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Last Time: Constant Steps, Mini-Batches, and Over-Parameterization

With constant step size α, under PL SGD satisfies

f(wk)− f∗ ≤ ρ(α)k(f(w0)− f∗) +O(ασ2/m),

where m is the mini-batch size.

Linear convergence up to some solution accuracy.
Solution accuracy proportional to step size and inversely proportional to batch size.

We discussed growing batch strategies and over-parameterization:

Gives fast convergence of SGD with constant step size.
Allows using deterministic tricks like line search.

But over-parameterization is a strong assumtpion and growing batches increases cost.

Today: avoiding high iteration costs or over-parameterization assumptions?
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Deterministic vs. Stochastic vs. Hybrid

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost
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Stochastic methods:

O(1/ε) iterations but requires 1 gradient per iterations.
Deterministic methods:

O(log(1/ε)) iterations but requires n gradients per iteration.
Growing-batch (“batching”) or “switching” methods:

O(log(1/ε)) iterations, requires fewer than n gradients in early iterations.
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Deterministic vs. Stochastic vs. Hybrid

Stochastic methods:
O(1/ε) iterations but requires 1 gradient per iterations.

Deterministic methods:
O(log(1/ε)) iterations but requires n gradients per iteration.

Growing-batch (“batching”) or “switching” methods:
O(log(1/ε)) iterations, requires fewer than n gradients in early iterations.
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Stochastic Average Gradient

Growing |Bk| eventually requires O(n) iteration cost.

Can we have 1 gradient per iteration and only O(log(1/ε)) iterations?
YES! First method was the stochastic average gradient (SAG) algorithm in 2012.

To motivate SAG, let’s view gradient descent as performing the iteration

wk+1 = wk − αk
n

n∑
i=1

vki ,

where on each step we set vki = ∇fi(wk) for all i.

SAG method: only set vkik = ∇fik(wk) for a randomly-chosen ik.

All other vki are kept at their previous value.
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Stochastic Average Gradient

We can think of SAG as having a memory:
v1
v2
...
vn

 ,
where vki is the gradient ∇fi(wk) from the last k where i was selected.

On each iteration we:

Randomly choose one of the vi and update it to the current gradient.
We take a step in the direction of the average of these vi.
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SGD vs. SAG

SAG update leads to convergence with a constant step size:

Without needing to assume over-parameterization or growing batches.



Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Stochastic Average Gradient
Basic SAG algorithm (maintains g =

∑n
i=1 vi):

Set g = 0 and gradient approximation vi = 0 for i = 1, 2, . . . , n.
while(1)

Sample i from {1, 2, . . . , n}.
Compute ∇fi(w).
g = g − vi +∇fi(w).
vi = ∇fi(w).
w = w − α

n
g.

Iteration cost is O(d), and “lazy updates” allow O(z) with sparse gradients.

For linear models where fi(w) = h(w>xi), it only requires O(n) memory:

∇fi(w) = h′(w>xi)︸ ︷︷ ︸
scalar

xi︸︷︷︸
data

.

Least squares is h(z) = 1
2 (z − yi)2, logistic is h(z) = log(1 + exp(−yiz)), etc.

For neural networks, would need to store all activations (typically impractical).
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Stochastic Average Gradient

The SAG iteration is

wk+1 = wk − αk
n

n∑
i=1

vki ,

where on each iteration we set vkik = ∇fik(wk) for a randomly-chosen ik.

Unlike batching, we use a gradient for every example.

But the gradients might be out of date.

Stochastic variant of earlier increment aggregated gradient (IAG).

Selects ik cyclically, which destroys performance.

Key proof idea: vki → ∇fi(w∗) at the same rate that wk → w∗:

So the variance ‖ek‖2 (“bad term”) converges linearly to 0.
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Convergence Rate of SAG

If each ∇fi is L−continuous and f is strongly-convex, with αk = 1/16L SAG has

E[f(wk)− f(w∗)] 6 O

((
1−min

{
µ

16L
,
1

8n

})k)

Number of ∇fi evaluations to reach accuracy ε:

Stochastic: O(Lµ (1/ε)). (Best when n is enormous)

Gradient: O(nLµ log(1/ε)).

