Numerical Optimization for Machine Learning Projected-Gradient, Projecte-Newton, and Frank-Wolfe

Mark Schmidt
University of British Columbia

Summer 2022 - Summer 2023

Review: Gradient Descent

- The "training" phase in machine learning usually involves numerical optimization.
- Minimizing a function f depending on d parameters w,

$$
\min _{w \in \mathbb{R}^{d}} f(w)
$$

- For differentiable f, a prototypical method is gradient descent,

$$
w^{k+1}=w^{k}-\alpha_{k} \nabla f\left(w^{k}\right) .
$$

- Cost of update is $O(d)$ in terms.
- Guaranteed to decrease f for small enough step size α_{k}.

Review: Lipschitz Continuity of Gradient

- We considered functions f where the gradient is Lipschitz continuous,

$$
\|\nabla f(w)-\nabla f(v)\| \leq L\|w-v\|
$$

meaning that gradient cannot change faster than a constant L.

- Under this assumption we showed that gradient descent with $\alpha_{k}=1 / L$ satisfies

$$
f\left(w^{k+1}\right) \leq f\left(w^{k}\right)-\frac{1}{2 L}\left\|\nabla f\left(w^{k}\right)\right\|^{2}
$$

- But works better with clever step size choices and line searches.
- We can show that similar progress bounds hold for these choices.

Review: Convergence Rates

- We discussed convergence rates and iteration complexities:
(1) Sublinear rates like $O(1 / t)$, which requires $O(1 / \epsilon)$ to get error ϵ.
(2) Linear rates like $O\left(\rho^{t}\right)$ for $\rho<1$, which requires $O(\log (1 / \epsilon)$.
(3) Superlinear rates like $O\left(\rho^{2^{t}}\right)$, which requires $O(\log \log (1 / \epsilon))$.
- When gradient is Lipschitz continuous, convergence rate of gradient descent is:
- Linear $O\left(\rho^{t}\right)$ on $f\left(w^{t}\right)-f^{*}$ for functions that are strongly-convex (strongest).
- Sublinear $O(1 / t)$ on $\left\|\nabla f\left(w^{t}\right)\right\|^{2}$ for functons that are bounded below (weakest).
- Sublinear $O(1 / t)$ on $f\left(w^{t}\right)-f^{*}$ for functions that are convex.
- Linear $O\left(\rho^{t}\right)$ on $f\left(w^{t}\right)-f^{*}$ for functions that satisfy Polyak-Łojasiewicz inequality.

Review: Faster Algorithms

- Get faster rates for strongly-convex quadratics with heavy-ball method,

$$
w^{k+1}=w^{k}-\alpha_{k} \nabla f\left(w^{k}\right)+\beta^{k}\left(w^{k}-w^{k-1}\right)
$$

for appropriate β^{k} (special case with optimal α_{k} and β_{k} is conjugate gradient).

- Get faster rates for convex functions with Nesterov's accelerated gradient method,

$$
w^{k+1}=w^{k}-\alpha_{k} \nabla f\left(w^{k}\right)+\beta^{k}\left(w^{k}-w^{k-1}\right)-\alpha_{k} \beta_{k}\left(\nabla f\left(w^{k}\right)-\nabla f\left(w^{k-1}\right)\right),
$$

for appropriate β^{k}.

- Get faster local rates with Newton's method,

$$
w^{k+1}=w^{k}-\alpha_{k}\left[\nabla^{2} f\left(w^{k}\right)\right]^{-1} \nabla f\left(w^{k}\right),
$$

and exist variations that handle case where Hessian $\nabla^{2} f\left(w^{k}\right)$ is not invertible.

Review: Cheaper Algorithms

- Get cheaper iterations for many problems using coordinate optimization.
- Optimizes 1 variable at a time, chosen cyclically/randomly/greedily.
- Faster than gradient descent if iterations are d-times cheaper.
- Common problem structure is optimizing averages,

$$
f(w)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(w)
$$

- In this setting get cheaper iterations with stochastic gradient descent (SGD),

$$
w^{k+1}=w^{k}-\alpha_{k} \nabla f_{i_{k}}\left(w^{k}\right),
$$

where i_{k} is a random sample from sum.

- Converges slower than gradient descent but iterations are n-times cheaper.

Review: SGD Issues

- Progress of SGD depends on $\left\|\nabla f\left(w^{k}\right)\right\|, \alpha_{k}$, batch size, and noise variance σ_{k}^{2}.
- Decreasing step sizes or increasing batch sizes required for convergence.
- Constant step size and batch size sufficient for any fixed accuracy.
- In various settings, can reduce/avoid effect of noise variance σ_{k}^{2} :
- Variance reduction methods (SAG/SVRG) do this with a fixed step and batch size.
- Over-parameterized models assume $\sigma_{*}^{2}=0$, which allows fixed step/batch size.
- Growing batches and SAG/SVRG and over-parameterzation line-search easier.

Review: Practical Newton Methods

- Get cheap approximations to Newton's method using:
- Diagonal approximations of Hessian.
- Cheap/easy but often does not work well.
- Hessian-free Newton.
- Uses cheap Hessian-vector products within conjugate gradient to approximate Newton.
- Quasi-Newton
- Updates approximation of Hessian based on observed differences in gradients.
- Barzilai-Borwein step size
- Degenerate quasi-Newton method that just sets the step size for gradient descent.

