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Review: Gradient Descent

The “training” phase in machine learning usually involves numerical optimization.

Minimizing a function f depending on d parameters w,

min
w∈Rd

f(w).

For differentiable f , a prototypical method is gradient descent,

wk+1 = wk − αk∇f(wk).

Cost of update is O(d) in terms.

Guaranteed to decrease f for small enough step size αk.
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Review: Lipschitz Continuity of Gradient

We considered functions f where the gradient is Lipschitz continuous,

∥∇f(w)−∇f(v)∥ ≤ L∥w − v∥,

meaning that gradient cannot change faster than a constant L.

Under this assumption we showed that gradient descent with αk = 1/L satisfies

f(wk+1) ≤ f(wk)− 1

2L
∥∇f(wk)∥2.

But works better with clever step size choices and line searches.

We can show that similar progress bounds hold for these choices.
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Review: Convergence Rates

We discussed convergence rates and iteration complexities:
1 Sublinear rates like O(1/t), which requires O(1/ϵ) to get error ϵ.
2 Linear rates like O(ρt) for ρ < 1, which requires O(log(1/ϵ).
3 Superlinear rates like O(ρ2

t

), which requires O(log log(1/ϵ)).

When gradient is Lipschitz continuous, convergence rate of gradient descent is:

Linear O(ρt) on f(wt)− f∗ for functions that are strongly-convex (strongest).
Sublinear O(1/t) on ∥∇f(wt)∥2 for functons that are bounded below (weakest).
Sublinear O(1/t) on f(wt)− f∗ for functions that are convex.
Linear O(ρt) on f(wt)− f∗ for functions that satisfy Polyak- Lojasiewicz inequality.
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Review: Faster Algorithms
Get faster rates for strongly-convex quadratics with heavy-ball method,

wk+1 = wk − αk∇f(wk) + βk(wk − wk−1),

for appropriate βk (special case with optimal αk and βk is conjugate gradient).

Get faster rates for convex functions with Nesterov’s accelerated gradient method,

wk+1 = wk − αk∇f(wk) + βk(wk − wk−1)− αkβk(∇f(wk)−∇f(wk−1)),

for appropriate βk.

Get faster local rates with Newton’s method,

wk+1 = wk − αk[∇2f(wk)]−1∇f(wk),

and exist variations that handle case where Hessian ∇2f(wk) is not invertible.
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Review: Cheaper Algorithms

Get cheaper iterations for many problems using coordinate optimization.

Optimizes 1 variable at a time, chosen cyclically/randomly/greedily.
Faster than gradient descent if iterations are d-times cheaper.

Common problem structure is optimizing averages,

f(w) =
1

n

n∑
i=1

fi(w).

In this setting get cheaper iterations with stochastic gradient descent (SGD),

wk+1 = wk − αk∇fik(w
k),

where ik is a random sample from sum.

Converges slower than gradient descent but iterations are n-times cheaper.
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Review: SGD Issues

Progress of SGD depends on ∥∇f(wk)∥, αk, batch size, and noise variance σ2
k.

Decreasing step sizes or increasing batch sizes required for convergence.
Constant step size and batch size sufficient for any fixed accuracy.

In various settings, can reduce/avoid effect of noise variance σ2
k:

Variance reduction methods (SAG/SVRG) do this with a fixed step and batch size.
Over-parameterized models assume σ2

∗ = 0, which allows fixed step/batch size.

Growing batches and SAG/SVRG and over-parameterzation line-search easier.
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Review: Practical Newton Methods

Get cheap approximations to Newton’s method using:
Diagonal approximations of Hessian.

Cheap/easy but often does not work well.

Hessian-free Newton.

Uses cheap Hessian-vector products within conjugate gradient to approximate Newton.

Quasi-Newton

Updates approximation of Hessian based on observed differences in gradients.

Barzilai-Borwein step size

Degenerate quasi-Newton method that just sets the step size for gradient descent.



Projections and Projected Gradient Active-Set Identification and Backtracking Acceleration and Projected Newton Projected CD/SGD and Frank-Wolfe

Outline

1 Projections and Projected Gradient

2 Active-Set Identification and Backtracking

3 Acceleration and Projected Newton

4 Projected CD/SGD and Frank-Wolfe



Projections and Projected Gradient Active-Set Identification and Backtracking Acceleration and Projected Newton Projected CD/SGD and Frank-Wolfe

Projected-Gradient for Non-Negative Constraints

We used projected gradient in 340 for NMF to find non-negative solutions,

argmin
w≥0

f(w).

