lengths (2,2), ‘ct’ has lengths (3,4), and son.

Add up the weighted lengths of common subsequences to get a similarity:

k(“cat”,“cart’) = γ1γ1︸︷︷︸
‘c’

+ γ1γ1︸︷︷︸
‘a’

+ γ1γ1︸︷︷︸
‘t’

+ γ2γ2︸︷︷︸
‘ca’

+ γ2γ3︸︷︷︸
‘at’

+ γ3γ4︸︷︷︸
‘ct’

+ γ3γ4︸︷︷︸
‘cat’

,

where γ is a hyper-parameter controlling influence of length.
Corresponds to exponential feature set (counts/lengths of all subsequences).

But kernel can be computed in linear time by dynamic programming.

Many variations exist. And there are “image kernels”, “graph kernels”, and so on.
You can turn probabilities over examples (second half of course) into kernels.
A survey on the topic is here.

http://homepages.rpi.edu/~bennek/class/mmld/papers/p49-gartner.pdf

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Valid Kernels

Can we use any function k for our kernel/similarity function k(xi, xj)?

We need to have kernel k be an inner product in some space:

There exists transformation zi = φ(xi) such that k(xi, xj) = 〈φ(xi), φ(xj)〉.

We can decompose a (continuous or finite-domain) function k into

k(xi, xj) = 〈φ(xi), φ(xj)〉,

iff it is symmetric and for any finite {x1, x2, . . . , xn} we have K � 0.

For finite domains you can show existence of φ using spectral theorem (bonus).

The general case is called Mercer’s Theorem.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Constructing Feature Space (Finite Domain)

Why is positive semi-definiteness important?

With finite domain we can define K over all points.
By symmetry of K it has a spectral decomposition

K = U>ΛU,

and K � 0 means λi ≥ 0 and so we have a real diagonal Λ
1
2 .

Thus we hav K = U>Λ
1
2 Λ

1
2U = (Λ

1
2U)>(Λ

1
2U) and we could use

Z = Λ
1
2U, which means zi = Λ

1
2U:,i.

The above reasoning isn’t quite right for continuous domains.

The more careful generalization is known as “Mercer’s theorem”.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Valid Kernels

Mercer’s Theorem is nice in theory, what do we do in practice?

You could show explicitly that k(xi, xj) = 〈〈φ(xi), φ(xj)〉 for some function φ.
You could that K is positive semi-definite by construction.
Or you can show k is constructed from other valid kernels.

(If we use invalid kernel, lose feature-space interpretation but may work fine.)

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Constructing Valid Kernels
If k1(x

i, xj) and k2(x
i, xj) are valid kernels, then the following are valid kernels:

Non-negative scaling: αk1(xi, xj) for α ≥ 0.
Sum: k1(xi, xj) + k2(xi, xj).
Product: k1(xi, xj)k2(xi, xj).

Special case: φ(xi)k1(x
i, xj)φ(xj) for any function φ.

Exponentiation: exp(k1(xi, xj)).
Recursion: k1(φ(xi), φ(xj)) for any function φ.

Example: Gaussian-RBF kernel:

k(xi, xj) = exp

(
−‖x

i − xj‖2

2σ2

)
= exp

(
−‖x

i‖2

2σ2
+

1

σ2
〈xi, xj〉 −

1

2σ2
‖xj‖2

)

= exp

(
−‖x

i‖2

2σ2

)
︸ ︷︷ ︸

φ(xi)

exp

 1

σ2︸︷︷︸
α>0

〈xi, xj〉︸ ︷︷ ︸
valid


︸ ︷︷ ︸

exp(valid)

exp

(
−‖x

j‖2

2σ2

)
︸ ︷︷ ︸

φ(xj)

.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Models allowing Kernel Trick
Besides L2-regularized least squares, when can we apply the kernel trick?

Distance-based methods from CPSC 340:

‖zi − zj‖2 = 〈zi, zi〉 − 2〈zi, zj〉+ 〈zj , zj〉
= k(xi, xi)− 2k(xi, xj) + k(xj , xj).

k-nearest neighbours.
Clustering algorithms (k-means, density-based clustering, hierarchical clustering).
Distance-based outlier detection (KNN-based, outlier ratio)
“Amazon product recommendation”.
Multi-dimensional scaling (ISOMAP, t-SNE).
Label propagation.

L2-regularized linear models (today).
Eigenvalue methods:

Principle component analysis (need trick for centering in high-dimensional space).
Canonical correlation analysis.
Spectral clustering.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Representer Theorem

Consider L2-regularized loss only depending on Xw,

argmin
w∈Rd

f(Xw) +
λ

2
‖w‖2.

Setting the gradient equal to zero we get

0 = X>r + λw,

where r = ∇f(Aw).

So any solution w∗ be can written as a linear combination of features xi,

w∗ = − 1

λ
X>r = X>v,

where v = 1
λr (this means we can restrict to w satisfying w = X>v).

