Numerical Optimization for Machine Learning Projected-Gradient, Projecte-Newton, and Frank-Wolfe

Mark Schmidt

University of British Columbia

Summer 2022 - Summer 2023

Review: Gradient Descent

The "training" phase in machine learning usually involves numerical optimization.
Minimizing a function f depending on d parameters w,

 $\min_{w \in \mathbb{R}^d} f(w).$

• For differentiable f, a prototypical method is gradient descent,

$$w^{k+1} = w^k - \alpha_k \nabla f(w^k).$$

- Cost of update is O(d) in terms.
- Guaranteed to decrease f for small enough step size α_k .

Review: Lipschitz Continuity of Gradient

• We considered functions f where the gradient is Lipschitz continuous,

$$\|\nabla f(w) - \nabla f(v)\| \le L \|w - v\|,$$

meaning that gradient cannot change faster than a constant L.

• Under this assumption we showed that gradient descent with $\alpha_k = 1/L$ satisfies

$$f(w^{k+1}) \le f(w^k) - \frac{1}{2L} \|\nabla f(w^k)\|^2.$$

- But works better with clever step size choices and line searches.
 - We can show that similar progress bounds hold for these choices.

Review: Convergence Rates

- We discussed convergence rates and iteration complexities:
 - **1** Sublinear rates like O(1/t), which requires $O(1/\epsilon)$ to get error ϵ .
 - 2 Linear rates like $O(\rho^t)$ for $\rho < 1$, which requires $O(\log(1/\epsilon))$.
 - Superlinear rates like $O(\rho^{2^t})$, which requires $O(\log \log(1/\epsilon))$.
- When gradient is Lipschitz continuous, convergence rate of gradient descent is:
 - Linear $O(\rho^t)$ on $f(w^t) f^*$ for functions that are strongly-convex (strongest).
 - Sublinear O(1/t) on $\|\nabla f(w^t)\|^2$ for functons that are bounded below (weakest).
 - Sublinear O(1/t) on $f(w^t) f^*$ for functions that are convex.
 - Linear $O(\rho^t)$ on $f(w^t) f^*$ for functions that satisfy Polyak-Łojasiewicz inequality.

Review: Faster Algorithms

• Get faster rates for strongly-convex quadratics with heavy-ball method,

$$w^{k+1} = w^k - \alpha_k \nabla f(w^k) + \beta^k (w^k - w^{k-1}),$$

for appropriate β^k (special case with optimal α_k and β_k is conjugate gradient).

- Get faster rates for convex functions with Nesterov's accelerated gradient method, $w^{k+1} = w^k - \alpha_k \nabla f(w^k) + \beta^k (w^k - w^{k-1}) - \alpha_k \beta_k (\nabla f(w^k) - \nabla f(w^{k-1})),$ for appropriate β^k .
- Get faster local rates with Newton's method,

$$w^{k+1} = w^k - \alpha_k [\nabla^2 f(w^k)]^{-1} \nabla f(w^k),$$

and exist variations that handle case where Hessian $\nabla^2 f(w^k)$ is not invertible.

Review: Cheaper Algorithms

- Get cheaper iterations for many problems using coordinate optimization.
 - Optimizes 1 variable at a time, chosen cyclically/randomly/greedily.
 - Faster than gradient descent if iterations are *d*-times cheaper.
- Common problem structure is optimizing averages,

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w).$$

• In this setting get cheaper iterations with stochastic gradient descent (SGD),

$$w^{k+1} = w^k - \alpha_k \nabla f_{i_k}(w^k),$$

where i_k is a random sample from sum.

• Converges slower than gradient descent but iterations are *n*-times cheaper.

Review: SGD Issues

- Progress of SGD depends on $\|\nabla f(w^k)\|$, α_k , batch size, and noise variance σ_k^2 .
 - Decreasing step sizes or increasing batch sizes required for convergence.
 - Constant step size and batch size sufficient for any fixed accuracy.
- In various settings, can reduce/avoid effect of noise variance σ_k^2 :
 - Variance reduction methods (SAG/SVRG) do this with a fixed step and batch size.
 - Over-parameterized models assume $\sigma_*^2 = 0$, which allows fixed step/batch size.
- Growing batches and SAG/SVRG and over-parameterzation line-search easier.

Review: Practical Newton Methods

- Get cheap approximations to Newton's method using:
 - Diagonal approximations of Hessian.
 - Cheap/easy but often does not work well.

• Hessian-free Newton.

• Uses cheap Hessian-vector products within conjugate gradient to approximate Newton.

• Quasi-Newton

• Updates approximation of Hessian based on observed differences in gradients.

• Barzilai-Borwein step size

• Degenerate quasi-Newton method that just sets the step size for gradient descent.