In this case the algorithm has a simple form,

wk+1 = max{0, wk − αk∇f(wk)︸ ︷︷ ︸
gradient descent

},

where the max is taken element-wise.

“Do a gradient descent step, set negative values to 0.”

An obvious algorithm to try, and works as well as unconstrained gradient descent.
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A Broken “Projected-Gradient” Algorithms

Projected-gradient addresses problem of minimizing smooth f over a convex set C,

argmin
w∈C

f(w).

As another example, we often want w to be a probability,

argmin
w≥0, 1⊤w=1

f(w),

Based on our “set negative values to 0” intuition, we might consider this:
1 Perform an unconstrained gradient descent step.
2 Set negative values to 0 and divide by the sum.

This algorithms does NOT work.

But it can be fixed if we replace Step 2 by “project onto the constraint set”.
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Projected-Gradient

wk+ 1
2 = wk − αk∇f(wk)︸ ︷︷ ︸

gradient step

, wk+1 ∈ argmin
v∈C

∥v − wk+ 1
2 ∥︸ ︷︷ ︸

projection step

.

Feasible Set

x - !f’(x)
f(x)

x

First proposed by Goldstein [1964] and Leviting & Polyak [1965].
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Projected-Gradient

wk+ 1
2 = wk − αk∇f(wk)︸ ︷︷ ︸

gradient step

, wk+1 ∈ argmin
v∈C

∥v − wk+ 1
2 ∥︸ ︷︷ ︸

projection step

.

Feasible Set

x+

f(x)

x

x - !f’(x)

First proposed by Goldstein [1964] and Leviting & Polyak [1965].
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Projected-Gradient

We can view the projected-gradient algorithm as having two steps:
1 Perform an unconstrained gradient descent step,

wk+ 1
2 = wk − αk∇f(wk).

2 Compute the projection onto the set C,

wk+1 ∈ argmin
v∈C

∥v − wk+ 1
2 ∥.

Projection is the closest point that satisfies the constraints.

Generalizes “projection onto subspace” from linear algebra.
We will also write projection of w onto C as

projC [w] = argmin
v∈C

∥v − w∥,

and for convex C it’s unique.
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Why the Projected Gradient?
We want to optimize f (smooth but possibly non-convex) over some convex set C,

argmin
w∈C

f(w).

Recall that we can view gradient descent as minimizing quadratic approximation

wk+1 ∈ argmin
v

{
f(wk) +∇f(wk)(v − wk) +

1

2αk
∥v − wk∥2

}
,

where we’ve written it with a general step-size αk instead of 1/L.
Solving the convex quadratic argmin gives wk+1 = wk − αk∇f(wk).

We could minimize quadratic approximation to f subject to the constraints,

wk+1 ∈ argmin
v∈C

{
f(wk) +∇f(wk)⊤(v − wk) +

1

2αk
∥v − wk∥2

}
,
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Why the Projected Gradient?
We write this “minimize quadratic approximation over the set C” iteration as

wk+1 ∈ argmin
v∈C

{
f(wk) +∇f(wk)⊤(v − wk) +

1

2αk
∥v − wk∥2

}
≡ argmin

v∈C

{
αkf(w

k) + αk∇f(wk)⊤(v − wk) +
1

2
∥v − wk∥2

}
(multiply by αk)

≡ argmin
v∈C

{
α2
k

2
∥∇f(wk)∥2 + αk∇f(wk)⊤(v − wk) +

1

2
∥v − wk∥2

}
(± const.)

≡ argmin
v∈C

{
∥(v − wk) + αk∇f(wk)∥2

}
(complete the square)

≡ argmin
v∈C

∥v − (wk − αk∇f(wk))︸ ︷︷ ︸
gradient descent

∥

 ,

which gives the projected-gradient algorithm: wk+1 = projC [w
k − αk∇f(wk)].
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Properties of Projected Gradient

Projected gradient for convex C has similar properties to unconstrained GD.

With αk < 2/L, guaranteed to decrease objective.
With αk = 1/L, get O(1/k) rate for convex f with Lipschitz ∇f .
With αk = 1/L, get O((1− µ/L)k) rate for strongly-convex f with Lipschitz ∇f .