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Representer Theorem

Since we know w∗ = X>v for some v, let’s optimize over v instead of w:

argmin
w∈Rd

f(Xw) +
λ

2
‖w‖2

= argmin
v∈Rn

f(XXT v) +
λ

2
‖X>v‖2

= argmin
v∈Rn

f(XXT v) +
λ

2
vTXXT v

≡ argmin
v∈Rn

f(Kv) +
λ

2
v>Kv.

Which is a kernelized version of the problem.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Representer Theorem

Using w = X>v, at test time we use

ŷ = X̃w

= X̃X>v

= K̃v,

or that each ŷi =
∑n

j=1 vjk(x̃i, xj).

That prediction is a linear combination of kernels is called representer theorem.

It holds under more general conditions, including non-smooth fi like SVMs.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Multiple Kernel Learning
We can kernelize L2-regularized linear models,

argmin
w∈Rd

f(Xw, y) +
λ

2
‖w‖2 ⇔ argmin

v∈Rn
f(Kv, y) +

λ

2
‖v‖2K ,

under fairly general conditions.
What if we have multiple potential kernels and don’t know which to use?

Obvious approach: cross-validation to choose the best one.
What if we have multiple potentially-relevant kernels?

Multiple kernel learning:

argmin
v1∈Rn,v2∈Rn,...,vk∈Rn

f

(
k∑

c=1

Kcvc, y

)
+

1

2

k∑
c=1

λc‖v‖Kc .

Defines a valid kernel and is convex if f is convex (affine function).
Group L1-regularization of parameters associated with each kernel.

Selects a sparse set of kernels.
Hiearchical kernel learning:

Use structured sparsity to search through exponential number of kernels.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Outline

1 Group Sparsity

2 Structured Regularization

3 Kernel Trick

4 Valid Kernels and Representer Theorem

5 Large-Scale Kernel Methods

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Large-Scale Kernel Methods

Let’s go back to the basic L2-regularized least squares setting,

ŷ = K̂(K + λI)−1y.

Obvious drawback of kernel methods: we can’t compute/store K.

It has O(n2) elements.

Standard general approaches:
1 Kernels with special structure.
2 Subsampling methods.
3 Explicit feature construction.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Kernels with Special Structure

The bottleneck in fitting the model is O(n3) cost of solving the linear system

(K + λI)v = y.

Consider using the “identity” kernel,

k(xi, xj) = I[xi = xj].

In this case K is diagonal so we can solve linear system in O(n).

More interesting special K structures that support fast linear algebra:
Band-diagonal matrices.
Sparse matrices (via conjugate gradient).
Diagonal plus low-rank, D + UV >.
Toeplitz matrices.
Kronecker product matrices.
Fast Gauss transform.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Subsampling Methods

In subsampling methods we only use a subset of the kernels.

For example, some loss functions have support vectors.

But this mainly helps at testing time, and some problems have O(n) support vectors.

Nystrom approximation chooses a random and fixed subset of training examples.

Many variations exist such as greedily choosing kernels.

A common variation is the subset of regressors approach....

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Subsampling Methods

Consider partitioning our matrices as

K =

[
K11 K12

K21 K22

]
=
[
K1 K2

]
, K̂ =

[
K̂1 K̂2

]
,

where K11 corresponds to a set of m training examples
K is m by m, K1 is n by m.

In subset of regressors we use the approximation

K ≈ K1K
−1
11 K

>
1 , K̂ ≈ K̂1K

−1
11 K

>
1 .

Which for L2-regularized least squares can be shown to give

ŷ = K̂1 (K>1 K1 + λK11)
−1K>1 y︸ ︷︷ ︸

v

.

Given K1 and K11, computing v costs O(m2n+m3) which is cheap for small m.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Explicit Feature Construction

In explicit feature methods, we form Z such that Z>Z ≈ K.

But where Z has a small number of columns of m.

We then use our non-kernelized approach with features Z,

w = (Z>Z + λI)−1(Z>y).

Random kitchen sinks approach does this for translation-invariant kernels,

k(xi, xj) = k(xi − xj , 0),

by sampling elements of inverse Fourier transform (not obvious).

In the special case of the Gaussian RBF kernel this gives Z = exp(iXR).

R is a d by m matrix with elements sampled from the Gaussian (same variance).
i is
√
−1 and exp is taken element-wise.

Group Sparsity Structured Regularization Kernel Trick Valid Kernels and Representer Theorem Large-Scale Kernel Methods

Summary

Group L1-regularization encourages sparsity in variable groups.

Structured regularization encourages more-general patterns in variables.

Total-variation penalizes differences between variables.

Structured sparsity can enforce sparsity hierarchies.

Kernel trick: allows working with “similarity” instead of features.

Also allows exponential- or infinite-sized feature spaces.

Valid kernels are typically constructed from other valid kernels.

Representer theorem allows kernel trick for L2-regularized linear models.

Fenchel dual re-writes sum of convex functions with convex conjugates:

Dual may have nice structure: differentiable, sparse, coordinate optimization.

Large-scale kernel methods is an active research area.

Special K structures, subsampling methods, explicit feature construction.

	Group Sparsity
	Structured Regularization
	Kernel Trick
	Valid Kernels and Representer Theorem
	Large-Scale Kernel Methods