Outline

(1) Projections and Projected Gradient
(2) Active-Set Identification and Backtracking
(3) Acceleration and Projected Newton
(4) Projected CD/SGD and Frank-Wolfe

Projected-Gradient for Non-Negative Constraints

- We used projected gradient in 340 for NMF to find non-negative solutions,

$$
\underset{w \geq 0}{\operatorname{argmin}} f(w) .
$$

- In this case the algorithm has a simple form,

$$
w^{k+1}=\max \{0, \underbrace{w^{k}-\alpha_{k} \nabla f\left(w^{k}\right)}_{\text {gradient descent }}\}
$$

where the max is taken element-wise.

- "Do a gradient descent step, set negative values to 0 ."
- An obvious algorithm to try, and works as well as unconstrained gradient descent.

A Broken "Projected-Gradient" Algorithms

- Projected-gradient addresses problem of minimizing smooth f over a convex set \mathcal{C},

$$
\underset{w \in \mathcal{C}}{\operatorname{argmin}} f(w) .
$$

- As another example, we often want w to be a probability,

$$
\underset{w \geq 0,1^{\top} w=1}{\operatorname{argmin}} f(w),
$$

- Based on our "set negative values to 0 " intuition, we might consider this:
(1) Perform an unconstrained gradient descent step.
(2) Set negative values to 0 and divide by the sum.
- This algorithms does NOT work.
- But it can be fixed if we replace Step 2 by "project onto the constraint set".

Projected-Gradient

$$
w^{k+\frac{1}{2}}=\underbrace{w^{k}-\alpha_{k} \nabla f\left(w^{k}\right)}_{\text {gradient step }}, \quad w^{k+1} \in \underbrace{\operatorname{argmin}}_{\text {projection step }}\left\|v-w^{k+\frac{1}{2}}\right\|
$$

First proposed by Goldstein [1964] and Leviting \& Polyak [1965].

Projected-Gradient

$$
w^{k+\frac{1}{2}}=\underbrace{w^{k}-\alpha_{k} \nabla f\left(w^{k}\right)}_{\text {gradient step }}, \quad w^{k+1} \in \underbrace{\operatorname{argmin}\left\|v-w^{k+\frac{1}{2}}\right\|}_{\text {projection step }}
$$

First proposed by Goldstein [1964] and Leviting \& Polyak [1965].

Projected-Gradient

- We can view the projected-gradient algorithm as having two steps:
(1) Perform an unconstrained gradient descent step,

$$
w^{k+\frac{1}{2}}=w^{k}-\alpha_{k} \nabla f\left(w^{k}\right) .
$$

(2) Compute the projection onto the set \mathcal{C},

$$
w^{k+1} \in \underset{v \in \mathcal{C}}{\operatorname{argmin}}\left\|v-w^{k+\frac{1}{2}}\right\|
$$

- Projection is the closest point that satisfies the constraints.
- Generalizes "projection onto subspace" from linear algebra.
- We will also write projection of w onto \mathcal{C} as

$$
\operatorname{proj}_{\mathcal{C}}[w]=\underset{v \in \mathcal{C}}{\operatorname{argmin}}\|v-w\|,
$$

and for convex \mathcal{C} it's unique.

Why the Projected Gradient?

- We want to optimize f (smooth but possibly non-convex) over some convex set \mathcal{C},

$$
\underset{w \in \mathcal{C}}{\operatorname{argmin}} f(w) .
$$

- Recall that we can view gradient descent as minimizing quadratic approximation

$$
w^{k+1} \in \underset{v}{\operatorname{argmin}}\left\{f\left(w^{k}\right)+\nabla f\left(w^{k}\right)\left(v-w^{k}\right)+\frac{1}{2 \alpha_{k}}\left\|v-w^{k}\right\|^{2}\right\},
$$

where we've written it with a general step-size α_{k} instead of $1 / L$.

- Solving the convex quadratic argmin gives $w^{k+1}=w^{k}-\alpha_{k} \nabla f\left(w^{k}\right)$.
- We could minimize quadratic approximation to f subject to the constraints,

$$
w^{k+1} \in \underset{v \in \mathcal{C}}{\operatorname{argmin}}\left\{f\left(w^{k}\right)+\nabla f\left(w^{k}\right)^{\top}\left(v-w^{k}\right)+\frac{1}{2 \alpha_{k}}\left\|v-w^{k}\right\|^{2}\right\}
$$

Why the Projected Gradient?

- We write this "minimize quadratic approximation over the set \mathcal{C} " iteration as

