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Last Time: Projected Gradient

We discussed the projected gradient method for constrained optimization,

wk+1 = projC [w
k − αk∇f(wk)],

where “proj” returns the closest point inside the constraint set C.
Equivalent to minimizing a quadratic approximation of f over C.
Non-expansiveness, gradient mapping, projection theorem.
Has similar convergence properties to unconstrained gradient descent.
Many simple sets C allow efficient projection.
Identifies the active constraints in a finite number of iterations.

We discussed faster-converging accelerated and Newton-like variants.

Acceleration is straightforward, Newton is not straightforward.

We discussed variants with cheaper iterations.

Projected coordinate descent for bound constraints.
Projected stochastic gradient for optimizing sums.
Frank-Wolfe when linear optimization over set is easier.
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Complexity of Minimizing Real-Valued Functions
Consider minimizing real-valued functions over the unit hyper-cube,

min
w∈[0,1]d

f(w),

where f may be non-convex.
You can use any algorithm you want.
(simulated annealing, gradient descent + random restarts, genetic algorithms, Bayesian optimization,. . . )

How many zero-order oracle calls t before we can guarantee f(wt)− f(w∗) ≤ ϵ?
In the worst case: unbounded!

Given any algorithm, we can construct an f where f(wk)− f(w∗) > ϵ forever.
Due to real numbers being uncountable.

(See: https://mathwithbaddrawings.com/2016/11/09/pick-a-truly-random-number)

Make f(w) = 0 except at w∗ where f(w∗) = −2ϵ.
(the w∗ is algorithm-specific)

To say anything in oracle model we need assumptions on f .

https://mathwithbaddrawings.com/2016/11/09/pick-a-truly-random-number
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Complexity of Minimizing Lipschitz-Continuous Functions

One of the simplest assumptions is that f is Lipschitz-continuous,

|f(w)− f(v)| ≤ L∥w − v∥.

Function cannot change arbitrarily fast as you change x.
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Digression: Lipschitz-Continuos vs. Lipschitz-Smooth

Function f is Lipschitz-cont. if |f(w)− f(v)| ≤ L∥w − v∥ for some L.

Gradient ∇f is Lipschitz-cont. if ∥∇f(w)−∇f(v)∥ ≤ L∥w − v∥ for some L.

This is the assumption we used for gradient descent.
We say f is“Lipschitz smooth” here.

Note that neither implies the other:

f(w) =
∑n

i=1 log(1 + exp(−yiw⊤xi)) is Lipschitz-cont. with ∇f Lipschitz-cont.
f(w) = ∥w∥1 is Lipschitz-cont. but does not have a Lipschitz-cont. gradient.
f(w) = 1

2∥Xw − y∥2 is not Lipshitz-cont. but does have a Lipschitz-cont. gradient.
f(w) = w4 is neither Lipschitz-cont nor does it have a Lipschitz-cont gradient.
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Complexity of Minimizing Lipschitz-Continuous Functions

Consider minimizing real-valued functions over the unit hyper-cube,

min
w∈[0,1]d

f(w),

where we assume f is Lipschitz continuous (but may be non-convex).

This implies f is bounded below.

With only this assumption, any algorithm requires at least Ω(1/ϵd) iterations.

In zero-order and first-order oracle model.

An optimal O(1/ϵd) worst-case rate is achieved by a grid-based search method.

Evaluating the function at evenly-spaced values of w.
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Faster Algorithms for Global Optimization?

You can also achieve optimal rate in expectation by random guesses.

Lipschitz-continuity implies there is a ball of ϵ-optimal solutions around w∗.
The radius of the ball is Ω(ϵ) so its area is Ω(ϵd).
If we succeed with probability Ω(ϵd), we expect to need O(1/ϵd) trials.

(mean of geometric random variable)

Many more-complicated global optimization algorithms exist.

Simulated annealing, genetic algorithms, Bayesian optimization, and so on.

But none of these beat random guessing in the worst case (in oracle model).

Which is surprising and a bit depressing.

Of course, we can solve problems more quickly under stronger assumptions.