Acceleration and Projected Newton

Projected CD/SGD and Frank-Wolfe

Outline

1 Projections and Projected Gradient

2 Active-Set Identification and Backtracking

3 Acceleration and Projected Newton

Projected CD/SGD and Frank-Wolfe

Projected-Gradient for Non-Negative Constraints

• We used projected gradient in 340 for NMF to find non-negative solutions,

 $\mathop{\rm argmin}_{w\geq 0} f(w).$

• In this case the algorithm has a simple form,

$$w^{k+1} = \max\{0, \underbrace{w^k - \alpha_k \nabla f(w^k)}_{\text{gradient descent}}\},\$$

where the \max is taken element-wise.

- "Do a gradient descent step, set negative values to 0."
- An obvious algorithm to try, and works as well as unconstrained gradient descent.

A Broken "Projected-Gradient" Algorithms

• Projected-gradient addresses problem of minimizing smooth f over a convex set C,

 $\mathop{\rm argmin}_{w\in \mathcal{C}} f(w).$

 \bullet As another example, we often want w to be a probability,

 $\underset{w \geq 0, \ \mathbf{1}^\top w = \mathbf{1}}{\operatorname{argmin}} f(w),$

- Based on our "set negative values to 0" intuition, we might consider this:
 - Perform an unconstrained gradient descent step.
 - Set negative values to 0 and divide by the sum.
- This algorithms does NOT work.
 - But it can be fixed if we replace Step 2 by "project onto the constraint set".

Projected-Gradient

First proposed by Goldstein [1964] and Leviting & Polyak [1965].

Projected-Gradient

First proposed by Goldstein [1964] and Leviting & Polyak [1965].

Projected-Gradient

- We can view the projected-gradient algorithm as having two steps:
 - Perform an unconstrained gradient descent step,

$$w^{k+\frac{1}{2}} = w^k - \alpha_k \nabla f(w^k).$$

2 Compute the projection onto the set \mathcal{C} ,

$$w^{k+1} \in \operatorname*{argmin}_{v \in \mathcal{C}} \|v - w^{k+\frac{1}{2}}\|.$$

- Projection is the closest point that satisfies the constraints.
 - Generalizes "projection onto subspace" from linear algebra.
 - We will also write projection of w onto ${\mathcal C}$ as

$$\operatorname{proj}_{\mathcal{C}}[w] = \operatorname{argmin}_{v \in \mathcal{C}} \|v - w\|,$$

and for convex C it's unique.

Why the Projected Gradient?

• We want to optimize f (smooth but possibly non-convex) over some convex set \mathcal{C} ,

 $\mathop{\rm argmin}_{w\in \mathcal{C}} f(w).$

• Recall that we can view gradient descent as minimizing quadratic approximation

$$w^{k+1} \in \operatorname*{argmin}_v \left\{ f(w^k) + \nabla f(w^k)(v-w^k) + \frac{1}{2\alpha_k} \|v-w^k\|^2 \right\},$$

where we've written it with a general step-size α_k instead of 1/L.

- Solving the convex quadratic argmin gives $w^{k+1} = w^k \alpha_k \nabla f(w^k)$.
- We could minimize quadratic approximation to f subject to the constraints,

$$w^{k+1} \in \operatorname*{argmin}_{v \in \mathcal{C}} \left\{ f(w^k) + \nabla f(w^k)^\top (v - w^k) + \frac{1}{2\alpha_k} \|v - w^k\|^2 \right\},$$

Why the Projected Gradient?

 \bullet We write this "minimize quadratic approximation over the set $\mathcal{C}^{\prime\prime}$ iteration as

$$\begin{split} w^{k+1} &\in \operatorname*{argmin}_{v \in \mathcal{C}} \left\{ f(w^k) + \nabla f(w^k)^\top (v - w^k) + \frac{1}{2\alpha_k} \|v - w^k\|^2 \right\} \\ &\equiv \operatorname*{argmin}_{v \in \mathcal{C}} \left\{ \alpha_k f(w^k) + \alpha_k \nabla f(w^k)^\top (v - w^k) + \frac{1}{2} \|v - w^k\|^2 \right\} \quad (\text{multiply by } \alpha_k) \\ &\equiv \operatorname*{argmin}_{v \in \mathcal{C}} \left\{ \frac{\alpha_k^2}{2} \|\nabla f(w^k)\|^2 + \alpha_k \nabla f(w^k)^\top (v - w^k) + \frac{1}{2} \|v - w^k\|^2 \right\} \quad (\pm \text{ const.}) \\ &\equiv \operatorname*{argmin}_{v \in \mathcal{C}} \left\{ \|(v - w^k) + \alpha_k \nabla f(w^k)\|^2 \right\} \quad (\text{complete the square}) \\ &\equiv \operatorname*{argmin}_{v \in \mathcal{C}} \left\{ \|v - \underbrace{(w^k - \alpha_k \nabla f(w^k))}_{\text{gradient descent}} \| \right\}, \end{split}$$

which gives the projected-gradient algorithm: $w^{k+1} = \operatorname{proj}_{\mathcal{C}}[w^k - \alpha_k \nabla f(w^k)].$