$$
\begin{aligned}
w^{k+1} & \in \underset{v \in \mathcal{C}}{\operatorname{argmin}}\left\{f\left(w^{k}\right)+\nabla f\left(w^{k}\right)^{\top}\left(v-w^{k}\right)+\frac{1}{2 \alpha_{k}}\left\|v-w^{k}\right\|^{2}\right\} \\
& \equiv \underset{v \in \mathcal{C}}{\operatorname{argmin}}\left\{\alpha_{k} f\left(w^{k}\right)+\alpha_{k} \nabla f\left(w^{k}\right)^{\top}\left(v-w^{k}\right)+\frac{1}{2}\left\|v-w^{k}\right\|^{2}\right\} \quad \text { (multiply by } \alpha_{k} \text {) } \\
& \equiv \underset{v \in \mathcal{C}}{\operatorname{argmin}}\left\{\frac{\alpha_{k}^{2}}{2}\left\|\nabla f\left(w^{k}\right)\right\|^{2}+\alpha_{k} \nabla f\left(w^{k}\right)^{\top}\left(v-w^{k}\right)+\frac{1}{2}\left\|v-w^{k}\right\|^{2}\right\} \quad \text { (土 const.) } \\
& \equiv \underset{v \in \mathcal{C}}{\operatorname{argmin}}\left\{\left\|\left(v-w^{k}\right)+\alpha_{k} \nabla f\left(w^{k}\right)\right\|^{2}\right\} \quad \text { (complete the square) } \\
& \equiv \underset{v \in \mathcal{C}}{\operatorname{argmin}}\{\|v-\underbrace{\left(w^{k}-\alpha_{k} \nabla f\left(w^{k}\right)\right)}_{\text {gradient descent }}\|\},
\end{aligned}
$$

which gives the projected-gradient algorithm: $w^{k+1}=\operatorname{proj}_{\mathcal{C}}\left[w^{k}-\alpha_{k} \nabla f\left(w^{k}\right)\right]$.

Properties of Projected Gradient

- Projected gradient for convex \mathcal{C} has similar properties to unconstrained GD.
- With $\alpha_{k}<2 / L$, guaranteed to decrease objective.
- With $\alpha_{k}=1 / L$, get $O(1 / k)$ rate for convex f with Lipschitz ∇f.
- With $\alpha_{k}=1 / L$, get $O\left((1-\mu / L)^{k}\right)$ rate for strongly-convex f with Lipschitz ∇f.
- And again get faster rate with $\alpha_{k}=2 /(\mu+L)$.
- Minimizers w^{*} are "fixed points" of the update,

$$
w^{*}=\operatorname{proj}_{\mathcal{C}}\left[w^{*}-\alpha \nabla f\left(w^{*}\right)\right],
$$

for any step-size $\alpha>0$ (generalizes $\nabla f\left(w^{*}\right)=0$ for unconstrained case).

- If f is convex then w^{*} is optimal iff the above holds.

Solution is Fixed Point of Projected Gradient Update

Solution is Fixed Point of Projected Gradient Update

Non-Expansiveness of Projection Operator

- Some analyses use that projection onto convex sets is non-expansive.
- After projection, points will be the same distance or closer.

Gradient Mapping and Checking Convergence

- The projected gradient iteration is

$$
w^{k+1}=\operatorname{proj}_{\mathcal{C}}\left[w^{k}-\alpha_{k} \nabla f\left(w^{k}\right)\right] .
$$

- We can re-write this iteration as

$$
w^{k+1}=w^{k}-\alpha_{k} g\left(w^{k}, \alpha_{k}\right)
$$

where g is called the gradient mapping

$$
g\left(w^{k}, \alpha_{k}\right)=\frac{1}{\alpha_{k}}(w^{k}-\underbrace{\operatorname{proj}_{\mathcal{C}}\left[w^{k}-\alpha_{k} \nabla f\left(w^{k}\right)\right]}_{w^{k+1}})
$$

- If we have no constraints then $g\left(w^{k}, \alpha_{k}\right)=\nabla f\left(w^{k}\right)$ (so we get gradient descent).
- The gradient mapping has similar properties to the gradient:
- We have that $-g\left(w^{k}, \alpha_{k}\right)$ points in a direction that decreases f (for any α_{k}).
- We will next show that $\left\|g\left(w^{k}, \alpha_{k}\right)\right\|^{2}$ gives a measure of guaranteed progress.
- Since $g\left(w^{*}, \alpha_{k}\right)=0$ for any α_{k}, we could use $\left\|g\left(w^{k}, 1\right)\right\|$ to monitor convergence.

Digression: Projection Theorem

- Projection theorem: for convex sets, w_{p} is the projection of w iff

$$
\left(w-w_{p}\right)^{T}\left(v-w_{p}\right) \leq 0
$$

for all v in \mathcal{C}.

- "Angle between $\left(w-w_{p}\right)$ and $\left(v-w_{p}\right)$ is ≥ 90 degrees".

Projection Theorem and Gradient Mapping

- Projection theorem: for convex sets w_{p} is the projection of w iff

$$
\left(w-w_{p}\right)^{T}\left(v-w_{p}\right) \leq 0
$$

for all v in \mathcal{C}.

- If we set $w=w^{k}-\alpha_{k} \nabla f\left(w^{k}\right)$ then $w_{p}=w^{k+1}$, and choosing $v=w^{k}$ gives

$$
\begin{aligned}
\left(w^{k}-\alpha_{k} \nabla f\left(w^{k}\right)-w^{k+1}\right)^{T}\left(w^{k}-w^{k+1}\right) & \leq 0 \\
-\alpha_{k} \nabla f\left(w^{k}\right)^{T}\left(w^{k}-w^{k+1}\right) & \leq-\left(w^{k}-w^{k+1}\right)^{T}\left(w^{k}-w^{k+1}\right) \\
\nabla f\left(w^{k}\right)^{T}\left(w^{k+1}-w^{k}\right) & \leq-\frac{1}{\alpha_{k}}\|\underbrace{w^{k}-w^{k+1}}_{\alpha_{k} g\left(w^{k}, \alpha_{k}\right)}\|^{2} \\
\nabla f\left(w^{k}\right)^{T}\left(w^{k+1}-w^{k}\right) & \leq-\alpha_{k}\left\|g\left(w^{k}, \alpha_{k}\right)\right\|^{2}
\end{aligned}
$$

- Can be used in descent lemma to get a progress bound and convergence rate.