If f is Lipschitz and convex, subgradient methods only require O(1/ϵ2) iterations.
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Harmless Global Optimization

Some global optimization methods are worse than random in the worst case.

They can get stuck exploring areas far from the global optimum for too long.
I call these harmful optimizers.

A harmless global optimization algorithm is one that achieves the O(1/ϵd) rate.

So using the method is not worse than random guessing.

How to make any algorithm harmless:
On every second iteration, try a random guess.

Or try a random guess at any fixed interval or with any fixed probability.

Other sensible harmless variations:

Every t iterations, try the w that is furthest away from all previous wk.
If you know L, you can use differences in previous f(wk) to prune space (bonus).
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Bayesian Optimization (BO)

Popular approach for hyper-parameter optimization is Bayesian optimization:
Build a regression model to predict f(w) based on previous wk and f(wk) values.

Typically Gaussian processes, but could use random forests (SMAC) or neural nets.

Optimize an acquisition function over all of w to choose the next iterate.

Expected(improvement), probability(improvement), entropy search, UCB.

Not faster than random in worst case for optimizing Lipschitz functions.

Some implementations are not harmless (sometimes worse than random).

This is particularly due to the optimizer itself having hyper-parameters.
But as we discussed, it is easy to make them harmless.

For suitably smooth functions a variant of BO has convergence rate of O(1/ϵd/ν).

Where ν is a measure of smoothness that can be larger or smaller than 1.
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Complexity of Minimizing Convex Functions

Many optimization problem arising in machine learning are non-smooth,

f(w) =
1

2

n∑
i=1

(wTxi−yi)
2+λ

d∑
j=1

|wj |, f(w) =

n∑
i=1

max{0, 1−yiw
Txi}+

λ

2

d∑
j=1

w2
j ,

including L1-regularized least squares and SVMs.

We cannot compute ∇f(w) for all w for non-smooth functions.

Absolute value |wj | has no gradient whenever wj = 0.
Hinge loss max{0, 1− yiw

Txi} has no gradient whenever 1− yiw
Txi = 0.

Nevertheless, we can compute subgradients of these functions.
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Sub-Gradients and Sub-Differentials
Differentiable convex functions are always above tangent,

f(v) ≥ f(w) +∇f(w)⊤(v − w), ∀w, v.

A vector d is a subgradient of a convex function f at w if

f(v) ≥ f(w) + d⊤(v − w),∀v.

f(x)

f(x) + ∇f(x)T(y-x)
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Sub-Gradients and Sub-Differentials Properties

We can have a set of subgradients called the sub-differential, ∂f(w).

Subdifferential is all the possible “tangent” lines.

For convex functions:
Sub-differential is always non-empty (except some weird degenerate cases).

Formally, sub-differential guaranteed non-empty on “relative interior”.

At differentiable w, the only subgradient is the gradient: ∂f(w) = {∇f(w)}.
At non-differentiable w, there will be a convex set of subgradients.

We have 0 ∈ ∂f(w) iff w is a global minimum.

This generalizes the condition that ∇f(w) = 0 for differentiable functions.
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Example: Sub-Differential of Absolute Function
Sub-differential of absolute value function:

∂|w| =


1 w > 0

−1 w < 0

[−1, 1] w = 0

“Sign of the variable if it is non-zero, anything in [−1, 1] if it’s zero.”

f(x)
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Example: Sub-Differential of Absolute Function
Sub-differential of absolute value function:

∂|w| =


1 w > 0

−1 w < 0

[−1, 1] w = 0

“Sign of the variable if it is non-zero, anything in [−1, 1] if it’s zero.”

f(0)
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Sub-Differential of Common Operations

Some convenient rules for calculating subgradients of convex functions:

Sub-differential of differentiable functions only contains gradient:

∂f(w) ≡ {∇f(w)}.

Sub-differential of sum is all sum of subgradients of individual functions:

∂(f1(x) + f2(x)) = d1 + d2 for any d1 ∈ ∂f1(x), d2 ∈ ∂f2(x).

