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Review: Gradient Descent

@ The “training” phase in machine learning usually involves numerical optimization.
e Minimizing a function f depending on d parameters w,

min f(w).

weR

e For differentiable f, a prototypical method is gradient descent,

Wit = wh — ap V f(wh).

Cost of update is O(d) in terms.

Guaranteed to decrease f for small enough step size ay.
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Review: Lipschitz Continuity of Gradient

@ We considered functions f where the gradient is Lipschitz continuous,
IVf(w) = V()| < Lljw —vl],

meaning that gradient cannot change faster than a constant L.

@ Under this assumption we showed that gradient descent with aj, = 1/L satisfies

1
F™) < Fh) = o2 IV

@ But works better with clever step size choices and line searches.
e We can show that similar progress bounds hold for these choices.
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Review: Convergence Rates

@ We discussed convergence rates and iteration complexities:
© Sublinear rates like O(1/t), which requires O(1/¢) to get error €.
@ Linear rates like O(p') for p < 1, which requires O(log(1/e).
© Superlinear rates like O(p?"), which requires O(loglog(1/€)).

@ When gradient is Lipschitz continuous, convergence rate of gradient descent is:
Linear O(p") on f(w') — f* for functions that are strongly-convex (strongest).
Sublinear O(1/t) on ||V f(w')||? for functons that are bounded below (weakest).
Sublinear O(l/t) on f(w?) — f* for functions that are convex.

Linear O(p') on f(w') — f* for functions that satisfy Polyak-tojasiewicz inequality.
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Review: Faster Algorithms

o Get faster rates for strongly-convex quadratics with heavy-ball method,
Wt = wh — V() + BF (wh — wF),

for appropriate 3* (special case with optimal oy, and j3; is conjugate gradient).

o Get faster rates for convex functions with Nesterov's accelerated gradient method,
whtt = wk — a, Vf(wF) + gE(w® — wh ) — g B (Vf(w®) — V f(w*™1)),

for appropriate 8*.

@ Get faster local rates with Newton's method,
Wttt = W — oy [V2 f(wh)] TV f (w),

and exist variations that handle case where Hessian V2 f(w") is not invertible.
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Review: Cheaper Algorithms

@ Get cheaper iterations for many problems using coordinate optimization.

o Optimizes 1 variable at a time, chosen cyclically/randomly/greedily.
o Faster than gradient descent if iterations are d-times cheaper.

@ Common problem structure is optimizing averages,
1 n

flw) = - Zlfl(w)
1=

@ In this setting get cheaper iterations with stochastic gradient descent (SGD),
wk-i—l — wk _ akvfzk (wk)’

where iy, is a random sample from sum.
o Converges slower than gradient descent but iterations are n-times cheaper.



Review: SGD Issues

o Progress of SGD depends on ||V f(w*)||, ay, batch size, and noise variance o?.

e Decreasing step sizes or increasing batch sizes required for convergence.
o Constant step size and batch size sufficient for any fixed accuracy.

o In various settings, can reduce/avoid effect of noise variance o2:

o Variance reduction methods (SAG/SVRG) do this with a fixed step and batch size.
o Over-parameterized models assume o2 = 0, which allows fixed step/batch size.

@ Growing batches and SAG/SVRG and over-parameterzation line-search easier.
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Review: Practical Newton Methods

@ Get cheap approximations to Newton's method using:
e Diagonal approximations of Hessian.
o Cheap/easy but often does not work well.

o Hessian-free Newton.
@ Uses cheap Hessian-vector products within conjugate gradient to approximate Newton.

e Quasi-Newton
o Updates approximation of Hessian based on observed differences in gradients.

o Barzilai-Borwein step size

o Degenerate quasi-Newton method that just sets the step size for gradient descent.
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Outline

@ Projections and Projected Gradient
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Projected-Gradient for Non-Negative Constraints

@ We used projected gradient in 340 for NMF to find non-negative solutions,

argmin f(w).
w>0

@ In this case the algorithm has a simple form,

wh ! = max{0, w* — o, Vf(w®)},

gradient descent

where the max is taken element-wise.
e "“Do a gradient descent step, set negative values to 0."