Progress Bound and Convergence Rate for Projected Gradient

- Recall the descent lemma when ∇f is Lipschitz then for all w and v,

$$
f(v) \leq f(w)+\nabla f(w)^{T}(v-w)+\frac{L}{2}\|v-w\|^{2}
$$

- Setting $w=w^{k}$ and $v=w^{k+1}$ from projected gradient and using $\alpha_{k}=1 / L$ gives

$$
\begin{aligned}
f\left(w^{k+1}\right) & \leq f\left(w^{k}\right)+\underbrace{\nabla f\left(w^{k}\right)^{T}\left(w^{k+1}-w^{k}\right)}_{\leq-\alpha_{k} \| g\left(w^{k}, \alpha_{k} \|\right)^{2}}+\frac{L}{2}\|\underbrace{w^{k+1}-w^{k}}_{\alpha_{k} g\left(w^{k}, \alpha_{k}\right)}\|^{2} \\
& \leq f\left(w^{k}\right)-\alpha_{k}\left\|g\left(w, \alpha_{k}\right)\right\|^{2}+\frac{L \alpha^{2}}{2}\left\|g\left(w^{k}, \alpha_{k}\right)\right\|^{2} \\
& =f\left(w^{k}\right)-\frac{1}{2 L}\|g(w, 1 / L)\|^{2}
\end{aligned}
$$

$$
\text { (with } \alpha_{k}=1 / L \text {) }
$$

we get our usual progress bound but in terms of gradient mapping.

- For f bounded below, old arguments gives $\left\|g\left(w^{k}, 1 / L\right)\right\|^{2}$ converges at rate $O(1 / k)$.

Simple Convex Sets

- Projected-gradient is only efficient if the projection is cheap.
- We say that \mathcal{C} is simple if the projection is cheap.
- For example, if it costs $O(d)$ then it adds no cost to the algorithm.
- For example, if we want $w \geq 0$ then projection sets negative values to 0 .
- Non-negative constraints are "simple".
- Another example is $w \geq 0$ and $w^{\top} 1=1$, the probability simplex.
- There are $O(d)$ algorithms to compute this projection (similar to "select" algorithm)

Simple Convex Sets

- Other examples of simple convex sets:
- Having upper and lower bounds on the variables, $L B \leq x \leq U B$.
- Having a linear equality constraint, $a^{\top} x=b$, or a small number of them.
- Having a half-space constraint, $a^{\top} x \leq b$, or a small number of them.
- Having a norm-ball constraint, $\|x\|_{p} \leq \tau$, for $p=1,2, \infty($ fixed $\tau)$.
- Having a norm-cone constraint, $\|x\|_{p} \leq \tau$, for $p=1,2, \infty$ (variable τ).
- It is easy to minimize smooth functions with these constraints.

Intersection of Simple Convex Sets: Dykstra's Algorithm

- Often our set \mathcal{C} is the intersection of simple convex set,

$$
\mathcal{C} \equiv \cap_{i} \mathcal{C}_{i} .
$$

- For example, we could have a large number linear constraints:

$$
\mathcal{C} \equiv\left\{w \mid a_{i}^{T} w \leq b_{i}, \forall_{i}\right\} .
$$

- Dykstra's algorithm can compute the projection in this case.
- On each iteration, it projects a vector onto one of the sets \mathcal{C}_{i}.
- Requires $O(\log (1 / \epsilon))$ such projections to get within ϵ.
(This is not the shortest path algorithm of "Dijkstra".)

Outline

(1) Projections and Projected Gradient
(2) Active-Set Identification and Backtracking
(3) Acceleration and Projected Newton
(4) Projected CD/SGD and Frank-Wolfe

L1-Regularization

- A popular approach to feature selection we saw in 340 is L1-regularization:

$$
F(w)=f(w)+\lambda\|w\|_{1} .
$$

- Advantages:
- Fast: can apply to large datasets, just minimizing one function.
- Convex if f is convex.
- Reduces overfitting because it simultaneously regularizes.
- Disadvantages:
- Prone to false positives, particularly if you pick λ by cross-validation.
- Not unique: there may be infinite solutions.
- There exist many extensions:
- "Elastic net" adds L2-regularization to make solution unique.
- "Bolasso" applies this on bootstrap samples to reduce false positives.
- Non-convex regularizers reduce false positives but are NP-hard to optimize.

L1-Regularization

- Key property of L1-regularization: if λ is large, solution w^{*} is sparse:
- w^{*} has many values that are exactly zero.
- How setting variables to exactly 0 performs feature selection in linear models:

$$
\hat{y}^{i}=w_{1} x_{1}^{i}+w_{2} x_{2}^{i}+w_{3} x_{3}^{i}+w_{4} x_{4}^{i}+w_{5} x_{5}^{i} .
$$

- If $w=\left[\begin{array}{lllll}0 & 0 & 3 & 0 & -2\end{array}\right]^{\top}$ then:

$$
\begin{aligned}
\hat{y}^{i} & =0 x_{1}^{i}+0 x_{2}^{i}+3 x_{3}^{i}+0 x_{4}^{i}+(-2) x_{5}^{i} \\
& =3 x_{3}^{i}-2 x_{5}^{i} .
\end{aligned}
$$

- Features $\{1,2,4\}$ are not used in making predictions: we "selected" $\{3,5\}$.