Properties of Projected Gradient

- \bullet Projected gradient for convex ${\cal C}$ has similar properties to unconstrained GD.
 - With $\alpha_k < 2/L$, guaranteed to decrease objective.
 - With $\alpha_k = 1/L$, get O(1/k) rate for convex f with Lipschitz ∇f .
 - With $\alpha_k = 1/L$, get $O((1 \mu/L)^k)$ rate for strongly-convex f with Lipschitz ∇f .
 - And again get faster rate with $\alpha_k=2/(\mu+L).$
 - $\bullet\,$ Minimizers w^* are "fixed points" of the update,

$$w^* = \operatorname{proj}_{\mathcal{C}}[w^* - \alpha \nabla f(w^*)],$$

for any step-size $\alpha > 0$ (generalizes $\nabla f(w^*) = 0$ for unconstrained case).

• If f is convex then w^* is optimal iff the above holds.

Solution is Fixed Point of Projected Gradient Update

Solution is Fixed Point of Projected Gradient Update

Non-Expansiveness of Projection Operator

• Some analyses use that projection onto convex sets is non-expansive.

• After projection, points will be the same distance or closer.

Gradient Mapping and Checking Convergence

• The projected gradient iteration is

$$w^{k+1} = \operatorname{proj}_{\mathcal{C}}[w^k - \alpha_k \nabla f(w^k)].$$

• We can re-write this iteration as

$$w^{k+1} = w^k - \alpha_k g(w^k, \alpha_k),$$

where g is called the gradient mapping

$$g(w^k, \alpha_k) = \frac{1}{\alpha_k} (w^k - \underbrace{\operatorname{proj}_{\mathcal{C}}[w^k - \alpha_k \nabla f(w^k)]}_{w^{k+1}}).$$

- If we have no constraints then $g(w^k, \alpha_k) = \nabla f(w^k)$ (so we get gradient descent).
- The gradient mapping has similar properties to the gradient:
 - We have that $-g(w^k, \alpha_k)$ points in a direction that decreases f (for any α_k).
 - We will next show that $\|g(w^k, \alpha_k)\|^2$ gives a measure of guaranteed progress.
 - Since $g(w^*, \alpha_k) = 0$ for any α_k , we could use $||g(w^k, 1)||$ to monitor convergence.

Digression: Projection Theorem

• Projection theorem: for convex sets, w_p is the projection of w iff

$$(w - w_p)^T (v - w_p) \le 0,$$

for all v in C.

• "Angle between $(w - w_p)$ and $(v - w_p)$ is ≥ 90 degrees".

Projection Theorem and Gradient Mapping

• Projection theorem: for convex sets w_p is the projection of w iff

$$(w - w_p)^T (v - w_p) \le 0,$$

for all v in C.

• If we set
$$w = w^k - \alpha_k \nabla f(w^k)$$
 then $w_p = w^{k+1}$, and choosing $v = w^k$ gives
 $(w^k - \alpha_k \nabla f(w^k) - w^{k+1})^T (w^k - w^{k+1}) \le 0$
 $- \alpha_k \nabla f(w^k)^T (w^k - w^{k+1}) \le -(w^k - w^{k+1})^T (w^k - w^{k+1})$
 $\nabla f(w^k)^T (w^{k+1} - w^k) \le -\frac{1}{\alpha_k} \| \underbrace{w^k - w^{k+1}}_{\alpha_k g(w^k, \alpha_k)} \|^2$
 $\nabla f(w^k)^T (w^{k+1} - w^k) \le -\alpha_k \| g(w^k, \alpha_k) \|^2$,

• Can be used in descent lemma to get a progress bound and convergence rate.

Progress Bound and Convergence Rate for Projected Gradient

 \bullet Recall the descent lemma when ∇f is Lipschitz then for all w and v,

$$f(v) \le f(w) + \nabla f(w)^T (v - w) + \frac{L}{2} ||v - w||^2,$$

• Setting $w = w^k$ and $v = w^{k+1}$ from projected gradient and using $\alpha_k = 1/L$ gives

$$\begin{split} f(w^{k+1}) &\leq f(w^k) + \underbrace{\nabla f(w^k)^T(w^{k+1} - w^k)}_{\leq -\alpha_k \|g(w^k, \alpha_k\|)^2} + \frac{L}{2} \|\underbrace{w^{k+1} - w^k}_{\alpha_k g(w^k, \alpha_k)} \|^2 \\ &\leq f(w^k) - \alpha_k \|g(w, \alpha_k)\|^2 + \frac{L\alpha^2}{2} \|g(w^k, \alpha_k)\|^2 \\ &= f(w^k) - \frac{1}{2L} \|g(w, 1/L)\|^2, \end{split}$$
 (with $\alpha_k = 1/L$)

we get our usual progress bound but in terms of gradient mapping.