@ An obvious algorithm to try, and works as well as unconstrained gradient descent.
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A Broken “Projected-Gradient” Algorithms

Projected-gradient addresses problem of minimizing smooth f over a convex set C,

argmin f(w).
wel

As another example, we often want w to be a probability,

argmin  f(w),
w>0, 1Tw=1

Based on our “set negative values to 0" intuition, we might consider this:

@ Perform an unconstrained gradient descent step.
@ Set negative values to 0 and divide by the sum.

This algorithms does NOT work.

e But it can be fixed if we replace Step 2 by “project onto the constraint set”.
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Projected-Gradient

1 1

w2 = wh —  V(wh), whtt e argmin v — w2,

~\"~ 4 ’UGC

gradient step ~~
projection step

J/

easible Set

First proposed by Goldstein [1964] and Leviting & Polyak [1965].
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Projected-Gradient

1 1
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Projected-Gradient

@ We can view the projected-gradient algorithm as having two steps:
@ Perform an unconstrained gradient descent step,

Wt = wh — a, Vf(w").
@ Compute the projection onto the set C,

wh € argmin |jv — whts Il

veC

@ Projection is the closest point that satisfies the constraints.

o Generalizes “projection onto subspace” from linear algebra.
o We will also write projection of w onto C as

proje[w] = argmin [[v — w]|,
veC

and for convex C it's unique.
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Why the Projected Gradient?
e We want to optimize f (smooth but possibly non-convex) over some convex set C,
argmin f(w).
weC

@ Recall that we can view gradient descent as minimizing quadratic approximation
. 1
w*t! € argmin {f(wk) + Vf(w) (v —w) + Yo lv — wk||2} ,
v k

where we've written it with a general step-size oy, instead of 1/L.
e Solving the convex quadratic argmin gives w1 = w* — a, V f(w").

@ We could minimize quadratic approximation to f subject to the constraints,

1
wht € argmin {f(wk) + V)T (v —wk) + —|v - wkHQ} ;
veC 2a,
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Why the Projected Gradient?

@ We write this “minimize quadratic approximation over the set C" iteration as

whtL € argmin {f(wk) + V(T (v—w") + LHv — wkHQ}
veC 20

= argmin {akf(wk) + ap V(WP T (v —w®) + %Hv - wkHQ} (multiply by )
veC

. faj 1
= argngm {C;’“HVJ‘(w]’“)H2 + apVwh (v —wh) + 5“0 - wk]2} (£ const.)
ve

|(v

= argmin { (v —w") + aka(wk)H2} (complete the square)

veC

= argngin v — (w* — gV f(wF) || ¢,
ve

gradient descent

which gives the projected-gradient algorithm: w**! = proj.[w* — ap V f(w")].
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Properties of Projected Gradient

@ Projected gradient for convex C has similar properties to unconstrained GD.

o With o, < 2/L, guaranteed to decrease objective.
o With o, = 1/L, get O(1/k) rate for convex f with Lipschitz V f.
o With ay = 1/L, get O((1 — 11/ L)¥) rate for strongly-convex f with Lipschitz V f.

@ And again get faster rate with ax, = 2/(p + L).

e Minimizers w* are “fixed points” of the update,
w* = proje[w* — aV f(w")],

for any step-size o > 0 (generalizes V f(w*) = 0 for unconstrained case).
o If f is convex then w* is optimal iff the above holds.
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Solution is Fixed Point of Projected Gradient Update

M'f'r-u'mcl'

NN A7 e
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Solution is Fixed Point of Projected Gradient Update

M'f'r-u'mcl'
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Non-Expansiveness of Projection Operator

@ Some analyses use that projection onto convex sets is non-expansive.
e After projection, points will be the same distance or closer.
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Gradient Mapping and Checking Convergence

@ The projected gradient iteration is
Wkt = proje[w® — i V f (w")].