And again get faster rate with αk = 2/(µ+ L).

Minimizers w∗ are “fixed points” of the update,

w∗ = projC [w
∗ − α∇f(w∗)],

for any step-size α > 0 (generalizes ∇f(w∗) = 0 for unconstrained case).

If f is convex then w∗ is optimal iff the above holds.
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Solution is Fixed Point of Projected Gradient Update
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Solution is Fixed Point of Projected Gradient Update
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Non-Expansiveness of Projection Operator
Some analyses use that projection onto convex sets is non-expansive.

After projection, points will be the same distance or closer.
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Gradient Mapping and Checking Convergence
The projected gradient iteration is

wk+1 = projC [w
k − αk∇f(wk)].

We can re-write this iteration as

wk+1 = wk − αkg(w
k, αk),

where g is called the gradient mapping

g(wk, αk) =
1

αk
(wk − projC [w

k − αk∇f(wk)]︸ ︷︷ ︸
wk+1

).

If we have no constraints then g(wk, αk) = ∇f(wk) (so we get gradient descent).

The gradient mapping has similar properties to the gradient:
We have that −g(wk, αk) points in a direction that decreases f (for any αk).
We will next show that ∥g(wk, αk)∥2 gives a measure of guaranteed progress.
Since g(w∗, αk) = 0 for any αk, we could use ∥g(wk, 1)∥ to monitor convergence.
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Digression: Projection Theorem
Projection theorem: for convex sets, wp is the projection of w iff

(w − wp)
T (v − wp) ≤ 0,

for all v in C.
“Angle between (w − wp) and (v − wp) is ≥ 90 degrees”.
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Projection Theorem and Gradient Mapping
Projection theorem: for convex sets wp is the projection of w iff

(w − wp)
T (v − wp) ≤ 0,

for all v in C.

If we set w = wk − αk∇f(wk) then wp = wk+1, and choosing v = wk gives

(wk − αk∇f(wk)− wk+1)T (wk − wk+1) ≤ 0

− αk∇f(wk)T (wk − wk+1) ≤ −(wk − wk+1)T (wk − wk+1)

∇f(wk)T (wk+1 − wk) ≤ − 1

αk
∥wk − wk+1︸ ︷︷ ︸

αkg(wk,αk)

∥2

∇f(wk)T (wk+1 − wk)≤ −αk∥g(wk, αk)∥2,

Can be used in descent lemma to get a progress bound and convergence rate.
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Progress Bound and Convergence Rate for Projected Gradient
Recall the descent lemma when ∇f is Lipschitz then for all w and v,

f(v) ≤ f(w) +∇f(w)T (v − w) +
L

2
∥v − w∥2,

Setting w = wk and v = wk+1 from projected gradient and using αk = 1/L gives

f(wk+1) ≤ f(wk) +∇f(wk)T (wk+1 − wk)︸ ︷︷ ︸
≤−αk∥g(wk,αk∥)2

+
L

2
∥wk+1 − wk︸ ︷︷ ︸

αkg(wk,αk)

∥2

≤ f(wk)− αk∥g(w,αk)∥2 +
Lα2

2
∥g(wk, αk)∥2

= f(wk)− 1

2L
∥g(w, 1/L)∥2, (with αk = 1/L)

we get our usual progress bound but in terms of gradient mapping.
For f bounded below, old arguments gives ∥g(wk, 1/L)∥2 converges at rate O(1/k).
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Simple Convex Sets

Projected-gradient is only efficient if the projection is cheap.

We say that C is simple if the projection is cheap.

For example, if it costs O(d) then it adds no cost to the algorithm.

For example, if we want w ≥ 0 then projection sets negative values to 0.

Non-negative constraints are “simple”.

Another example is w ≥ 0 and w⊤1 = 1, the probability simplex.

There are O(d) algorithms to compute this projection (similar to “select” algorithm)
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Simple Convex Sets

Other examples of simple convex sets:

Having upper and lower bounds on the variables, LB ≤ x ≤ UB.

Having a linear equality constraint, a⊤x = b, or a small number of them.

Having a half-space constraint, a⊤x ≤ b, or a small number of them.

Having a norm-ball constraint, ∥x∥p ≤ τ , for p = 1, 2,∞ (fixed τ).

Having a norm-cone constraint, ∥x∥p ≤ τ , for p = 1, 2,∞ (variable τ).