Sub-differential of non-negative scaling is scaling of sub-differential,

∂αf(w) = α∂f(w),

for α > 0.
Sub-differential of composition with affine function works like the chain rule:

∂f1(Aw) = A⊤∂f1(z), where z = Aw,
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Sub-Differential of Common Operations
Some convenient rules for calculating subgradients of convex functions:

Sub-differential of max is all convex combinations of argmax gradients:

∂max{f1(w), f2(w)} =


∇f1(w) f1(x) > f2(w)

∇f2(w) f2(x) > f1(w)

θ∇f1(w) + (1− θ)∇f2(w)︸ ︷︷ ︸
for all 0 ≤ θ ≤ 1

f1(w) = f2(w)

Max rule gives sub-differential of absolute value, using that |α| = max{α,−α}.
Max rule also gives simple way to get sub-differential of ReLU or hinge loss,

∂max{0, 1− yiw
Txi} ≡


0 1− yiw

Txi > 0

−yixi 1− yiw
Txi < 0

θ0 + (1− θ)(−yixi)︸ ︷︷ ︸
for all 0 ≤ θ ≤ 1

1− yiw
Txi = 0

.
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Why does L1-Regularization but not L2-Regularization give Sparsity?

Consider L2-regularized least squares,

f(w) =
1

2
∥Xw − y∥2 + λ

2
∥w∥2.

Element j of the gradient at wj = 0 is given by

∇jf(w) = x⊤j (Xw − y)︸ ︷︷ ︸
r

+λ0.

For wj = 0 to be a solution, we need 0 = ∇jf(w
∗) or that

0 = x⊤j r
∗ where r∗ = Xw∗ − y for the solution w∗

that column j is orthogonal to the final residual.

This is possible, but it is very unlikely (probability 0 for random data).
Increasing λ doesn’t help.
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Why does L1-Regularization but not L2-Regularization give Sparsity?
Consider L1-regularized least squares,

f(w) =
1

2
∥Xw − y∥2 + λ

2
∥w∥1.

Element j of the subdifferential at wj = 0 is given by

∂jf(w) ≡ x⊤j (Xw − y)︸ ︷︷ ︸
r

+λ [−1, 1]︸ ︷︷ ︸
∂|wj |

.

For wj = 0 to be a solution, we need 0 ∈ ∂jf(w
∗) or that

0 ∈ xTj r
∗ + λ[−1, 1] or equivalently

−xTj r
∗ ∈ λ[−1, 1] or equivalently

|x⊤j r∗|≤ λ,

that column j is “close to” orthogonal to the final residual.
So features j that have little to do with y will often lead to wj = 0.
Increasing λ makes this more likely to happen.
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Subgradient Method
The basic subgradient method:

wk+1 = wk − αkgk,

for any gk ∈ ∂f(wk).

This can increase the objective even for small αk.
Though for convex f the distance to solutions decreases:

∥wk+1 − w∗∥ < ∥wk − w∗∥ for small enough αk (and sub-optimal wk).
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Convergence Rate of Subgradient for Lipschitz+Convex Functions

Proofs that analyze ∥wk − w∗∥ usually start with the following steps:

∥wk+1 − w∗∥2 = ∥(wk − αkgk)− w∗∥2 (definition of wk+1)

= ∥(wk − w∗)− αkgk∥2 (group terms)

= ∥wk − w∗∥2 − 2αkg
T
k (w

k − w∗) + α2
k∥gk∥2 (expand squared norm)

The terms on the right are similar to the terms we get in descent lemma.

Typically use a lower bound on size of second term and upper bound on third term.

If we assume f is Lipschitz and convex, and gk is a subgradient then we have

∥gk∥2 ≤ L2 (Lipshitz implies subgradients are bounded by L)

f(w∗) ≥ f(wk) + gTk (w
∗ − wk) (using wk and w∗ in definition of subgradient)

and the second property can be re-written as −gTk (w
k −w∗) ≤ −[f(wk)− f(w∗)].
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Convergence Rate of Subgradient for Lipschitz+Convex Functions
For the subgradient method applied to Lipschitz and convex f we thus have

∥wk+1 − w∗∥2 = ∥wk − w∗∥2 − 2αk g
T
k (w

k − w∗)︸ ︷︷ ︸
≥f(wk)−f(w∗)

+α2
k ∥gk∥2︸ ︷︷ ︸

≤L2

≤ ∥wk − w∗∥2 − 2αk[f(w
k)− f(w∗)] + α2

kL
2.