@ We can re-write this iteration as
k+1 _ .k k
W = w" — apg(w”, oy),

where g is called the gradient mapping

g(w¥, ag) = alkw ~ proje[w® — apVf(wh).

wh+1

o If we have no constraints then g(w¥, ay) = V f(w") (so we get gradient descent).

@ The gradient mapping has similar properties to the gradient:
o We have that —g(w¥, a}) points in a direction that decreases f (for any az).

o We will next show that |g(w", ay)||* gives a measure of guaranteed progress.
o Since g(w*, ay) = 0 for any ay, we could use ||g(w”, 1)|| to monitor convergence.
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Digression: Projection Theorem
@ Projection theorem: for convex sets, wy, is the projection of w iff
(w— wp)T(U —wp) <0,

for all v in C.
o "Angle between (w — w,) and (v — wp) is > 90 degrees”.

Projected CD/SGD and Frank-Wolfe
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Projection Theorem and Gradient Mapping
@ Projection theorem: for convex sets w,, is the projection of w iff
T
(w —wp)" (v—wp) <0,

for all v in C.

o If we set w = w* — o,V f(w¥) then w, = wk*1, and choosing v = w* gives
(w —aka( ) k+1)T( wk+1) <0
o aka(wk)T( wk—l—l) < 7(wk . wk—l—l)T(wk - wk—i—l)
1
(wk)T( k+1 wk) < _;k“ wk _ wk+1 ||2
agg(wh,ay)

V(") (@ —w*)< —agllg(w®, o),

@ Can be used in descent lemma to get a progress bound and convergence rate.
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Progress Bound and Convergence Rate for Projected Gradient

@ Recall the descent lemma when V f is Lipschitz then for all w and v,

F(0) < Fw) + V@) (@ —w) + 2o~ w]

k+1

e Setting w = w* and v =w from projected gradient and using oy, = 1/L gives

Pt < k) + T h) T b k) 4kt kP

<—agllg(w ok ))? apg(wk,ay)

k o  Lo? k 2
< fw®) = ogllg(w, ax)||” + THg(w ;o) ||

= f(w") (w,1/L)]?, (with oy, = 1/L)

|
o1,
we get our usual progress bound but in terms of gradient mapping.

o For f bounded below, old arguments gives ||g(w”,1/L)||* converges at rate O(1/k).
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Simple Convex Sets

@ Projected-gradient is only efficient if the projection is cheap.

@ We say that C is simple if the projection is cheap.
o For example, if it costs O(d) then it adds no cost to the algorithm.

@ For example, if we want w > 0 then projection sets negative values to 0.
e Non-negative constraints are “simple”.

@ Another example is w > 0 and w'1 = 1, the probability simplex.
o There are O(d) algorithms to compute this projection (similar to “select” algorithm)
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Simple Convex Sets

@ Other examples of simple convex sets:

Having upper and lower bounds on the variables, LB <z < UB.

Having a linear equality constraint, a'x =b, or a small number of them.

Having a half-space constraint, a'x < b, or a small number of them.

Having a norm-ball constraint, ||z||, < 7, for p = 1,2, 00 (fixed 7).

Having a norm-cone constraint, ||z||, < 7, for p = 1,2, 0o (variable 7).

@ It is easy to minimize smooth functions with these constraints.
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Intersection of Simple Convex Sets: Dykstra's Algorithm

@ Often our set C is the intersection of simple convex set,
C = n,C;.
@ For example, we could have a large number linear constraints:
C={w|alw < bV}

@ Dykstra's algorithm can compute the projection in this case.

e On each iteration, it projects a vector onto one of the sets C;.
o Requires O(log(1/€)) such projections to get within .

(This is not the shortest path algorithm of “Dijkstra”.)
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Outline

@ Active-Set Identification and Backtracking
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L1-Regularization

@ A popular approach to feature selection we saw in 340 is L1-regularization:
F(w) = f(w) + AlJw].

@ Advantages:
e Fast: can apply to large datasets, just minimizing one function.
o Convex if f is convex.
e Reduces overfitting because it simultaneously regularizes.

@ Disadvantages:
e Prone to false positives, particularly if you pick A by cross-validation.
e Not unique: there may be infinite solutions.