• For f bounded below, old arguments gives $||g(w^k, 1/L)||^2$ converges at rate O(1/k).

Simple Convex Sets

- Projected-gradient is only efficient if the projection is cheap.
- We say that C is simple if the projection is cheap.
 - For example, if it costs O(d) then it adds no cost to the algorithm.
- For example, if we want $w \ge 0$ then projection sets negative values to 0.
 - Non-negative constraints are "simple".
- Another example is $w \ge 0$ and $w^{\top} 1 = 1$, the probability simplex.
 - There are O(d) algorithms to compute this projection (similar to "select" algorithm)

Simple Convex Sets

- Other examples of simple convex sets:
 - Having upper and lower bounds on the variables, $LB \le x \le UB$.
 - Having a linear equality constraint, $a^{\top}x = b$, or a small number of them.
 - Having a half-space constraint, $a^{\top}x \leq b$, or a small number of them.
 - Having a norm-ball constraint, $||x||_p \leq \tau$, for $p = 1, 2, \infty$ (fixed τ).
 - Having a norm-cone constraint, $||x||_p \leq \tau$, for $p = 1, 2, \infty$ (variable τ).
- It is easy to minimize smooth functions with these constraints.

Intersection of Simple Convex Sets: Dykstra's Algorithm

 $\bullet\,$ Often our set ${\mathcal C}$ is the intersection of simple convex set,

$$\mathcal{C} \equiv \cap_i \mathcal{C}_i.$$

• For example, we could have a large number linear constraints:

$$\mathcal{C} \equiv \{ w \mid a_i^T w \le b_i, \forall_i \}.$$

- Dykstra's algorithm can compute the projection in this case.
 - On each iteration, it projects a vector onto one of the sets C_i .
 - Requires $O(\log(1/\epsilon))$ such projections to get within ϵ .

(This is not the shortest path algorithm of "Dijkstra".)

Acceleration and Projected Newton

Projected CD/SGD and Frank-Wolfe

Outline

D Projections and Projected Gradient

2 Active-Set Identification and Backtracking

3 Acceleration and Projected Newton

Projected CD/SGD and Frank-Wolfe

L1-Regularization

• A popular approach to feature selection we saw in 340 is L1-regularization:

 $F(w) = f(w) + \lambda ||w||_1.$

- Advantages:
 - Fast: can apply to large datasets, just minimizing one function.
 - Convex if f is convex.
 - Reduces overfitting because it simultaneously regularizes.
- Disadvantages:
 - Prone to false positives, particularly if you pick λ by cross-validation.
 - Not unique: there may be infinite solutions.
- There exist many extensions:
 - "Elastic net" adds L2-regularization to make solution unique.
 - "Bolasso" applies this on bootstrap samples to reduce false positives.
 - Non-convex regularizers reduce false positives but are NP-hard to optimize.

L1-Regularization

- Key property of L1-regularization: if λ is large, solution w^* is sparse:
 - w^* has many values that are exactly zero.
- How setting variables to exactly 0 performs feature selection in linear models:

$$\hat{y}^i = w_1 x_1^i + w_2 x_2^i + w_3 x_3^i + w_4 x_4^i + w_5 x_5^i.$$

• If
$$w = \begin{bmatrix} 0 & 0 & 3 & 0 & -2 \end{bmatrix}^ op$$
 then:

$$\hat{y}^{i} = 0x_{1}^{i} + 0x_{2}^{i} + 3x_{3}^{i} + 0x_{4}^{i} + (-2)x_{5}^{i}$$

= $3x_{3}^{i} - 2x_{5}^{i}$.

• Features $\{1,2,4\}$ are not used in making predictions: we "selected" $\{3,5\}.$

Transforming L1-Regularization into a Problem with Bound Constraints

- What does L1-regularization have to do with constrained optimization?
- Can transform many non-smooth problems into smooth + simple constraints.
 - See the convex optimization notes on the webpage for a generic way to do this.
- For smooth objectives with L1-regularization,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} f(w) + \lambda \|w\|_1,$$

we can re-write as a smooth problem with only non-negative constraints,

$$\underset{w_+ \ge 0, w_- \ge 0}{\operatorname{argmin}} f(w_+ - w_-) + \lambda \sum_{j=1}^d (w_+ + w_-).$$

• Can then apply projected-gradient to this problem.