Re-arranging we get

2αk[f(w
k)− f(w∗)] ≤ ∥wk − w∗∥2 − ∥wk+1 − w∗∥2 + α2

kL
2,

and summing/telescoping over values of k = 1 to t we get

2

t∑
k=1

αk[f(w
k)− f(w∗)] ≤ ∥w0 − w∗∥2 − ∥wk+1 − w∗∥2 + L2

t∑
k=1

αk.

Using f b as the lowest f(wk) and ∥wk+1 − w∗∥2 ≥ 0 we can re-arrange to get...
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Convergence Rate of Subgradient for Lipschitz+Convex Functions

A bound that is very similar to what we showed for SGD:

f(wb)− f(w∗) ≤
∥w1 − w∗∥2 + L2

∑t
k=1 α

2
k

2
∑t

k=1 αk

= O

(
1∑
k αk

)
+O

(∑
k α

2
k∑

k αk

)
.

We get the same conclusions as for SGD based on the step size choices:
Using decreasing αk = α/k gives a rate of O(1/ log(k)).

In low dimensions, this is worse than random guessing.

Using decreasing αk = α/
√
k gives a rate of O(log(k)/

√
k).

Optimal convergence rate up to a log factor.

Using constant αk = α gives a rate of O(1/αk) + O(α).

Faster convergence up to an accuracy depending on the constant α.
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Polyak Step Size for Subgradient Method

Backtracking may not work for the subgradient method.

There may be no step size αk that decreases the objective f .
And we cannot backtrack based on ∥wk − w∗∥ since we do not know w∗.

We can improve from O(log(k)/
√
k) to O(1/

√
k) using the Polyak step size,

αk =
f(wk)− f∗

∥gk∥2
,

which requires on a lower bound f∗ on f(w∗) and minimizes the upper bound
∥wk+1 − w∗∥2 ≤ ∥wk − w∗∥2 − 2αk[f(w

k)− f∗] + α2
k∥gk∥2.

This can increase or decrease the step size between iterations.
This makes αk go to zero as we approach the optimum (w∗ becomes a fixed point).
This leads to the mentioned O(1/ϵ2) iteration complexity.



Complexity of Global Optimization Subgradients and Subgradient Method Smooth Approximations of Non-Smooth Functions Faster Subgradient Methods

Convergence Rate of Projected Gradient

The projected subgradient method for optimizing over a convex set C,

wk+1 = projC [w
k − αkgk],

for any gk ∈ ∂f(wk).

For example, our earlier problem of optimizing over the unit hyper-cube.

To analyze this method, we can use non-expansiveness of projection::

∥wk+1 − w∗∥2 = ∥projC [wk − αkgk]− projC [w
∗]∥2 (definition of wk+1, w∗ feasibility)

≤ ∥(wk − αkgk)− w∗∥2 (non-expansiveness),

and then the remaining steps are the same as the unconstrained case.

We get the same rates as the unconstrained case.
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Step Sizes based on Diameter Bound

If C is bounded and we have an upper bound D on ∥w − w∗∥2 over all w:

We get a rate of O(1/
√
k) using adaptive αk =

√
2D

∥gk∥
√
k
.

Similar to Polyak step size, this achieves the O(1/ϵ2) rate without the log factor.

If we also know the Lipschitz constant L:

We get a rate of O(1/
√
t) after exactly t iterations using constant αk = DL√

t
.

A constant step size depending on the number of iterations we use.
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Convergence Rate of Stochastic Subgradient

The stochastic subgradient method uses

wk+1 = wk − αkgik ,

where gik is a subgradient for a random training example.

This method has the same convergence rate as deterministic subgradient method.

Upper bound holds with some additional expectations appearing.

For the SVM problem:

Deterministic subgradient needs O(1/ϵ2) iterations and n subgradients per iteration.
Stochastic subgradients needs O(1/ϵ2) iterations and 1 subgradient per iteration.

So do not use the deterministic subgradient method for finite sum problems.