Transforming L1-Regularization into a Problem with Bound Constraints

- What does L1-regularization have to do with constrained optimization?
- Can transform many non-smooth problems into smooth + simple constraints.
- See the convex optimization notes on the webpage for a generic way to do this.
- For smooth objectives with L1-regularization,

$$
\underset{w \in \mathbb{R}^{d}}{\operatorname{argmin}} f(w)+\lambda\|w\|_{1},
$$

we can re-write as a smooth problem with only non-negative constraints,

$$
\underset{w_{+} \geq 0, w_{-} \geq 0}{\operatorname{argmin}} f\left(w_{+}-w_{-}\right)+\lambda \sum_{j=1}^{d}\left(w_{+}+w_{-}\right) .
$$

- Can then apply projected-gradient to this problem.

Active-Set Identification

- For L1-regularization, projected-gradient "identifies" active set in finite time: (under mild assumptions)
- For all sufficiently large k, sparsity pattern of w^{k} matches sparsity pattern of w^{*}.

$w^{k}=\left(\begin{array}{c}w_{1}^{k} \\ 0 \\ 0 \\ w_{4}^{k} \\ 0\end{array}\right)$,
- Useful if we are only interested in finding the sparsity pattern.
- Convergence rate will be faster once this happens (optimizing over subspace).
- You could also apply unconstrained Newton-like methods on the non-zero variables.

Related Work and More-General Results

- Idea of finitely identifying non-zeroes dates back (at least) to Bertskeas [1976].
- For projected-gradient applied to smooth functions with non-negative constraints.
- Has been shown for a variety of convex/non-convex problems.
- Burke \& Moré [1988], Wright [1993], Hare \& Lewis [2004], Hare [2011].
- We will show the active-set identification property for non-negative constraints.
- In this setting you identify the variables that are exactly zero.
- For general problems, you identify constraints that hold with equality at solution.

Special Case: Optimizing with Non-Negative Constraints

- Consider optimization with non-negative constraints,

$$
\underset{w \geq 0}{\operatorname{argmin}} f(w),
$$

using the projected-gradient method with a step-size of $1 / L$,

$$
w^{k+1}=\left[w^{k}-\frac{1}{L} \nabla f\left(w^{k}\right)\right]^{+}
$$

- This leads to sparsity, and we use \mathcal{Z} as the indices i where $w_{i}^{*}=0$.
- We will assume:
(1) Gradient ∇f is L-Lipschitz continuous.
(2) We converge to an isolated minimizer w^{*}.
(3) Non-degeneracy condition: for all $i \in \mathcal{Z}$ we have $\nabla f\left(w_{i}^{*}\right) \geq \delta$ for some $\delta>0$.
- "You cannot have $\nabla_{i} f\left(w^{*}\right)=0$ for variables i that are supposed to be zero."
- This type of condition is standard: prevents reaching solution through interior.

Active-Set Identification for Non-Negative Constraints

- Let's show that we set $i \in \mathcal{Z}$ to zero when we're "close" to the solution.
- Implies "for large ' k ', if w_{i}^{*} is zero then the algorithm sets w_{i}^{k} to 0 ".

Active-Set Identification for Non-Negative Constraints

- Let's show that we set $i \in \mathcal{Z}$ to zero when we're "close" to the solution.
- Implies "for large ' k ', if w_{i}^{*} is zero then the algorithm sets w_{i}^{k} to 0 ".
- Since we assume projected-gradient converges to an isolated optimum, for all sufficiently large k we have $\left\|w^{k}-w^{*}\right\| \leq \frac{\delta}{2 L}$.
- In this region we have two useful properties for all $i \in \mathcal{Z}$:
(1) The value of the variable must be small: $w_{i}^{k} \leq \frac{\delta}{2 L}$.
- Since $w_{i}^{*}=0$ and w_{i}^{k} is within $\delta / 2 L$ of w_{i}.
(2) The value of the gradient must be large: $\nabla_{i} f\left(w^{k}\right) \geq \delta / 2$.
- Since we assumed $\nabla_{i} f\left(w^{*}\right) \geq \delta$ and ∇f is Lipschitz so

$$
\left|\nabla_{i} f\left(w^{k}\right)-\nabla_{i} f\left(w^{*}\right)\right| \leq\left\|\nabla f\left(w^{k}\right)-\nabla f\left(w^{*}\right)\right\| \leq L\left\|w^{k}-w^{*}\right\| \leq \delta / 2
$$

- Plugging these into the projected-gradient update gives for $i \in \mathcal{Z}$ that

$$
w_{i}^{k+1}=\left[w_{i}^{k}-\frac{1}{L} \nabla_{i} f\left(w^{k}\right)\right]^{+} \leq\left[\frac{\delta}{2 L}-\frac{\delta}{2 L}\right]^{+}=0
$$

Superlinear Convergence after Identifying Active Set

- In a typical setting, we might hope that $\left|\mathcal{Z}^{c}\right| \ll d$.
- Here we have the potential for faster algorithms by doing Newton steps on \mathcal{Z}.
- Some possibilities:
- At some point, switch from projected-gradient to Newton on the manifold.
- Unfortunately, hard to decide when to switch.
- Each iteration checks progress of projected-gradient and Newton [Wright, 2012].
- Choose whichever one makes the most progres.
- Two-metric projection [Gafni \& Bertsekas, 1984], discussed in next section.
- May require expensive Newton steps before we're on the manifold.
- There remains some theoretical and experimental work to do here.