It is easy to minimize smooth functions with these constraints.



Projections and Projected Gradient Active-Set Identification and Backtracking Acceleration and Projected Newton Projected CD/SGD and Frank-Wolfe

Intersection of Simple Convex Sets: Dykstra’s Algorithm

Often our set C is the intersection of simple convex set,

C ≡ ∩iCi.

For example, we could have a large number linear constraints:

C ≡ {w | aTi w ≤ bi,∀i}.

Dykstra’s algorithm can compute the projection in this case.

On each iteration, it projects a vector onto one of the sets Ci.
Requires O(log(1/ϵ)) such projections to get within ϵ.

(This is not the shortest path algorithm of “Dijkstra”.)
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L1-Regularization
A popular approach to feature selection we saw in 340 is L1-regularization:

F (w) = f(w) + λ∥w∥1.

Advantages:
Fast: can apply to large datasets, just minimizing one function.

Convex if f is convex.

Reduces overfitting because it simultaneously regularizes.

Disadvantages:
Prone to false positives, particularly if you pick λ by cross-validation.
Not unique: there may be infinite solutions.

There exist many extensions:
“Elastic net” adds L2-regularization to make solution unique.
“Bolasso” applies this on bootstrap samples to reduce false positives.
Non-convex regularizers reduce false positives but are NP-hard to optimize.
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L1-Regularization

Key property of L1-regularization: if λ is large, solution w∗ is sparse:

w∗ has many values that are exactly zero.

How setting variables to exactly 0 performs feature selection in linear models:

ŷi = w1x
i
1 + w2x

i
2 + w3x

i
3 + w4x

i
4 + w5x

i
5.

If w =
[
0 0 3 0 −2

]⊤
then:

ŷi = 0xi1 + 0xi2 + 3xi3 + 0xi4 + (−2)xi5

= 3xi3 − 2xi5.

Features {1, 2, 4} are not used in making predictions: we “selected” {3, 5}.
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Transforming L1-Regularization into a Problem with Bound Constraints
What does L1-regularization have to do with constrained optimization?

Can transform many non-smooth problems into smooth + simple constraints.
See the convex optimization notes on the webpage for a generic way to do this.

For smooth objectives with L1-regularization,

argmin
w∈Rd

f(w) + λ∥w∥1,

we can re-write as a smooth problem with only non-negative constraints,

argmin
w+≥0, w−≥0

f(w+ − w−) + λ

d∑
j=1

(w+ + w−).

Can then apply projected-gradient to this problem.
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Active-Set Identification

For L1-regularization, projected-gradient “identifies” active set in finite time:
(under mild assumptions)

For all sufficiently large k, sparsity pattern of wk matches sparsity pattern of w∗.

w0 =



w0
1

w0
2

w0
3

w0
4

w0
5


−−−−−−−−−−−−−−→

after finite k iterations wk =



wk
1

0

0

wk
4

0


, where w∗ =



w∗
1

0

0

w∗
4

0


Useful if we are only interested in finding the sparsity pattern.

Convergence rate will be faster once this happens (optimizing over subspace).

You could also apply unconstrained Newton-like methods on the non-zero variables.
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Related Work and More-General Results

Idea of finitely identifying non-zeroes dates back (at least) to Bertskeas [1976].

For projected-gradient applied to smooth functions with non-negative constraints.

Has been shown for a variety of convex/non-convex problems.

Burke & Moré [1988], Wright [1993], Hare & Lewis [2004], Hare [2011].

We will show the active-set identification property for non-negative constraints.

In this setting you identify the variables that are exactly zero.
For general problems, you identify constraints that hold with equality at solution.
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Special Case: Optimizing with Non-Negative Constraints
Consider optimization with non-negative constraints,

argmin
w≥0

f(w),

using the projected-gradient method with a step-size of 1/L,

wk+1 =

[
wk − 1

L
∇f(wk)

]+
.

This leads to sparsity, and we use Z as the indices i where w∗
i = 0.

We will assume:
1 Gradient ∇f is L-Lipschitz continuous.
2 We converge to an isolated minimizer w∗.
3 Non-degeneracy condition: for all i ∈ Z we have ∇f(w∗

i ) ≥ δ for some δ > 0.
“You cannot have ∇if(w

∗) = 0 for variables i that are supposed to be zero.”
This type of condition is standard: prevents reaching solution through interior.
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Active-Set Identification for Non-Negative Constraints
Let’s show that we set i ∈ Z to zero when we’re “close” to the solution.