Nesterov: O(n
√

L
µ log(1/ε)). (Best when n is small and L/µ is big)

SAG: O(max{n, Lµ } log(1/ε)).

But note that the L values are different between algorithms.
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Comparing Deterministic and Stochastic Methods

Two benchmark L2-regularized logistic regression datasets:
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Averaging makes SG work better, deterministic methods eventually catch up.
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SAG Compared to Deterministic/Stochastic Methods

Two benchmark L2-regularized logistic regression datasets:
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Starts like stochastic but linear rate, SAG step-size set to L̂ approximation.
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SAG Compared to Deterministic/Stochastic Methods
Comparison of methods to train a conditional random field:

SAG-NUS* is a variation on Lipschitz sampling using local approximations L̂i.
Bonus slide discusses various practical implementation issues.
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Variance-Reduced Stochastic Gradient Methods

Now exists a variety of fast stochastic finite for finite-sum problems:

SDCA, MISO, mixedGrad, SVRG, Finito, SAGA, SARAH, SPIDER, and so on.

Strategies to develop faster methods:
Non-uniform sampling using Lipschitz constants of examples:

Improves complexity from Õ(n+ Lmax/µ)) to Õ(n+ L̄/µ).

Accelerated methods:

Improves complexity from Õ(n+ Lmax/µ) to Õ(n+
√
nLmax/µ).

Newton-like methods and methods designed for non-convex problems.

Still active area of research, achieve faster rates in some settings.

There are also methods that reduce the memory to O(d).

Most common approach is stochastic variance-reduced gradient (SVRG).
We will first cover a simpler but non-implementable method called SGD*.
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SVRG Warm-Up: SGD*

Suppose we knew w∗, and use the following SGD* iteration:

wk+1 = wk − αk(∇fik(wk)−∇fik(w∗)︸ ︷︷ ︸
gk

).

Similar to SGD, using gk gives an unbiased gradient approximation:

E[gk] = E[∇fik(wk)]− E[∇fik(w∗)]
= ∇f(wk)−∇f(w∗)︸ ︷︷ ︸

0

= ∇f(wk).

But (for convex fi) you can show gradient approximation goes to 0 as wk → w∗,

E[‖gk‖2] ≤ 2Lmax(f(w
k)− f∗).

This makes SGD* behave like over-parameterized SGD.
And for over-parameterized problems, SGD* is just SGD since ∇fi(w∗) = 0 for all i.
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SGD* Convergence Rate (using Descent Lemma)

Recall our progress bound for any unbiased SGD method:

E[f(wk+1)] ≤ f(wk)− αk‖gk‖2︸ ︷︷ ︸
good

+ α2
k

L

2
E[‖gk‖2]︸ ︷︷ ︸

bad

.

Using PL (‖∇f(wk)‖2 ≥ 2µ(f(wk)− f∗)) and E[‖gk‖2] bound (previous slide),

E[f(wk+1)] ≤ f(wk)− 2αkµ(f(w
k)− f∗) + α2

kLLmax(f(w
k)− f∗).

If you subtact f∗ and recurse, then with αk = µ/LLmax SGD* satisfies

E[f(wk)− f∗] ≤
(
1− µ2

LLmax

)k
[f(w0)− f∗].

Get a (1− µ/Lmax) rate by analyzing ‖wk − w∗‖ instead (using αk = 1/Lmax)).
We will consider this proof technique later when we disucss non-smooth optimization.
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From SGD* to SVRG
Since ∇f(w∗) = 0, we can re-write SGD* as

wk+1 = wk − αk(∇fik(wk)−∇fik(w∗) +∇f(w∗)︸ ︷︷ ︸
0

),

which achieves fast rate without a memory by evaluating 2 gradients per iteration.

We evalute ∇fik at wk and w∗.

This is a special case of using a control variate estimate of the graident.
“Add random variable and subtract its mean” .
Gives an unbiased Monte Carlo estimate, that can have reduced variance.

Stochastic variance-reduced gradient (SVRG) uses a similar control variate:

wk+1 = wk − αk(∇fik(wk)−∇fik(vk) +∇f(vk)),
where vk is some previous iterate rather than the global minimum w∗.
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Stochastic Variance Reduced Gradient Method

The SVRG iteration

wk+1 = wk − αk(∇fik(wk)−∇fik(vk) +∇f(vk)︸ ︷︷ ︸
gk

).