Gradient Projection with 2 Step Sizes

- Active set identification can be affect by how we backtrack.
- Written in terms of the gradient mapping, projected gradient iteration is

$$
w^{k+1}=w^{k}-\alpha_{k} g\left(w^{k}, \alpha_{k}\right),
$$

where notice that α_{k} appears twice.

- In definition of gradient mapping, and how far we move.
- Consider introducing a second step size $\eta_{k} \leq 1$,

$$
w^{k+1}=w^{k}-\eta_{k} \alpha_{k} g\left(w^{k}, \alpha_{k}\right),
$$

which only affects how far we move in gradient mapping direction.

- We previously considered $\alpha_{k}=1 / L$ and $\eta_{k}=1$, but this works poorly in practice.
- In practice, we typically fix one step size and backtrack along the other.

2 Backtracking Strategies for Projected Gradient

- Projected gradient written in terms of 2 step sizes is

$$
w^{k+1}=w^{k}-\eta_{k} \alpha_{k} g\left(w^{k}, \alpha_{k}\right)
$$

- Backtracking along the feasible direction:
- Fix α_{k} (typically at 1) and backtrack by reducing η_{k}.
- Only 1 projection per iteration (good if projection is expensive).
- But may is not guaranteed to identify active set.
- Backtracking along the projection arc:
- Fix η_{k} at 1 and backtrack by reducing α_{k}.
- 1 projection per backtracking step (bad if projection is expensive).
- But identifies active set after finite number of iterations.

Backtracking Along the Feasible Direction

- Backtracking along the feasible direction:
- Project once, then backtrack through the interior.

- Better if projection is expensive (and do not care about active set).

Backtracking Along the Feasible Direction

- Backtracking along the feasible direction:
- Project once, then backtrack through the interior.

- Better if projection is expensive (and do not care about active set).

Backtracking Along the Projection Arc

- Backtracking along the projection arc:
- Backtrack then re-project, which may move along boundary.

- Better if projection is cheap (or want to identify active set).

Backtracking Along the Projection Arc

- Backtracking along the projection arc:
- Backtrack then re-project, which may move along boundary.

- Better if projection is cheap (or want to identify active set).

Outline

(1) Projections and Projected Gradient
(2) Active-Set Identification and Backtracking
(3) Acceleration and Projected Newton
(4) Projected CD/SGD and Frank-Wolfe

Faster Projected-Gradient Methods

- An accelerated projected-gradient method has the form

$$
\begin{aligned}
w^{k+1} & =\operatorname{proj}_{\mathcal{C}}\left[v^{k}-\alpha_{k} \nabla f\left(w^{k}\right)\right] \\
v^{k+1} & =w^{k+1}+\beta_{k}\left(w^{k+1}-w^{k}\right)
\end{aligned}
$$

and this achieves accelerated rate with same α_{k} and β_{k} as unconstrained case.

- Note that v^{k} may not satisfy constraints, but variants exist that keep v^{k} feasible.
- We could alternately use the Barzilai-Borwein step-size.
- Known as spectral projected-gradient.
- The naive Newton-like methods with Hessian approximation H_{k},

$$
w^{k+1}=\operatorname{proj}_{\mathcal{C}}[\underbrace{w^{k}-\alpha_{k}\left[H_{k}\right]^{-1} \nabla f\left(w^{k}\right)}_{\text {Newton step }}]
$$

does not work.

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Projected-Newton Method

- The naive projected-Newton method,

$$
\begin{aligned}
& w^{k+\frac{1}{2}}=w^{k}-\alpha_{k}\left[H_{k}\right]^{-1} \nabla f\left(w^{k}\right) \\
& w^{k+1}=\operatorname{argmin}\left\|v-w^{k+\frac{1}{2}}\right\|
\end{aligned}
$$

(Newton-like step)
(projection)
which will not work.

- Projection theorem does not imply Newton gives a descent direction.
- The correct projected-Newton method uses

$$
\begin{aligned}
w^{k+\frac{1}{2}} & =w^{k}-\alpha_{k}\left[H_{k}\right]^{-1} \nabla f\left(w^{k}\right) \\
w^{k+1} & =\underset{v \in \mathcal{C}}{\operatorname{argmin}}\left\|v-w^{k+\frac{1}{2}}\right\|_{H_{k}}
\end{aligned}
$$

(Newton-like step)
(projection under Hessian metric)

Projected-Newton Method

- Projected-gradient minimizes quadratic approximation,

$$
w^{k+1}=\underset{v \in C}{\operatorname{argmin}}\left\{f\left(w^{k}\right)+\nabla f\left(w^{k}\right)\left(v-w^{k}\right)+\frac{1}{2 \alpha_{k}}\left\|v-w^{k}\right\|^{2}\right\} .
$$

- Newton's method can be viewed as quadratic approximation $\left(H_{k} \approx \nabla^{2} f\left(w^{k}\right)\right)$:

$$
w^{k+1}=\underset{v \in \mathbb{R}^{d}}{\operatorname{argmin}}\left\{f\left(w^{k}\right)+\nabla f\left(w^{k}\right)\left(v-w^{k}\right)+\frac{1}{2 \alpha_{k}}\left(v-w^{k}\right) H_{k}\left(v-w^{k}\right)\right\} .
$$