Implies “for large ‘k’, if w∗
i is zero then the algorithm sets wk

i to 0”.
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Active-Set Identification for Non-Negative Constraints
Let’s show that we set i ∈ Z to zero when we’re “close” to the solution.

Implies “for large ‘k’, if w∗
i is zero then the algorithm sets wk

i to 0”.

Since we assume projected-gradient converges to an isolated optimum,
for all sufficiently large k we have ∥wk − w∗∥ ≤ δ

2L .

In this region we have two useful properties for all i ∈ Z:
1 The value of the variable must be small: wk

i ≤ δ
2L .

Since w∗
i = 0 and wk

i is within δ/2L of wi.
2 The value of the gradient must be large: ∇if(w

k) ≥ δ/2.
Since we assumed ∇if(w

∗) ≥ δ and ∇f is Lipschitz so
|∇if(w

k)−∇if(w
∗)| ≤ ∥∇f(wk)−∇f(w∗)∥ ≤ L∥wk − w∗∥ ≤ δ/2.

Plugging these into the projected-gradient update gives for i ∈ Z that

wk+1
i =

[
wk
i − 1

L
∇if(w

k)

]+
≤

[
δ

2L
− δ

2L

]+
= 0.
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Superlinear Convergence after Identifying Active Set

In a typical setting, we might hope that |Zc| << d.

Here we have the potential for faster algorithms by doing Newton steps on Z.

Some possibilities:
At some point, switch from projected-gradient to Newton on the manifold.

Unfortunately, hard to decide when to switch.

Each iteration checks progress of projected-gradient and Newton [Wright, 2012].

Choose whichever one makes the most progres.

Two-metric projection [Gafni & Bertsekas, 1984], discussed in next section.

May require expensive Newton steps before we’re on the manifold.

There remains some theoretical and experimental work to do here.
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Gradient Projection with 2 Step Sizes
Active set identification can be affect by how we backtrack.

Written in terms of the gradient mapping, projected gradient iteration is

wk+1 = wk − αkg(w
k, αk),

where notice that αk appears twice.
In definition of gradient mapping, and how far we move.

Consider introducing a second step size ηk ≤ 1,

wk+1 = wk − ηkαkg(w
k, αk),

which only affects how far we move in gradient mapping direction.
We previously considered αk = 1/L and ηk = 1, but this works poorly in practice.
In practice, we typically fix one step size and backtrack along the other.
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2 Backtracking Strategies for Projected Gradient

Projected gradient written in terms of 2 step sizes is

wk+1 = wk − ηkαkg(w
k, αk),

Backtracking along the feasible direction:

Fix αk (typically at 1) and backtrack by reducing ηk.
Only 1 projection per iteration (good if projection is expensive).
But may is not guaranteed to identify active set.

Backtracking along the projection arc:

Fix ηk at 1 and backtrack by reducing αk.
1 projection per backtracking step (bad if projection is expensive).
But identifies active set after finite number of iterations.
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Backtracking Along the Feasible Direction

Backtracking along the feasible direction:

Project once, then backtrack through the interior.

Better if projection is expensive (and do not care about active set).



Projections and Projected Gradient Active-Set Identification and Backtracking Acceleration and Projected Newton Projected CD/SGD and Frank-Wolfe

Backtracking Along the Feasible Direction

Backtracking along the feasible direction:

Project once, then backtrack through the interior.

Better if projection is expensive (and do not care about active set).
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Backtracking Along the Projection Arc

Backtracking along the projection arc:

Backtrack then re-project, which may move along boundary.

Better if projection is cheap (or want to identify active set).
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Backtracking Along the Projection Arc

Backtracking along the projection arc:

Backtrack then re-project, which may move along boundary.

Better if projection is cheap (or want to identify active set).
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Faster Projected-Gradient Methods
An accelerated projected-gradient method has the form

wk+1 = projC [v
k − αk∇f(wk)]

vk+1 = wk+1 + βk(w
k+1 − wk),

and this achieves accelerated rate with same αk and βk as unconstrained case.
Note that vk may not satisfy constraints, but variants exist that keep vk feasible.

We could alternately use the Barzilai-Borwein step-size.
Known as spectral projected-gradient.