Unlike SAG, but similar to SGD*, this gives an unbiased gradient approximation:

E[gk] = ∇f(wk)−E[∇fik(vk)] +∇f(vk)︸ ︷︷ ︸
0

.

And can show that gradient approximation goes to 0 as wk and vk approach w∗,

E[‖gk‖2] ≤ 4L(f(wk)− f∗) + 4L(f(vk)− f∗).
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Stochastic Variance Reduced Gradient Method

To implement the SVRG iterations,

wk+1 = wk − αk(∇fik(wk)−∇fik(vk) +∇f(vk)),
we have two types of iterations:

1 On most iterations we set vk = vk−1 (“cheap iterations”).
These iterations only require 2 gradient evaluations if we have stored ∇f(vk−1).

2 On some iterations we set vk = wk (“expensive iterations”).
These iterations cost n gradients evaluations to update ∇f(vk).

Obtain fast rates under appropriate αk and expensive iteration frequency.
If αk = 1/6L and we update vk with probability 1/n:

SVRG achieves the SAG complexity of Õ((n+ Lmax/µ)).
With the standard O(d) memory and an average cost of 3 gradients per iteration.

In practice, using αk = 1/L and updating vk every n iterations often works well.
And you can/should using a growing-batch estimate of ∇f(vk) (“practical SVRG”).
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Stochastic Variance Reduced Gradient Method

Comparison of various methods for fitting a logistic regerssion model:

The above is with “no tricks”. With tricks SAG tends to outperform SVRG.
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SVRG for Deep Learning?

Variance-reduced methods are not typically used for deep learning.

SVRG does not converge noticeably faster for neural networks.

This might be because we often use over-parameterized neural networks.

For over-parameterzied models SVRG still needs Õ(n+ Lmax/µ) iterations.
But plain SGD only needs Õ(Lmax/µ) iterations.

Or it could be that networks are close to over-parameterized.

Or that we do not need to run the methods long enough to see a difference.

Recent work argues that variance reduction may be useful for GANs.
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Motivation: Cost of Newton Iterations

Newton’s method is expensive if dimension d is large:

Requires solving ∇2f(wk)dk = ∇f(wk).
For logistic regression, this costs O(nd2) to form Hessian and O(d3) to solve.

Many methods proposed to approximate Newton’s method at reduced cost.
1 Cheaper Hessian approximations.
2 Hessian-free Newton methods.
3 Quasi-Newton methods.

We will overview some representative ones.
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Cheaper Hessian Approximation #1: Diagonal Hessian
A simple strategy is to use a diagonal approximation of the Hessian,

[∇2f(wk)]−1 ≈ Dk,

where Dk is a diagonal matrix.

This gives the (damped) Newton step the form

wk+1 = wk − αkDk∇f(wk),
which only costs O(d) instead of O(d3) to compute.

A common choice is using inverse of Hessian diagonals Dk
ii = (∇2

iif(w
k))−1.

Corresponding to a coordinate-wise Newton step along each dimension.

Diagonal approximations lose superlinear convergence.
For some problems Hessian diagonals outperforms gradient descent.
For many problems using Hessian diagonals is worse than gradient descent.



Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Cheap Hessian Approximation #2: Preconditioning

Some methods use a Newton-style update with a positive-definite fixed matrix,

wk+1 = wk − αkM∇f(wk).

Matrix M could be chosen to include some second-order information.

And may be chosen so that multiplication by M costs less than O(d2).

We call this approach preconditioning (details in bonus slides).
It can be viewed as performing gradient descent under change of variables.

Choosing a matrix R such that RRT = M (like Cholesky factorization).
Preconditioned update corresponds to gradient descont on v, where w = Rv.

Convergence rate (for C2) functions depends on RT∇2f(Rw)R instead of ∇2f(w).

For strongly-convex quadratics, ideal preconditioner would be M = [∇2f(w)]−1.
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Preconditioner Variation: Matrix Upper Bound

Our usual Lipschitz continuity assumption on the gradient is that

‖∇f(w)−∇f(v)‖ ≤ L‖w − v‖.