Active-Set Identification

• For L1-regularization, projected-gradient "identifies" active set in finite time:

(under mild assumptions)

• For all sufficiently large k, sparsity pattern of w^k matches sparsity pattern of $w^\ast.$

$$w^{0} = \begin{pmatrix} w_{1}^{0} \\ w_{2}^{0} \\ w_{3}^{0} \\ w_{4}^{0} \\ w_{5}^{0} \end{pmatrix} \quad \text{after finite } k \text{ iterations} \quad w^{k} = \begin{pmatrix} w_{1}^{k} \\ 0 \\ 0 \\ w_{4}^{k} \\ 0 \end{pmatrix}, \quad \text{where} \quad w^{*} = \begin{pmatrix} w_{1}^{*} \\ 0 \\ 0 \\ w_{4}^{*} \\ 0 \end{pmatrix}$$

- Useful if we are only interested in finding the sparsity pattern.
- Convergence rate will be faster once this happens (optimizing over subspace).
 - You could also apply unconstrained Newton-like methods on the non-zero variables.

Related Work and More-General Results

- Idea of finitely identifying non-zeroes dates back (at least) to Bertskeas [1976].
 For projected-gradient applied to smooth functions with non-negative constraints.
- Has been shown for a variety of convex/non-convex problems.
 - Burke & Moré [1988], Wright [1993], Hare & Lewis [2004], Hare [2011].
- We will show the active-set identification property for non-negative constraints.
 - In this setting you identify the variables that are exactly zero.
 - For general problems, you identify constraints that hold with equality at solution.

Special Case: Optimizing with Non-Negative Constraints

• Consider optimization with non-negative constraints,

 $\mathop{\rm argmin}_{w\geq 0} f(w),$

using the projected-gradient method with a step-size of 1/L,

$$w^{k+1} = \left[w^k - \frac{1}{L} \nabla f(w^k) \right]^+.$$

- This leads to sparsity, and we use \mathcal{Z} as the indices *i* where $w_i^* = 0$.
- We will assume:
 - **(**) Gradient ∇f is *L*-Lipschitz continuous.
 - 2 We converge to an isolated minimizer w^* .
 - Solution: Solution for all $i \in \mathcal{Z}$ we have $\nabla f(w_i^*) \geq \delta$ for some $\delta > 0$.
 - "You cannot have $abla_i f(w^*) = 0$ for variables i that are supposed to be zero."
 - This type of condition is standard: prevents reaching solution through interior.

Active-Set Identification for Non-Negative Constraints

 $\bullet\,$ Let's show that we set $i\in\mathcal{Z}$ to zero when we're "close" to the solution.

• Implies "for large 'k', if w_i^* is zero then the algorithm sets w_i^k to 0".

Active-Set Identification for Non-Negative Constraints

- \bullet Let's show that we set $i\in\mathcal{Z}$ to zero when we're "close" to the solution.
 - \bullet Implies "for large 'k', if w_i^* is zero then the algorithm sets w_i^k to 0".
- Since we assume projected-gradient converges to an isolated optimum, for all sufficiently large k we have $||w^k w^*|| \le \frac{\delta}{2L}$.
- In this region we have two useful properties for all i ∈ Z:
 The value of the variable must be small: w^k_i ≤ δ/2T.
 - Since $w_i^* = 0$ and w_i^k is within $\delta/2L$ of w_i .
 - 2 The value of the gradient must be large: $\nabla_i f(w^k) \ge \delta/2$.
 - Since we assumed $\nabla_i f(w^*) \ge \delta$ and ∇f is Lipschitz so $|\nabla_i f(w^k) \nabla_i f(w^*)| \le \|\nabla f(w^k) \nabla f(w^*)\| \le L \|w^k w^*\| \le \delta/2.$
- $\bullet\,$ Plugging these into the projected-gradient update gives for $i\in\mathcal{Z}$ that

$$w_i^{k+1} = \left[w_i^k - \frac{1}{L}\nabla_i f(w^k)\right]^+ \le \left[\frac{\delta}{2L} - \frac{\delta}{2L}\right]^+ = 0$$

Superlinear Convergence after Identifying Active Set

- In a typical setting, we might hope that $|\mathcal{Z}^c| << d$.
 - Here we have the potential for faster algorithms by doing Newton steps on \mathcal{Z} .
- Some possibilities:
 - At some point, switch from projected-gradient to Newton on the manifold.
 - Unfortunately, hard to decide when to switch.
 - Each iteration checks progress of projected-gradient and Newton [Wright, 2012].
 - Choose whichever one makes the most progres.
 - Two-metric projection [Gafni & Bertsekas, 1984], discussed in next section.
 - May require expensive Newton steps before we're on the manifold.
 - There remains some theoretical and experimental work to do here.