The naive Newton-like methods with Hessian approximation Hk,

wk+1 = projC [w
k − αk[Hk]

−1∇f(wk)︸ ︷︷ ︸
Newton step

],

does not work.
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Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
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Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.
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Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.
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Projected-Newton Method

The naive projected-Newton method,

wk+ 1
2 = wk − αk[Hk]

−1∇f(wk) (Newton-like step)

wk+1 = argmin
v∈C

∥v − wk+ 1
2 ∥ (projection)

which will not work.

Projection theorem does not imply Newton gives a descent direction.

The correct projected-Newton method uses

wk+ 1
2 = wk − αk[Hk]

−1∇f(wk) (Newton-like step)

wk+1 = argmin
v∈C

∥v − wk+ 1
2 ∥Hk

(projection under Hessian metric)
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Projected-Newton Method
Projected-gradient minimizes quadratic approximation,

wk+1 = argmin
v∈C

{
f(wk) +∇f(wk)(v − wk) +

1

2αk
∥v − wk∥2

}
.

Newton’s method can be viewed as quadratic approximation (Hk ≈ ∇2f(wk)):

wk+1 = argmin
v∈Rd

{
f(wk) +∇f(wk)(v − wk) +

1

2αk
(v − wk)Hk(v − wk)

}
.

Projected Newton minimizes constrained quadratic approximation:

wk+1 = argmin
v∈C

{
f(wk) +∇f(wk)(v − wk) +

1

2αk
(v − wk)Hk(v − wk)

}
.

Equivalently, we project Newton step under different Hessian-defined norm,

w
k+1

= argmin
v∈C

∥v − (w
k − αtH

−1
k ∇f(w

k
))∥Hk

,

where general “quadratic norm” is ∥z∥A =
√
z⊤Az for A ≻ 0.
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Discussion of Projected-Newton
Projected-Newton iteration is given by

wk+1 = argmin
y∈C

{
f(wk) +∇f(wk)(v − wk) +

1

2αk
(v − wk)Hk(v − wk)

}
.

But this is expensive even when C is simple.

There are a variety of practical alternatives:
If Hk is diagonal then this is typically simple to solve for simple C.

Inexact projected-Newton: solve the above approximately.
Use a projected-gradient variant to minimize the above strongly-convex quadratic.
Useful when f is very expensive but Hk and C are simple.
“Optimizing costly functions with simple constraints” uses L-BFGS for Hk.

Two-metric projection methods are special algorithms for upper/lower bounds.
Fix problem of naive method in this case by making Hk “partially diagonal”.
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Two-Metric Projection for Bound Constraints
Consider again optimizing with non-negative constraints, minw∈C f(w).

The two-metric projection method splits the variables into two sets:

Ak ≡ {i | wk
i = 0,∇if(w

k) > 0},
Ik ≡ {i | wk

i ̸= 0 or ∇if(w
k) ≤ 0},

the “active” variables (constrained at boundary) and “inactive variables”.

Uses a projected-gradient step on Ak and “naive” projected-Newton on Ik.

wk+1
Ak = projC [w

k
Ak − αk∇Akf(wk)]

wk+1
Ik

= projC [w
k
Ik − αk[∇2

Ikf(w
k)]−1∇Ikf(w

k)]

Eventually switches to unconstrained Newton on unconstrained variables.

Can be generalized to general lower and upper bounds on individual variables.
Also exists a two-metric projection method for optimizing over probability simplex.
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Cheaper Iterations with Projected Coordinate Optimization

We can consider various ways to make projected-gradient iterations cheaper.

In the special case of bounds constraints,

min f(w), li ≤ wi ≤ ui,

we can coordinate optimization or projected coordinate descent,

wk+1
i = projli≤wi≤ui

[wk
i − αk∇if(w

k)],

where the projection step clips gradient descent to stay within the bounds.

Random coordinate optimization has same convergence rates as unconstrained case.
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Coordinate Optimization with Non-Separable Constraints
Coordinate optimization will not work for non-separable constraints.

For example, consider optimizing with an equality constraint,

min
w

f(w),

n∑
i=1

wi = 1.

If w satisfies the constraint, you cannot change any wi without violating it.

But you can change 2 variables i and j to maintain the constraint:

wk+1
i = wk

i − αk(∇if(w
k)−∇jf(w

k)

wk+1
j = wk

j − αk(∇jf(w
k)−∇if(w

k).