- Projected Newton minimizes constrained quadratic approximation:

$$
w^{k+1}=\underset{v \in C}{\operatorname{argmin}}\left\{f\left(w^{k}\right)+\nabla f\left(w^{k}\right)\left(v-w^{k}\right)+\frac{1}{2 \alpha_{k}}\left(v-w^{k}\right) H_{k}\left(v-w^{k}\right)\right\} .
$$

- Equivalently, we project Newton step under different Hessian-defined norm,

$$
w^{k+1}=\underset{v \in C}{\operatorname{argmin}}\left\|v-\left(w^{k}-\alpha_{t} H_{k}^{-1} \nabla f\left(w^{k}\right)\right)\right\|_{H_{k}},
$$

where general "quadratic norm" is $\|z\|_{A}=\sqrt{z^{\top} A z}$ for $A \succ 0$.

Discussion of Projected-Newton

- Projected-Newton iteration is given by

$$
w^{k+1}=\underset{y \in C}{\operatorname{argmin}}\left\{f\left(w^{k}\right)+\nabla f\left(w^{k}\right)\left(v-w^{k}\right)+\frac{1}{2 \alpha_{k}}\left(v-w^{k}\right) H_{k}\left(v-w^{k}\right)\right\} .
$$

- But this is expensive even when \mathcal{C} is simple.
- There are a variety of practical alternatives:
- If H_{k} is diagonal then this is typically simple to solve for simple \mathcal{C}.
- Inexact projected-Newton: solve the above approximately.
- Use a projected-gradient variant to minimize the above strongly-convex quadratic.
- Useful when f is very expensive but H_{k} and \mathcal{C} are simple.
- "Optimizing costly functions with simple constraints" uses L-BFGS for H_{k}.
- Two-metric projection methods are special algorithms for upper/lower bounds.
- Fix problem of naive method in this case by making H_{k} "partially diagonal".

Two-Metric Projection for Bound Constraints

- Consider again optimizing with non-negative constraints, $\min _{w \in \mathcal{C}} f(w)$.
- The two-metric projection method splits the variables into two sets:

$$
\begin{array}{r}
\mathcal{A}^{k} \equiv\left\{i \mid w_{i}^{k}=0, \nabla_{i} f\left(w^{k}\right)>0\right\} \\
\mathcal{I}^{k} \equiv\left\{i \mid w_{i}^{k} \neq 0 \text { or } \nabla_{i} f\left(w^{k}\right) \leq 0\right\}
\end{array}
$$

the "active" variables (constrained at boundary) and "inactive variables".

- Uses a projected-gradient step on \mathcal{A}^{k} and "naive" projected-Newton on \mathcal{I}^{k}.

$$
\begin{aligned}
w_{A^{k}}^{k+1} & =\operatorname{proj}_{\mathcal{C}}\left[w_{A^{k}}^{k}-\alpha_{k} \nabla_{A^{k}} f\left(w^{k}\right)\right] \\
w_{I^{k}}^{k+1} & =\operatorname{proj}_{\mathcal{C}}\left[w_{I^{k}}^{k}-\alpha_{k}\left[\nabla_{I^{k}}^{2} f\left(w^{k}\right)\right]^{-1} \nabla_{I^{k}} f\left(w^{k}\right)\right]
\end{aligned}
$$

- Eventually switches to unconstrained Newton on unconstrained variables.
- Can be generalized to general lower and upper bounds on individual variables.
- Also exists a two-metric projection method for optimizing over probability simplex.

Outline

(1) Projections and Projected Gradient
(2) Active-Set Identification and Backtracking
(3) Acceleration and Projected Newton
(4) Projected CD/SGD and Frank-Wolfe

Cheaper Iterations with Projected Coordinate Optimization

- We can consider various ways to make projected-gradient iterations cheaper.
- In the special case of bounds constraints,

$$
\min f(w), \quad l_{i} \leq w_{i} \leq u_{i},
$$

we can coordinate optimization or projected coordinate descent,

$$
w_{i}^{k+1}=\operatorname{proj}_{l_{i} \leq w_{i} \leq u_{i}}\left[w_{i}^{k}-\alpha_{k} \nabla_{i} f\left(w^{k}\right)\right],
$$

where the projection step clips gradient descent to stay within the bounds.

- Random coordinate optimization has same convergence rates as unconstrained case.

Coordinate Optimization with Non-Separable Constraints

- Coordinate optimization will not work for non-separable constraints.
- For example, consider optimizing with an equality constraint,

$$
\min _{w} f(w), \quad \sum_{i=1}^{n} w_{i}=1
$$

- If w satisfies the constraint, you cannot change any w_{i} without violating it.
- But you can change 2 variables i and j to maintain the constraint:

$$
\begin{aligned}
w_{i}^{k+1} & =w_{i}^{k}-\alpha_{k}\left(\nabla_{i} f\left(w^{k}\right)-\nabla_{j} f\left(w^{k}\right)\right. \\
w_{j}^{k+1} & =w_{j}^{k}-\alpha_{k}\left(\nabla_{j} f\left(w^{k}\right)-\nabla_{i} f\left(w^{k}\right) .\right.
\end{aligned}
$$

- How to handle more complicated constraints gets ugly.
- Special case: block-separable constraints (can use block coordinate optimization).