Gradient Projection with 2 Step Sizes

- Active set identification can be affect by how we backtrack.
- Written in terms of the gradient mapping, projected gradient iteration is

$$w^{k+1} = w^k - \alpha_k g(w^k, \alpha_k),$$

where notice that α_k appears twice.

- In definition of gradient mapping, and how far we move.
- Consider introducing a second step size $\eta_k \leq 1$,

$$w^{k+1} = w^k - \eta_k \alpha_k g(w^k, \alpha_k),$$

which only affects how far we move in gradient mapping direction.

- We previously considered $\alpha_k = 1/L$ and $\eta_k = 1$, but this works poorly in practice.
- In practice, we typically fix one step size and backtrack along the other.

2 Backtracking Strategies for Projected Gradient

• Projected gradient written in terms of 2 step sizes is

$$w^{k+1} = w^k - \eta_k \alpha_k g(w^k, \alpha_k),$$

- Backtracking along the feasible direction:
 - Fix α_k (typically at 1) and backtrack by reducing η_k .
 - Only 1 projection per iteration (good if projection is expensive).
 - But may is not guaranteed to identify active set.
- Backtracking along the projection arc:
 - Fix η_k at 1 and backtrack by reducing α_k .
 - 1 projection per backtracking step (bad if projection is expensive).
 - But identifies active set after finite number of iterations.

Acceleration and Projected Newtor

Backtracking Along the Feasible Direction

- Backtracking along the feasible direction:
 - Project once, then backtrack through the interior.

• Better if projection is expensive (and do not care about active set).

Acceleration and Projected Newtor

Backtracking Along the Feasible Direction

- Backtracking along the feasible direction:
 - Project once, then backtrack through the interior.

• Better if projection is expensive (and do not care about active set).

Acceleration and Projected Newton

Projected CD/SGD and Frank-Wolfe

Backtracking Along the Projection Arc

- Backtracking along the projection arc:
 - Backtrack then re-project, which may move along boundary.

• Better if projection is cheap (or want to identify active set).

Backtracking Along the Projection Arc

- Backtracking along the projection arc:
 - Backtrack then re-project, which may move along boundary.

• Better if projection is cheap (or want to identify active set).

Outline

Projections and Projected Gradient

2 Active-Set Identification and Backtracking

Projected CD/SGD and Frank-Wolfe

Faster Projected-Gradient Methods

• An accelerated projected-gradient method has the form

$$w^{k+1} = \operatorname{proj}_{\mathcal{C}}[v^k - \alpha_k \nabla f(w^k)]$$
$$v^{k+1} = w^{k+1} + \beta_k (w^{k+1} - w^k),$$

and this achieves accelerated rate with same α_k and β_k as unconstrained case. • Note that v^k may not satisfy constraints, but variants exist that keep v^k feasible.

- We could alternately use the Barzilai-Borwein step-size.
 - Known as spectral projected-gradient.
- The naive Newton-like methods with Hessian approximation H_k ,

$$w^{k+1} = \operatorname{proj}_{\mathcal{C}}[\underbrace{w^k - \alpha_k [H_k]^{-1} \nabla f(w^k)}_{\bullet}],$$

Newton step

does not work.

Naive Projected-Newton

Naive Projected-Newton

Naive Projected-Newton

Naive Projected-Newton

Naive Projected-Newton

Naive Projected-Newton

Naive Projected-Newton

Projected-Newton Method

• The naive projected-Newton method,

$$w^{k+\frac{1}{2}} = w^k - \alpha_k [H_k]^{-1} \nabla f(w^k) \qquad (\text{Newton-like step})$$
$$w^{k+1} = \underset{v \in \mathcal{C}}{\operatorname{argmin}} \|v - w^{k+\frac{1}{2}}\| \qquad (\text{projection})$$

which will not work.

- Projection theorem does not imply Newton gives a descent direction.
- The correct projected-Newton method uses

$$w^{k+\frac{1}{2}} = w^k - \alpha_k [H_k]^{-1} \nabla f(w^k)$$
 (Newton-like step)
$$w^{k+1} = \underset{v \in \mathcal{C}}{\operatorname{argmin}} \|v - w^{k+\frac{1}{2}}\|_{H_k}$$
 (projection under Hessian metric)

Projected-Newton Method

• Projected-gradient minimizes quadratic approximation,

$$w^{k+1} = \operatorname*{argmin}_{v \in C} \left\{ f(w^k) + \nabla f(w^k)(v - w^k) + \frac{1}{2\alpha_k} \|v - w^k\|^2 \right\}.$$

• Newton's method can be viewed as quadratic approximation ($H_k \approx
abla^2 f(w^k)$):

$$w^{k+1} = \operatorname*{argmin}_{v \in \mathbb{R}^d} \left\{ f(w^k) + \nabla f(w^k)(v - w^k) + \frac{1}{2\alpha_k}(v - w^k)H_k(v - w^k) \right\}.$$