@ There exist many extensions:
o “Elastic net” adds L2-regularization to make solution unique.
o “Bolasso” applies this on bootstrap samples to reduce false positives.
e Non-convex regularizers reduce false positives but are NP-hard to optimize.
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L1-Regularization

o Key property of L1-regularization: if A is large, solution w* is sparse:
e w* has many values that are exactly zero.
@ How setting variables to exactly 0 performs feature selection in linear models:
7t = wizl 4 worh + ngg + wyxh + w51‘g.
T
olfw=[0 0 3 0 —2] then:
gt = 0z} 4 0z + 328 + 02 + (—2)at
= 32} — 2x%.
o Features {1,2,4} are not used in making predictions: we “selected” {3,5}.
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Transforming L1-Regularization into a Problem with Bound Constraints

@ What does L1-regularization have to do with constrained optimization?

@ Can transform many non-smooth problems into smooth + simple constraints.
e See the convex optimization notes on the webpage for a generic way to do this.

@ For smooth objectives with L1-regularization,

argmin f(w) + A||lwl|1,
weR4

we can re-write as a smooth problem with only non-negative constraints,
d
argmin  f(wy —w_) + /\Z(w+ +w_).

w4 >0, w_>0 j=1

@ Can then apply projected-gradient to this problem.
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Active-Set ldentification

@ For L1-regularization, projected-gradient “identifies” active set in finite time:
(under mild assumptions)

e For all sufficiently large k, sparsity pattern of w* matches sparsity pattern of w*.

w) 0 0
w’ = | wl after finite k iterations w® =] 0 [, where w*=1] 0
wj wj wj
w) 0 0

@ Useful if we are only interested in finding the sparsity pattern.
e Convergence rate will be faster once this happens (optimizing over subspace).
@ You could also apply unconstrained Newton-like methods on the non-zero variables.
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Related Work and More-General Results

o Idea of finitely identifying non-zeroes dates back (at least) to Bertskeas [1976].
e For projected-gradient applied to smooth functions with non-negative constraints.

@ Has been shown for a variety of convex/non-convex problems.
o Burke & Moré [1988], Wright [1993], Hare & Lewis [2004], Hare [2011].

@ We will show the active-set identification property for non-negative constraints.

o In this setting you identify the variables that are exactly zero.
o For general problems, you identify constraints that hold with equality at solution.
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Special Case: Optimizing with Non-Negative Constraints

@ Consider optimization with non-negative constraints,

argmin f(w),
w>0

using the projected-gradient method with a step-size of 1/L,
1 +
whtl = [wk - Vf(wk)] .
L
@ This leads to sparsity, and we use Z as the indices i where w; = 0.

@ We will assume:
© Gradient Vf is L-Lipschitz continuous.
@ We converge to an isolated minimizer w*.
© Non-degeneracy condition: for all i € Z we have V f(w]) > ¢ for some § > 0.
@ “You cannot have V; f(w") = 0 for variables i that are supposed to be zero.”
e This type of condition is standard: prevents reaching solution through interior.



Projections and Projected Gradient Active-Set Identification and Backtracking Acceleration and Projected Newton Projected CD/SGD and Frank-Wolfe

Active-Set Identification for Non-Negative Constraints

@ Let's show that we set i € Z to zero when we're “close” to the solution.
o Implies “for large ‘k’, if w} is zero then the algorithm sets w¥ to 0”.

-

/
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Active-Set Identification for Non-Negative Constraints

@ Let's show that we set 7 € Z to zero when we're “close” to the solution.
o Implies “for large k', if w; is zero then the algorithm sets wk to 0",

@ Since we assume projected-gradient converges to an isolated optimum,
for all sufficiently large k we have ||w* — w*|| < %.

@ In this region we have two useful properties for all i € Z:
@ The value of the variable must be small: wf < %.
o Since w} = 0 and w¥ is within §/2L of w;.
@ The value of the gradient must be large: V; f(w") > §/2.
o Since we assumed V; f(w™) > § and Vf is Lipschitz so
[Vif (") = Vif(w)] < [[Vf(w") = Vf(w)] < Lljw® —w*| < §/2.