Also note that SGD and stochastic subgradient have the same convergence rate.

So SGD is not slowed down when the objective is non-smooth.
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Subgradient Methods for Strongly-Convex Objectives
For strongly-convex objectives:

Convergence of subgradient and stochastic subgradient is O(log(k)/k).

Using a step size of αk = 1/µk, based on the average iterate w̄k = 1
k

∑k
t=1 w

k.

Can improve this to O(1/k) using averages that bias towards later iterates.

Suffix averaging computes average over second half of the iterations.
Can use αk = 2/µ(k + 1) and average proportional to k + 1.

However, for most problems I do not recommend using the above step size.
Can move exponentially-fast away from optimum before slowly moving towards it.

Usually µ = O(1/n) or O(1/
√
n) initial step size is something like O(n).

Works well for binary SVMs, but often does not work well in practice.
Requires knowing µ, and rate degrades substantially if over-estimated.

Not “robust” to the step size.

For ML, often better to use a constant step size (or constant then later decrease).

Get a robust O(1/k) convergence to a neighbour of solution.
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Subgradient Methods for Strongly-Convex Objectives

Another weird thing about when f is Lipschitz and strongly-convex:
These functions cannot exist over all of Rd.

Lipschitz-continuity means subgradients are bounded.
Strong-convexity requires subgradients to be unbounded.

However, these functions can exist over a bounded set C.

Thus, for strongly-convex we typically discuss projected stochastic subgradient.

Where we project onto a bounded set.
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Subgradient Methods for Non-Convex Objectives

For non-convex functions, “global” subgradients may not exist for every w.

We can define subgradients “locally” around current w (Clarke subdifferential).

This is how you define “gradient” of ReLU function in neural networks.

Subgradient method not known to converge for general non-convex f .

Many not-too-strong assumptions exist under which it converges:
Weakly-convex functions are functions f where f(w)+ µ

2 ∥w∥
2 is convex for some µ.

Includes all convex functions and all Lipschitz-smooth functions (may be non-convex)..
Includes composition of convex and Lipschitz-smooth (may be non-smooth).
Can show O(1/

√
k) convergence rate in this setting, same as Lipschitz-smooth.

Tame functions are a very-general class where stochastic subgradient converges.

Includes neural networks with ReLU activations.
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Smooth Approximations to Non-Smooth Functions
In CPSC 340, we used smooth approximations to non-smooth functions.

Absolute value can be approximated by Huber’s function,

|w| ≈

{
1
2w

2 |w| ≤ δ,

δ(|w| − 1
2δ) |w| > δ.

So you would approximate linear regression under the L1-norm as

f(w) =
n∑

i=1

|wTxi − yi| ≈
n∑

i=1

hδ(w
Txi − yi).

Maximum can be approximated by log-sum-exp,

max
j

(wj) ≈ log(
∑
j

exp(δwj)),

for a temperature parameter δ.
Exist other approximations like Huberized SVM (better behaved than log-sum-exp).

Or the GeLU activation used to smooth ReLU in GPT3.
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To Smooth or Not to Smooth?
Key advantage of smoothing: you can use deterministic methods.

Get faster convergence rates than subgradient method.

O(1/
√
ϵ) for subgradient vs O(1/ϵ2) for accelerated gradient for convex.

O(log(1/ϵ)) for subgradient vs O(1/ϵ) for accelerated gradient for strongly-convex.

Can use line search to set step size.
Can use momentum/acceleration/Newton-like methods for faster convergence.

Reasons you may not want to smooth:
Smoothing can destroy the structure in the solution.

L1-regularization yields sparsity due to the non-smoothness, Huber would remove this.

In some cases the smooth approximation is expensive.

Arises in structured SVMs (log-sum-exp approximation may be NP-hard to compute).

Smooth methods do not converge faster in stochastic setting

.

Accurate smooth approximations may be hard to optimize...
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Does Smoothing Help?

Exist smoothing methods for generic smoothing of many non-smooth convex f

Like “write f in terms of its Fenchel conjugate with a strongly-convex regularizer”.
Or “optimize the Moreau envelope” (adds L2-regularization to objective evaluation).