We could instead assume 1-Lipschitz continuity with respect to a matrix M ,

‖∇f(w)−∇f(v)‖M−1 ≤ ‖w − v‖M ,

where ‖d‖M =
√
dTMd and we assume M is positive definite.

For quadratic functions, we can use M = ∇2f(w) and we get Newton.

For binary logistic regression, we can use M = 1
4X

TX.

We have ∇2f(w) = XTD(w)X, where diagonal D(w) has diagonal entries ≤ 1
4 .
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Preconditioner Variation: Matrix Upper Bound

The matrix-norm Lipschitz continuity leads to a descent lemma of the form

f(wk+1) ≤ f(wk) +∇f(wk)T (wk+1 − wk) + 1

2
‖wk+1 − wk‖2M ,

and minimizing the righ side yields the Newton-like step

wk+1 = wk −M−1∇f(wk).
This step does not require a step size and guarantees descent.

With appropriate M guarantees more progress per iteration than gradient descent.
Which is more than we can say about Newton when not close to the solution.

Though in practice you may get better performance using a line-search.

But loses superlinear convergence and cost is still O(d2) per iteration.
Or O(d) if M is diagonal.

And not obvious how to find upper-bound matrices M (backtracking?).
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Cheaper Hessian Approximation #3: Mini-Batch Hessian

For ML problems some have explored using a mini-batch Hessian approximation,

∇2f(wk) =
1

n

n∑
i=1

∇2fi(w
k) ≈ 1

|B|
∑
i∈B
∇2fi(w

k),

which removes dependence on n in the Hessian calculation.

Newton update can be solved quickly under this approximation for some problems.
For L2-regularized logistic regression, costs O(|B|2d+ |B|3).

By using kernelized version.

Leads to superlinear convergence if batch size grows fast enough.

But for general problems still require O(d3) to solve Newton system.
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Hessian-Free Newton Methods (“Truncated Newton”)

Cheap Hessian methods approximate ∇2f(wk), and lose superlinear convergence.

Hessian-free Newton use exact ∇2f(wk) but approximates the Newton direction.

As an example, for strongly-convex f Newton’s method minimizes a quadratic,

argmin
g

f(wk) +∇f(wk)T g + 1

2
gT∇2f(wk)g,

We have good first-order methods for minimizing strongly-convex quadratics.
You could use conjugate gradient (heavy-ball with optimal αk and βk on each step).

To use a first-order method we need to compute gradient with respect to g,

0 +∇f(wk) +∇2f(wk)g,

which requires Hessian-vector products.
So why is it called “Hessian-free”?
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Hessian-Vector Products are Cheap

Cost of a Hessian-vector product is at most the cost of computing gradient.

Example: for binary logistic regression we have

∇f(w) = XT r(w), ∇2f(w) = XTD(w)X,

where r(w) and D(w) each cost O(n) to compute for n training examples.
Cost of computing gradient is O(nd) due to the matrix-vector product.
Cost of computing Hessian is O(nd2) due to the matrix-matrix product.

But cost of computing Hessian-vector product is only O(nd),

∇2f(w)d = XTD(w)Xd

= XT (D(w)(Xd)).

due to the matrix-vector products.
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Hessian-Vector Products and Automatic Differentiation

More generally, Hessian-vector product is a directional derivative of gradient,

∇2f(w)g = lim
δ→0

1

δ
(∇f(w + δg)−∇f(w)).

You could thus use a finite-difference approximation of Hessian-vector product.

Or you could compute exactly with forward-mode automatic differentiation.
This is different than the usual “reverse mode” we use to get gradients.

Gives Hessian-vector product for cost of computing gradient.
Does not have the high memory requirements of reverse mode.
No need to worry about things like “checkpointing”.

Bonus slide shows complex-step derivative if you do not have AD code.
Allows computing Hessian-vector products to arbitrary accuracy using complex
numbers.
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Hessian-Free Newton - Local Convergence Rates
Key ideas behind Hessian-free Newton methods:

Approximately compute Newton direction using conjugate gradient.
Each iteration of conjugate gradient only needs a (cheap) Hessian-vector product.

Key to reducing iteration cost compared to exact Newton method:
We do not run conjugate gradient to convergence.

Hessian-free Newton is also called “truncated Newton” or “inexact Newton”.

Local convergence rates of Hessian-free Newton depend on the accuracy:
Let rk = ∇f(wk) +∇2f(wk)gk be the gradient for the final gk.