• Projected Newton minimizes constrained quadratic approximation:

$$w^{k+1} = \underset{v \in C}{\operatorname{argmin}} \left\{ f(w^k) + \nabla f(w^k)(v - w^k) + \frac{1}{2\alpha_k}(v - w^k)H_k(v - w^k) \right\}.$$

• Equivalently, we project Newton step under different Hessian-defined norm,

$$w^{k+1} = \underset{v \in C}{\operatorname{argmin}} \|v - (w^k - \alpha_t H_k^{-1} \nabla f(w^k))\|_{H_k},$$

where general "quadratic norm" is $||z||_A = \sqrt{z^{\top}Az}$ for $A \succ 0$.

Discussion of Projected-Newton

• Projected-Newton iteration is given by

$$w^{k+1} = \underset{y \in C}{\operatorname{argmin}} \left\{ f(w^k) + \nabla f(w^k)(v - w^k) + \frac{1}{2\alpha_k}(v - w^k)H_k(v - w^k) \right\}.$$

- But this is expensive even when \mathcal{C} is simple.
- There are a variety of practical alternatives:
 - If H_k is diagonal then this is typically simple to solve for simple C.
 - Inexact projected-Newton: solve the above approximately.
 - Use a projected-gradient variant to minimize the above strongly-convex quadratic.
 - Useful when f is very expensive but H_k and C are simple.
 - "Optimizing costly functions with simple constraints" uses L-BFGS for H_k .
 - Two-metric projection methods are special algorithms for upper/lower bounds.
 - Fix problem of naive method in this case by making H_k "partially diagonal".

Two-Metric Projection for Bound Constraints

- Consider again optimizing with non-negative constraints, $\min_{w \in \mathcal{C}} f(w)$.
- The two-metric projection method splits the variables into two sets:

$$\begin{aligned} \mathcal{A}^k &\equiv \{i \mid w_i^k = 0, \nabla_i f(w^k) > 0\}, \\ \mathcal{I}^k &\equiv \{i \mid w_i^k \neq 0 \text{ or } \nabla_i f(w^k) \le 0\}, \end{aligned}$$

the "active" variables (constrained at boundary) and "inactive variables". • Uses a projected-gradient step on \mathcal{A}^k and "naive" projected-Newton on \mathcal{I}^k .

$$\begin{split} w_{A^k}^{k+1} &= \operatorname{proj}_{\mathcal{C}}[w_{A^k}^k - \alpha_k \nabla_{A^k} f(w^k)] \\ w_{I^k}^{k+1} &= \operatorname{proj}_{\mathcal{C}}[w_{I^k}^k - \alpha_k [\nabla_{I^k}^2 f(w^k)]^{-1} \nabla_{I^k} f(w^k)] \end{split}$$

- Eventually switches to unconstrained Newton on unconstrained variables.
- Can be generalized to general lower and upper bounds on individual variables.
 - Also exists a two-metric projection method for optimizing over probability simplex.

Acceleration and Projected Newton

Projected CD/SGD and Frank-Wolfe

Outline

Projections and Projected Gradient

2 Active-Set Identification and Backtracking

3 Acceleration and Projected Newton

Cheaper Iterations with Projected Coordinate Optimization

- We can consider various ways to make projected-gradient iterations cheaper.
- In the special case of bounds constraints,

 $\min f(w), \quad l_i \le w_i \le u_i,$

we can coordinate optimization or projected coordinate descent,

$$w_i^{k+1} = \operatorname{proj}_{l_i \le w_i \le u_i} [w_i^k - \alpha_k \nabla_i f(w^k)],$$

where the projection step clips gradient descent to stay within the bounds.

• Random coordinate optimization has same convergence rates as unconstrained case.

Coordinate Optimization with Non-Separable Constraints

- Coordinate optimization will not work for non-separable constraints.
- For example, consider optimizing with an equality constraint,

$$\min_{w} f(w), \quad \sum_{i=1}^{n} w_i = 1.$$

- If w satisfies the constraint, you cannot change any w_i without violating it.
- But you can change 2 variables i and j to maintain the constraint:

$$w_i^{k+1} = w_i^k - \alpha_k (\nabla_i f(w^k) - \nabla_j f(w^k))$$
$$w_j^{k+1} = w_j^k - \alpha_k (\nabla_j f(w^k) - \nabla_i f(w^k)).$$

- How to handle more complicated constraints gets ugly.
 - Special case: block-separable constraints (can use block coordinate optimization).

Projected Stochastic Gradient Descent

• We can consider projected stochastic gradient,

$$w^{k+1} = \operatorname{proj}_{\mathcal{C}}[w^k - \alpha_k \nabla f_{i_k}(w^k)],$$

where we do projected gradient on a random training example i_k .