For a given ϵ, allows us to construct a differentiable function fϵ where

f(w) ≤ fϵ(w) ≤ f(w) + ϵ,

so that minimizing fϵ(w) gets us within ϵ of the optimal solution.

Problem: the Lipschitz constant L = O(1/ϵ).

Implies gradient descent is not faster than subgradient method.
But we can get faster rates by applying accelerated methods to smooth problem.
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Does Smoothing Help?
Consider differentiable fϵ that is within ϵ of f and has L = O(1/ϵ).

If f is convex and we apply gradient descent then we need

t = O(L/ϵ)︸ ︷︷ ︸
smoothed problem

= O(1/ϵ2)︸ ︷︷ ︸
original problem

,

the same iteration complexity as the subgradient method.
No gain from smoothing.

If instead we apply accelerated gradient descent then we need

t = O(
√
L/ϵ) = O(1/ϵ),

which is faster than subgradient methods.
Converges at the speed of unaccelerated gradient descent.
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Does Smoothing Help?

Consider differentiable fϵ that is within ϵ of f and has L = O(1/ϵ).

For strongly-convex functions if we apply gradient descent then we need

t = O(L log(1/ϵ)) = O((1/ϵ) log(1/ϵ)),

which is actually worse than the subgradient methods by a log factor.

But the log factor can be removed using a sequence of fϵ with decreasing ϵ.

If instead we apply accelerated gradient descent then we need

t = O(
√
L log(1/ϵ)) = O((1/

√
ϵ) log(1/ϵ)),

which is faster than subgradient methods (but not linear convergence).

Get the rate of accelerated methods for non-strongly convex functions.
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Does Smoothing Help?

Consider finite sum differentiable fϵ that is within ϵ of f and has L = O(1/ϵ).

For strongly-convex functions if we apply SAG/SVRG then we need

t = O((n+ L) log(1/ϵ)) = O((n+ 1/ϵ) log(1/ϵ)),

which is worse than the stochastic subgradient method (due to the n and log).

If instead we apply accelerated variance-reduced methods then we need

t = O((n+
√
nL) log(1/ϵ)) = O((n+

√
n/ϵ) log(1/ϵ)),

which can be faster than subgradient methods.

But not linear convergence (and again, annealing can remove the log(1/ϵ) factor).
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To Smooth or Not to Smooth?
In practice, smoothing will probably help a lot.

Because you can do line-search, accelerated/Newton-like methods, and so on.
And because the gradient is always a descent direction.

Further, you may not care that smoothed problem is ϵ-close to original.
Huberized versions often have same test error, even with non-small ϵ.
In this setting, why worry about solving the original problem?

Just solve the smoothed problem quickly.

Cases where you do not want to smooth:
Smooth approximation is much more expensive to evaluate.

For structured SVM over matching polytope, poly-time vs. NP-hard.

You are using stochastic subgradient with a small batch size.
For batch size of 3 million in GPT3, smoothing the ReLUs probably makes sense.

You have a particular non-smooth structure in the solution (like L1-regularization).
Though subgradient methods are not particularly good with this issue either.
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Faster Subgradient Methods?

For smooth optimization, we discussed accelerated gradient methods.

Improve iteration complexity for convex and strongly-convex problems.

Can we develop accelerated subgradient methods?

No! (At least in terms of dimension-independent rates.)
Subgradient methods are optimal in a first-order oracle model.

Where at each iteration we receive f(wk) and a gk ∈ ∂f(wk).

Thus, no faster method is possible in the worst case.

However, there are faster dimension-dependent subgradient-based algorithms.

We also have faster subgradient-based method in practice for many applications.
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Bisection: Linear Convergence in 1 Dimension

Consider minimizing a d = 1 convex function over an interval:

Consider the following bisection method for finding a minimizer:

At each iteration, compute a subgradient at the middle of the interval.
Set the lower/upper bound of the interval to the midpoint (using subgradient sign).

At each step, maximum distance to a minimizer w∗ is cut in half.

Achieves linear convergence with rate 0.5, giving iteration complexity of O(log(1/ϵ)).
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Cutting Plane: Linear Convergence in d Dimensions
Cutting plane methods generalize bisection to higher dimensions.