@ Plugging these into the projected-gradient update gives for i € Z that

k+1 __ k—lV‘f( k)+< i_i—’—_o
Yoo =M T YWY = er e T



Active-Set Identification and Backtracking

Superlinear Convergence after Identifying Active Set

@ In a typical setting, we might hope that |Z¢| << d.
o Here we have the potential for faster algorithms by doing Newton steps on Z.

@ Some possibilities:
e At some point, switch from projected-gradient to Newton on the manifold.
e Unfortunately, hard to decide when to switch.
o Each iteration checks progress of projected-gradient and Newton [Wright, 2012].
@ Choose whichever one makes the most progres.
e Two-metric projection [Gafni & Bertsekas, 1984], discussed in next section.
@ May require expensive Newton steps before we're on the manifold.

o There remains some theoretical and experimental work to do here.
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Gradient Projection with 2 Step Sizes

@ Active set identification can be affect by how we backtrack.

@ Written in terms of the gradient mapping, projected gradient iteration is

k+1

w = wk - akg(wka ak)a

where notice that oy appears twice.
o In definition of gradient mapping, and how far we move.

o Consider introducing a second step size i, < 1,

wk+1 = wk - T/kO[kg(wk, ak)a
which only affects how far we move in gradient mapping direction.

o We previously considered o, = 1/L and n = 1, but this works poorly in practice.
e In practice, we typically fix one step size and backtrack along the other.



Projections and Projected Gradient Active-Set Identification and Backtracking Acceleration and Projected Newton Projected CD/SGD and Frank-Wolfe

2 Backtracking Strategies for Projected Gradient

@ Projected gradient written in terms of 2 step sizes is

k+1 k

w =w" — nkakg(wk, a),

@ Backtracking along the feasible direction:
o Fix ay (typically at 1) and backtrack by reducing 7.
e Only 1 projection per iteration (good if projection is expensive).
e But may is not guaranteed to identify active set.

@ Backtracking along the projection arc:
o Fix my at 1 and backtrack by reducing a,.
o 1 projection per backtracking step (bad if projection is expensive).
e But identifies active set after finite number of iterations.
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Backtracking Along the Feasible Direction

@ Backtracking along the feasible direction:
e Project once, then backtrack through the interior.

@ Better if projection is expensive (and do not care about active set).
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Backtracking Along the Feasible Direction

@ Backtracking along the feasible direction:
e Project once, then backtrack through the interior.

@ Better if projection is expensive (and do not care about active set).
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Backtracking Along the Projection Arc

@ Backtracking along the projection arc:
e Backtrack then re-project, which may move along boundary.

@ Better if projection is cheap (or want to identify active set).
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Backtracking Along the Projection Arc

@ Backtracking along the projection arc:
e Backtrack then re-project, which may move along boundary.

@ Better if projection is cheap (or want to identify active set).



Projections and Projected Gradient Active-Set Identification and Backtracking Acceleration and Projected Newton Projected CD/SGD and Frank-Wolfe

Outline

© Acceleration and Projected Newton



Projections and Projected Gradient Active-Set Identification and Backtracking Acceleration and Projected Newton Projected CD/SGD and Frank-Wolfe

Faster Projected-Gradient Methods
@ An accelerated projected-gradient method has the form

whtl = projc[vk — aka(wk)]

Uk—f—l _ wk—i—l + Bk(wk-i-l _ wk)’
and this achieves accelerated rate with same «j, and 3 as unconstrained case.

o Note that v* may not satisfy constraints, but variants exist that keep v* feasible.

@ We could alternately use the Barzilai-Borwein step-size.
e Known as spectral projected-gradient.
@ The naive Newton-like methods with Hessian approximation Hy,

Wkt = proje[w® — a[Hy) 7'V f(wh) ],

Newton step

does not work.
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Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.
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Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
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Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

Feasible Set

xk - aH-1f’(x)
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Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

Feasible Set

xK - aH-1f’(x)
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Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

Feasible Set

xK - aH-1f’(x)
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Projected-Newton Method

@ The naive projected-Newton method,

Wt = b — o [Hi] 'V f (w") (Newton-like step)
wh 1l = argmin ||v —
vel

whtz I (projection)

which will not work.
e Projection theorem does not imply Newton gives a descent direction.