Projected Stochastic Gradient Descent

- We can consider projected stochastic gradient,

$$
w^{k+1}=\operatorname{proj}_{\mathcal{C}}\left[w^{k}-\alpha_{k} \nabla f_{i_{k}}\left(w^{k}\right)\right]
$$

where we do projected gradient on a random training example i_{k}.

- Convergence properties are similar to unconstrained SGD.
- Constraint does not need to be separable, but projection should be cheap.
- Need to project n times per epoch.
- Some properties of SGD and projected-gradient that do not hold:
- Lose fast convergence for over-parameterized models.
- Because we no longer even have $\nabla f\left(w^{*}\right)=0$.
- Lose active set identification property of projected gradient.
- Can leave boundary of constraints infinitely often.
- Variant that restores this property is dual averaging,

$$
w^{k+1}=\operatorname{proj}_{\mathcal{C}}\left[w^{0}-\frac{\alpha_{k}}{k} \sum_{t=1}^{k} \nabla f\left(w^{k}\right)\right]
$$

since it uses the average of the previous gradients (variance of direction goes to 0).

Frank-Wolfe Method ("Conditional Gradient")

- The projected-gradient method uses a quadratic approximation

$$
\underset{v \in \mathcal{C}}{\operatorname{argmin}}\left\{f\left(w^{k}\right)+\nabla f\left(w^{k}\right)^{\top}\left(v-w^{k}\right)+\frac{1}{2 \alpha_{k}}\left\|v-w^{k}\right\|^{2}\right\},
$$

and in some cases may be hard to compute (or even approximate).

- For these problems we can sometimes solve the simplified problem,

$$
\underset{v \in \mathcal{C}}{\operatorname{argmin}}\left\{f\left(w^{k}\right)+\nabla f\left(w^{k}\right)^{\top}\left(v-w^{k}\right)\right\},
$$

which optimizes a linear approximation to the function over the constraint set.

- This requires the set \mathcal{C} to bounded, otherwise may be no solution.
- This is the basis of the conditional gradient method, also known as Frank-Wolfe
- Marguerite Frank at NeurIPS in 2013: https://www. youtube.com/watch?v=24e08AX9Eww.

Frank-Wolfe Method ("Conditional Gradient")

- Visualization of the Frank-Wolfe approximation:

https://en.wikipedia.org/wiki/Frank\OT1–Wolfe_algorithm
- For convex f, minimizer of linear approximation gives lower bound on $f\left(w^{*}\right)$.
- Like Newton, iterations are affine-invariant (don't change with affine transformation).

Frank-Wolfe Method ("Conditional Gradient")

- The Frank-Wolfe algorithm takes steps of the form

$$
w^{k+1}=w^{k}+\alpha_{k}\left(v^{k}-w^{k}\right),
$$

where $v^{k} \in \operatorname{argmin}_{v \in \mathcal{C}} \nabla f\left(w^{k}\right)^{\top} v$.

- So the gradient mapping would be $\frac{1}{\alpha_{k}}\left(w^{k}-v^{k}\right)$.
- Common ways to set the step size:
- Decreasing: $\alpha_{k}=2 /(k+2)$.
- Descent lemma: $\min \left\{1, \frac{\left\langle\nabla f\left(w^{k}\right), w^{k}-v^{k}\right\rangle}{L\left\|w^{k}-v^{k}\right\|^{2}}\right\}$ (works better if you approximate L).
- Line search: $\operatorname{argmin}_{0 \leq \alpha \leq 1} f\left(w^{k}+\alpha_{k}\left(v^{k}-w^{k}\right)\right)$ (works best).
- Convergence rate is $O(1 / k)$ for convex and non-convex f.
- Tends to be slower than projected-gradient in cases where they have similar costs.

Linear Convergence of Frank-Wolfe

- Basic Frank-Wolfe method has linear convergence in certain settings:
- Function f is PL and solution is in interior of \mathcal{C}.
- Function f is strongly convex and constraint \mathcal{C} is uniformly convex.
- Several variations exist that obtain linear rates including away-step Frank-Wolfe:

https://arxiv.org/pdf/2211.14103.pdf
- Frank-Wolfe moves towards vertex minimizing approximation resulting in zigzagging.
- Away-steps move away from maximizing vertex (if larger directional derivative).
- Above, iteration 6 moves away from initial vertex, moving onto boundary.
- Recent variant is pairwise Frank-Wolfe, combining the above two steps.
- Another variant is conditional gradient sliding, acceleration in terms of gradients.

Summary

- Projected-gradient allows optimization with simple constraints.
- Same convergence speed as gradient descent.
- Simple convex sets are those that allow efficient projection.
- Active set identification of projected gradient.
- Finds active constraints at solution in a finite number of iterations.
- 2 backtracking strategies for projected gradient.
- Line search along feasible direction or backtrack along projection arc.
- Projected Newton adds second-order information.
- Faster convergence but expensive even for simple sets, needs approximation.
- Projected coordinate descent works for bound constraints.
- Projected SGD works for large datasets.
- But lose active set identification and fast convergence under over-parameterization
- Frank-Wolfe uses a linear rather than quadratic approximation.
- Much cheaper than projection for some problems.
- Next time: non-smooth functions and finding the non-convex global min.