For minimizing convex functions over bounded polyhedrons.

At each iteration, compute a subgradient at the “center” of the polyhedral.
From the definition of subgradient we have for any w that

f(w) ≥ f(wk) + gTk (w − wk),

so any w satisfying gTk (w − wk) > 0 will be greater than f(wk).
Adding this constraint corresponds to a plane that “cuts” the polyhedron.
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Implementing the Cutting Plane Method

Many ways to define the “center” of the polyhedron.

Goal is to choose a point where all cuts maximally reduce the search space.

Center of gravity method chooses center of gravity of the set.

Requires O(d log(1/ϵ)) iterations.
Difficult to compute exactly.

Get same complexity by using average of points sampled from the set.
“Hit and run” method is one way to sample over a convex set (not cheap).

Maximum volume inscribed ellipsoid:
Finds largest ellipsoid that is completely contained within the set.

Can be solved as a convex optimization.

Leads to an O(d2 log(1/ϵ)) iteration complexity.
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Subgradient Methods: Theory vs. Practice

Worst-case theoretical rates for convex optimization with subgradients:

Best subgradient methods requires O(1/ϵ2) iterations.
Best cutting plane methods requires O(d log(1/ϵ)) iterations.

Various practical methods exist that do not improve worst-case:

“Ignore non-smoothness” (use subgradients in smooth optimizer).
Bundle methods (incorporate previous subgradients).
Min-norm subgradient methods (choose the “best” subgradient).
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Ignore Non-Smoothness?

Can we just apply a smooth optimizer to a non-smooth function?

Apply accelerated gradient or L-BFGS using subgradients (without smoothing).

Convex functions are differentiable almost everywhere.

So subgradient will typically be a gradient, and line search should give some progress.

For many problems, this seems to work well.

But poorly understood, and can fail.
Probably makes the most sense when function is smooth at solution.
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Using Multiple Subgradients

At iteration k, the function value and subgradient give us a lower bound,

f(w) ≥ f(wk) + gTk (w − wk).
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Using Multiple Subgradients

We get a tighter bound by using all previous function and subgradient values,

f(w) ≥ max
t∈{1,...,k}

{
f(wt) + gTt (w − wt)

}
.
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Bundle Methods
We can write the subgradient method as using

argmin
w

{
f(wk) + gTk (w − wk) +

1

2αk
∥w − wk∥2

}
.

A common variation on a bundle method uses

argmin
w

{
max

t∈{1,...,k}

{
f(wt) + gTt (w − wt)

}
+

1

2αk
∥w − w̄k∥2

}
,

where on each iteration we set w̄k+1 = wk+1 or w̄k = wk depending on progress.
“Serious step” vs. “null step”.

For ML problems you can replace the squared norm with the regularizer.

We may also introduce a second step size as in projected gradient.

Bundle methods do not improve the worst-case convergence rate.
But can converge much faster in practice, though iterations are expensive.

Most appropriate when computing subgradients is expensive.
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What is the best subgradient?

We considered the deterministic subgradient method,

wk+1 = wk − αkgk, where gk ∈ ∂f(wk),

under any choice of subgradient.

Can we instead choose the “best” subgradient?

Convex functions have directional derivatives everywhere.
Direction −gt that minimizes directional derivative is minimum-norm subgradient,

gk ∈ argmin
g∈∂f(wk)

{||g||} .

This is the steepest descent direction for non-smooth convex optimization problems.
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Minimum-Norm Subgradient Method

The minimum-norm subgradient method uses

wk+1 = wk − αkgk, where gk ∈ argmin
g∈∂f(wk)

{||g||}.

Some advantages:

Solution is a fixed point: w∗ = w∗ − αg∗ since g∗ = 0.
Otherwise, we can satisfy line-search criteria since −gk is a descent direction.

And line searches work with directional derivatives, which exist.

Some issues:

The minimum-norm subgradient may be difficult to find.
Convergence not well understood.

Not shown to improve worst-case rate over subgradient method.
Counter-examples exist where line search causes convergence to sub-optimal values.
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Min-Norm Subgradient Method for L1-Regularization
Consider optimizing a smooth f with (non-smooth) L1-regularization,

argmin
w

f(w) + λ∥w∥1.