@ The correct projected-Newton method uses

whtE =k — o [H] 1V f (w®) (Newton-like step)
wht = argmin ||Jv — wk+%||Hk (projection under Hessian metric)
vel
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Projected-Newton Method

Projected-gradient minimizes quadratic approximation,

wh = argmin {f(wk) + V() (v — w®) + iHv - wkHQ} )
vel 2,

o Newton's method can be viewed as quadratic approximation (Hj, ~ V2 f(w")):

wh 1l = argmin {f(wk) + VF(w") (v —w®) + L('u — wF)Hy (v — wk)} .
veERA 20

@ Projected Newton minimizes constrained quadratic approximation:
. 1
wh 1 = argmin {f(wk) + VI (w*) (v —wP) + —(v — w*)Hy(v — wk)} .
veC 2ay,
@ Equivalently, we project Newton step under different Hessian-defined norm,
whtl = a;ggmci‘n [|lv — (wk - OLtH;:lvf(wk))”Hk >

where general “quadratic norm” is ||z]|4 = V2T Az for A = 0.
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Discussion of Projected-Newton
@ Projected-Newton iteration is given by
1
w* ! = argmin {f(wk) + Vf(w*) (v —w®) + — (v — w*)Hy(v — wk)} .
yeC 20ék

@ But this is expensive even when C is simple.

@ There are a variety of practical alternatives:
o If Hy, is diagonal then this is typically simple to solve for simple C.

e Inexact projected-Newton: solve the above approximately.
@ Use a projected-gradient variant to minimize the above strongly-convex quadratic.
o Useful when f is very expensive but Hy and C are simple.
e “Optimizing costly functions with simple constraints” uses L-BFGS for H,.

e Two-metric projection methods are special algorithms for upper/lower bounds.
o Fix problem of naive method in this case by making Hj. “partially diagonal”.
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Acceleration and Projected Newton

Two-Metric Projection for Bound Constraints
Consider again optimizing with non-negative constraints, min,ec f(w).
The two-metric projection method splits the variables into two sets:

AP = {i | wf =0,Vif(w*) > 0},
TF = {i | wF # 0 or Vif(w*) <0},

the “active” variables (constrained at boundary) and “inactive variables”.

Uses a projected-gradient step on A* and “naive” projected-Newton on Z*.

wﬁtl = projc[w,]ka - akVAkf(wk)]

k 1 v2 ky1—1 k
i = proje[wii — [V f (wF)] 71V i f(w")]
Eventually switches to unconstrained Newton on unconstrained variables.

Can be generalized to general lower and upper bounds on individual variables.
e Also exists a two-metric projection method for optimizing over probability simplex.
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Outline

@ Projected CD/SGD and Frank-Wolfe
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Cheaper lterations with Projected Coordinate Optimization

@ We can consider various ways to make projected-gradient iterations cheaper.

@ In the special case of bounds constraints,
min f(w), li S ws S Ug

we can coordinate optimization or projected coordinate descent,

wf"’l = projliﬁwiéui [wf o akvif(wk)]’

where the projection step clips gradient descent to stay within the bounds.
e Random coordinate optimization has same convergence rates as unconstrained case.
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Coordinate Optimization with Non-Separable Constraints

Coordinate optimization will not work for non-separable constraints.

For example, consider optimizing with an equality constraint,

mlnf sz—l

If w satisfies the constraint, you cannot change any w; without violating it.

But you can change 2 variables 7 and j to maintain the constraint:

Wit = wh — g (Vif (w®) — V; f(wh)

7

wf“ = wf — (Vi f(w®) — Vi f(w").