- Convergence properties are similar to unconstrained SGD.
- Constraint does not need to be separable, but projection should be cheap.
 - Need to project *n* times per epoch.
- Some properties of SGD and projected-gradient that do not hold:
 - Lose fast convergence for over-parameterized models.
 - Because we no longer even have $\nabla f(w^*) = 0$.
 - Lose active set identification property of projected gradient.
 - Can leave boundary of constraints infinitely often.
 - Variant that restores this property is dual averaging,

$$w^{k+1} = \operatorname{proj}_{\mathcal{C}}[w^0 - \frac{\alpha_k}{k} \sum_{t=1}^k \nabla f(w^k)],$$

since it uses the average of the previous gradients (variance of direction goes to 0).

Frank-Wolfe Method ("Conditional Gradient")

• The projected-gradient method uses a quadratic approximation

$$\underset{v \in \mathcal{C}}{\operatorname{argmin}} \left\{ f(w^k) + \nabla f(w^k)^\top (v - w^k) + \frac{1}{2\alpha_k} \|v - w^k\|^2 \right\},$$

and in some cases may be hard to compute (or even approximate).

• For these problems we can sometimes solve the simplified problem,

$$\underset{v \in \mathcal{C}}{\operatorname{argmin}} \left\{ f(w^k) + \nabla f(w^k)^\top (v - w^k) \right\},$$

which optimizes a linear approximation to the function over the constraint set.

- $\bullet\,$ This requires the set ${\mathcal C}$ to bounded, otherwise may be no solution.
- This is the basis of the conditional gradient method, also known as Frank-Wolfe
 - Marguerite Frank at NeurIPS in 2013: https://www.youtube.com/watch?v=24e08AX9Eww.

Acceleration and Projected Newton

Frank-Wolfe Method ("Conditional Gradient")

• Visualization of the Frank-Wolfe approximation:

https://en.wikipedia.org/wiki/Frank\OT1\textendashWolfe_algorithm

- For convex f, minimizer of linear approximation gives lower bound on $f(w^*)$.
 - Like Newton, iterations are affine-invariant (don't change with affine transformation).

Frank-Wolfe Method ("Conditional Gradient")

• The Frank-Wolfe algorithm takes steps of the form

$$w^{k+1} = w^k + \alpha_k (v^k - w^k),$$

where $v^k \in \operatorname{argmin}_{v \in \mathcal{C}} \nabla f(w^k)^\top v$.

• So the gradient mapping would be $\frac{1}{\alpha_k}(w^k - v^k)$.

- Common ways to set the step size:
 - Decreasing: $\alpha_k = 2/(k+2)$. • Descent lemma: $\min\left\{1, \frac{\langle \nabla f(w^k), w^k - v^k \rangle}{L \|w^k - v^k\|^2}\right\}$ (works better if you approximate L).
 - Line search: $\operatorname{argmin}_{0 \leq \alpha \leq 1} f(w^k + \alpha_k (v^k w^k))$ (works best).
- Convergence rate is O(1/k) for convex and non-convex f.
 - Tends to be slower than projected-gradient in cases where they have similar costs.

Linear Convergence of Frank-Wolfe

- Basic Frank-Wolfe method has linear convergence in certain settings:
 - Function f is PL and solution is in interior of C.
 - $\bullet\,$ Function f is strongly convex and constraint ${\mathcal C}$ is uniformly convex.
- Several variations exist that obtain linear rates including away-step Frank-Wolfe:

https://arxiv.org/pdf/2211.14103.pdf

- Frank-Wolfe moves towards vertex minimizing approximation resulting in zigzagging.
- Away-steps move away from maximizing vertex (if larger directional derivative).
 - Above, iteration 6 moves away from initial vertex, moving onto boundary.
 - Recent variant is pairwise Frank-Wolfe, combining the above two steps.
 - Another variant is conditional gradient sliding, acceleration in terms of gradients.

Summary

- Projected-gradient allows optimization with simple constraints.
 - Same convergence speed as gradient descent.
- Simple convex sets are those that allow efficient projection.
- Active set identification of projected gradient.
 - Finds active constraints at solution in a finite number of iterations.
- 2 backtracking strategies for projected gradient.
 - Line search along feasible direction or backtrack along projection arc.
- Projected Newton adds second-order information.
 - Faster convergence but expensive even for simple sets, needs approximation.
- Projected coordinate descent works for bound constraints.
- Projected SGD works for large datasets.
 - But lose active set identification and fast convergence under over-parameterization
- Frank-Wolfe uses a linear rather than quadratic approximation.
 - Much cheaper than projection for some problems.
- Next time: non-smooth functions and finding the non-convex global min.