The subdifferential with respect to coordinate j has the form

∇jf(w) + λ

{
sign(wj) wj ̸= 0

[−1, 1] wj = 0
.

The element of the subdifferential with smallest absolute value is given by

∇jf(w) + λsign(wj) for wj ̸= 0

∇jf(w)− λsign(∇jf(w)) for wj = 0, |∇jf(w)| > λ

0 for wj = 0, |∇jf(w)| ≤ λ

This can be viewed as the steepest descent direction for L1-regularization.
Notice that it “keeps variables at 0” if partial derivative at zero is too small.
However, the min-norm subgradient does not naturally set variables to 0.
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Orthant-Projected Min-Norm Subgradient for L1-regularization
Min-norm subgrad method with orthant projection for L1-regularization,

wk+1 = projO(wk)[w
k − αkgk], where gk ∈ argmin

g∈∂f(wk)

{||g||} ,

where projO(wk)[z] sets zj = 0 if sign(zj) ̸= sign(wj).

So wk+1 stays in the same orthant as wk.

Has a bunch of appealing properties that make it hard to beat in practice:
Orthant-project can set many values to 0 on each iteration.
Min-norm subgradient keeps values at 0.
Can be combined with line-search (function is smooth over each orthant).
Can use clever step sizes like Barzilai Borwein.
Can use two-metric projection to implement Newton-like update.

Convergence and convergence rate properties not well understood at all.
Looks like projected gradient with changing set, but individual steps may be bad.
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Orthant-Projected Min-Norm Subgradient for L1-regularization
PSSgb uses min-norm-subgrad/orthantProject/twoMetric/L-BFGS:

(Other methods are first-order, my PhD thesis compares other 1.5-order solvers.)
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Summary
Global optimization of non-convex Lipschitz-continuous functions.

Optimal rate is O(1/ϵd), achieved by random search (“harmless” if achieve this rate).

Subgradients: generalize gradients for non-smooth convex functions.
Subgradient method: optimal dimension-independent O(1/ϵ2) rate for convex f .

Does not guarantee decrease in f , but guarantees decrease in distance to solution.
Requires similar step sizes to SGD, but Polyak step size allows adaptive steps.

Projected/stochastic subgradient: same speed as subgradient method.
Smooth approximations with accelerated gradient give faster rates.

But smoothing can destroy structure in solution.

Cutting plane methods achieve dimension-dependent O(log(1/ϵ)) for convex f .
But iterations are very expensive.

Practical subgradient methods that improve performance.
Ignoring non-smoothness, bundle methods, min-norm subgradient for L1-reg.

Next time: methods with rate O(log(1/ϵ)) for specific non-smooth problems.
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Pruning Global Optimization Algorithms with Lipschitz Constants
Given the Lipschitz constant L, we can use it to prune parts of the space.

From Lipschitz continuity we can get a lower bound on v in terms of any w,

f(w)− L∥w − v∥ ≤ f(v).

Given the previous iterates {w0, w1, w2, . . . , w
k−1}, we thus have

f(v) ≥ max
t∈[0,1,...,k−1]

{f(wt)− L∥w − v∥} .

We can reject any wk where this bound certifies that

f(wk) ≥ min
t∈[0,1,...,k−1]

{f(wt)},

since such points improve the function value.

If you know L or have an upper bound on it, this is harmless.

If you under-estimate L, this is not harmless (could rule out the global minima).
In practice L is often estimated using maxt,k | t̸=k{(|f(wk − f(wt)|)/∥wk −wt∥}.

This is not harmless.
Maximum between this estimate and a sequence satisfying Ω((L/ϵ)d) is harmless.
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L1-Regularization vs. L2-Regularization

Another view on sparsity of L2- vs. L1-regularization using our constraint trick:

argmin
w∈Rd

f(w) + λ∥w∥p ⇔ argmin
w∈Rd,τ∈R

f(w) + λτ with τ ≥ ∥w∥p.

Notice that L2-regularization has a rotataional invariance.

This actually makes it more sensitive to irrelevant features.
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