How to handle more complicated constraints gets ugly.
o Special case: block-separable constraints (can use block coordinate optimization).
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Projected Stochastic Gradient Descent
@ We can consider projected stochastic gradient,

k+1 _ : k k
= proje[w” — oV fi, (w")],
where we do projected gradient on a random training example .
e Convergence properties are similar to unconstrained SGD.
o Constraint does not need to be separable, but projection should be cheap.
o Need to project n times per epoch.

w

@ Some properties of SGD and projected-gradient that do not hold:
e Lose fast convergence for over-parameterized models.
o Because we no longer even have V f(w*) = 0.
o Lose active set identification property of projected gradient.
@ Can leave boundary of constraints infinitely often.
@ Variant that restores this property is dual averaging,

k
k+1 . 0o Ok k
Wit = proiefu’ = -3 V7)),

since it uses the average of the previous gradients (variance of direction goes to 0).
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Frank-Wolfe Method (“Conditional Gradient™)

@ The projected-gradient method uses a quadratic approximation

1 .
argmin {f(wk) + Vf(wk)T(v — wk) + — v - “’kHZ} ;
veC 20%

and in some cases may be hard to compute (or even approximate).

@ For these problems we can sometimes solve the simplified problem,

argmin {f(wk) + V() (v - wk)} )
veC
which optimizes a linear approximation to the function over the constraint set.
e This requires the set C to bounded, otherwise may be no solution.
@ This is the basis of the conditional gradient method, also known as Frank-Wolfe

e Marguerite Frank at NeurlPS in 2013:
https://www.youtube.com/watch?v=24e08AX9Eww.


https://www.youtube.com/watch?v=24e08AX9Eww
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Frank-Wolfe Method (“Conditional Gradient”)

@ Visualization of the Frank-Wolfe approximation:

https://en.wikipedia.org/wiki/Frank\0T1\textendashWolfe_algorithm
@ For convex f, minimizer of linear approximation gives lower bound on f(w*).
o Like Newton, iterations are affine-invariant (don’t change with affine transformation).


https://en.wikipedia.org/wiki/Frank\OT1\textendash Wolfe_algorithm
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Frank-Wolfe Method (“Conditional Gradient™)

@ The Frank-Wolfe algorithm takes steps of the form
wk—l—l — wk + Oék(’Uk o wk)’

where v* € argmin, .o V f(w*)Tv.
o So the gradient mapping would be - (w" — o).

@ Common ways to set the step size:
o Decreasing: ap = 2/(k + 2).
k k k
o Descent lemma: min {17 %} (works better if you approximate L).

o Line search: argming< <y f(w"” + oy (vF — w*)) (works best).

e Convergence rate is O(1/k) for convex and non-convex f.
e Tends to be slower than projected-gradient in cases where they have similar costs.
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Linear Convergence of Frank-Wolfe

@ Basic Frank-Wolfe method has linear convergence in certain settings:
e Function f is PL and solution is in interior of C.
e Function f is strongly convex and constraint C is uniformly convex.

@ Several variations exist that obtain linear rates including away-step Frank-Wolfe:

https://arxiv.org/pdf/2211.14103.pdf
o Frank-Wolfe moves towards vertex minimizing approximation resulting in zigzagging.
o Away-steps move away from maximizing vertex (if larger directional derivative).
o Above, iteration 6 moves away from initial vertex, moving onto boundary.
@ Recent variant is pairwise Frank-Wolfe, combining the above two steps.
@ Another variant is conditional gradient sliding, acceleration in terms of gradients.


https://arxiv.org/pdf/2211.14103.pdf
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Summary

Projected-gradient allows optimization with simple constraints.

e Same convergence speed as gradient descent.
Simple convex sets are those that allow efficient projection.
Active set identification of projected gradient.

e Finds active constraints at solution in a finite number of iterations.
2 backtracking strategies for projected gradient.

e Line search along feasible direction or backtrack along projection arc.
Projected Newton adds second-order information.

e Faster convergence but expensive even for simple sets, needs approximation.
Projected coordinate descent works for bound constraints.
Projected SGD works for large datasets.

e But lose active set identification and fast convergence under over-parameterization
Frank-Wolfe uses a linear rather than quadratic approximation.

e Much cheaper than projection for some problems.

Next time: non-smooth functions and finding the non-convex global min.
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