How to handle more complicated constraints gets ugly.
Special case: block-separable constraints (can use block coordinate optimization).
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Projected Stochastic Gradient Descent
We can consider projected stochastic gradient,

wk+1 = projC [w
k − αk∇fik(w

k)],

where we do projected gradient on a random training example ik.
Convergence properties are similar to unconstrained SGD.
Constraint does not need to be separable, but projection should be cheap.

Need to project n times per epoch.

Some properties of SGD and projected-gradient that do not hold:
Lose fast convergence for over-parameterized models.

Because we no longer even have ∇f(w∗) = 0.
Lose active set identification property of projected gradient.

Can leave boundary of constraints infinitely often.
Variant that restores this property is dual averaging,

wk+1 = projC [w
0 − αk

k

k∑
t=1

∇f(wk)],

since it uses the average of the previous gradients (variance of direction goes to 0).
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Frank-Wolfe Method (“Conditional Gradient”)

The projected-gradient method uses a quadratic approximation

argmin
v∈C

{
f(wk) +∇f(wk)⊤(v − wk) +

1

2αk
∥v − wk∥2

}
,

and in some cases may be hard to compute (or even approximate).

For these problems we can sometimes solve the simplified problem,

argmin
v∈C

{
f(wk) +∇f(wk)⊤(v − wk)

}
,

which optimizes a linear approximation to the function over the constraint set.

This requires the set C to bounded, otherwise may be no solution.

This is the basis of the conditional gradient method, also known as Frank-Wolfe

Marguerite Frank at NeurIPS in 2013:
https://www.youtube.com/watch?v=24e08AX9Eww.

https://www.youtube.com/watch?v=24e08AX9Eww
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Frank-Wolfe Method (“Conditional Gradient”)

Visualization of the Frank-Wolfe approximation:

https://en.wikipedia.org/wiki/Frank\OT1\textendashWolfe_algorithm

For convex f , minimizer of linear approximation gives lower bound on f(w∗).

Like Newton, iterations are affine-invariant (don’t change with affine transformation).

https://en.wikipedia.org/wiki/Frank\OT1\textendash Wolfe_algorithm
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Frank-Wolfe Method (“Conditional Gradient”)

The Frank-Wolfe algorithm takes steps of the form

wk+1 = wk + αk(v
k − wk),

where vk ∈ argminv∈C ∇f(wk)⊤v.

So the gradient mapping would be 1
αk

(wk − vk).

Common ways to set the step size:

Decreasing: αk = 2/(k + 2).

Descent lemma: min
{
1, ⟨∇f(wk),wk−vk⟩

L∥wk−vk∥2

}
(works better if you approximate L).

Line search: argmin0≤α≤1 f(w
k + αk(v

k − wk)) (works best).

Convergence rate is O(1/k) for convex and non-convex f .

Tends to be slower than projected-gradient in cases where they have similar costs.
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Linear Convergence of Frank-Wolfe
Basic Frank-Wolfe method has linear convergence in certain settings:

Function f is PL and solution is in interior of C.
Function f is strongly convex and constraint C is uniformly convex.

Several variations exist that obtain linear rates including away-step Frank-Wolfe:

https://arxiv.org/pdf/2211.14103.pdf

Frank-Wolfe moves towards vertex minimizing approximation resulting in zigzagging.
Away-steps move away from maximizing vertex (if larger directional derivative).

Above, iteration 6 moves away from initial vertex, moving onto boundary.
Recent variant is pairwise Frank-Wolfe, combining the above two steps.
Another variant is conditional gradient sliding, acceleration in terms of gradients.

https://arxiv.org/pdf/2211.14103.pdf
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Summary
Projected-gradient allows optimization with simple constraints.

Same convergence speed as gradient descent.

Simple convex sets are those that allow efficient projection.
Active set identification of projected gradient.

Finds active constraints at solution in a finite number of iterations.

2 backtracking strategies for projected gradient.
Line search along feasible direction or backtrack along projection arc.

Projected Newton adds second-order information.
Faster convergence but expensive even for simple sets, needs approximation.

Projected coordinate descent works for bound constraints.
Projected SGD works for large datasets.

But lose active set identification and fast convergence under over-parameterization

Frank-Wolfe uses a linear rather than quadratic approximation.
Much cheaper than projection for some problems.

Next time: non-smooth functions and finding the non-convex global min.
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