We get linear convergence if ‖rk‖ ≤ ηk‖∇f(wk)‖ for ηk ≤ η < 1.
We get superlinear convergence if the above holds with ηk → 0.
We get quadratic convergence if ηk = O(‖∇f(wk)‖).

For superlinear convergence, a typical forcing sequence is

ηk = min{0.5,
√
‖∇f(wk)‖},

which forces CG to solve Newton system more accurately as the gradient decreases.
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Hessian-Free Netwon - Globalization and Negative Curvature

To ensure convergence, you still need to use a globalization strategy.

Use the approximate Newton direction generated by CG within a line-search.
Or run CG until you are outside the trust region raidus.

Conjugate gradient only applies to convex quadratic functions.

For non-convex problems, the Hessian may have negative eigenvalues.

During the CG iterations, we can test whether dT∇2f(wk)d < 0.
If so, we have detected a direction of negative curvature.

We usually stop running CG if this is detected.

Descent directions of negative curvature can make excellent search directions.

“The function starts decreasing faster if we move in this direction”.
Some codes switch to using a precise line-search if such a direction is found.
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Sketched Newton - Random Hessian-Vector Products

Several recent works consider sketched Newton methods.

Performs Hessian-vector products with random directions.
Uses the resulting vectors to build an approximation to the Hessian.

Usually converges to Newton direction slower than running conjugate gradient.

But random Hessian-vector products can be computed in parallel.
Alternately, for some problems allows faster Hessian-vector products.

By using the structure of the Hessian and sparse random vectors.
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2.5-Order Methods
Key to Hessian-free Newton methods is cost of Hessian-vector products.

Hessian-vector products have same cost as computing gradient.
Allows us to implement an approximate second-order method.

But consider a scenario where we can afford to compute the Hessian.
Can compute tensor-vector products with 3rd-order tensor for same cost.
Allows us to implement an approximate third-order method.

A “tensor-free” method might use tensor-vector products to try to minimize

f(wk) +∇f(wk)T g + 1

2
gT∇2f(wk)g +

1

6
∇3f(wk)[g]3 +

T

24
‖g‖4,

where T is the Lipschitz constant of the third-order tensor.
Third-order methods give faster rates.
In practice I have found that they usually only save 1 iteration compared to Newton.

This is sensible because unless g is close to 0 the approximation is not good.
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Quasi-Newton Methods: Overview
We have discussed methods that use limited information about current Hessian.

Diagonals of Hessian, Hessian-vector products, and so on.

Quasi-Newton build a sequence of Hessian approximations B0, B1, B2,. . . , and
use

wk+1 = wk − αkB−1k ∇f(wk),
with the goal that approximations eventually act like the Hessian.

Typically used with a line-search that initially tries αk = 1.

Classic quasi-Newton methods choose Bk to satisfy the secant equations,

Bk+1(w
k − wk−1) = ∇f(wk)−∇f(wk−1),

which only uses iterate and gradient differences (no Hessian information).
Roughly, “multiplying by Bk+1 acts like a Hessian vector product”.
Secant equations give superlinear local convergence for one-dimensional problems.



Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Barzilai-Borwein Method: Quasi-Newton with Scaled Identity

A simple quasi-Newton method is the Barzilai-Borwein method.

Uses an approximation of the form Bk = (1/αk)I for a scalar αk.
So it is equivalent to gradient descent with a particular step size.

This Bk cannot always solve the secant equations, so we minimize squared error,

αk+1 ∈ argmin
α
‖Bk+1(w

k − wk−1)− (∇f(wk)−∇f(wk−1))‖2,

which gives

αk+1 =
‖wk − wk−1‖2

(wk − wk−1)T (∇f(wk)−∇f(wk−1))
Barzilai and Borwein showed this gives superlinear convergence for 2d quadratics.

Now extended to 3d quadratics, but not faster than gradient descent in general.
Often used with safeguards and “non-monotonic Armijo” line-search.

Empirical convergence rate is often very fast, but almost no theory on why.
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Alternate Secant Equations and BB Step Size

Usual secant equations are

Bk+1(w
k − wk−1) = ∇f(wk)−∇f(wk−1),

but we could alternately require inverse to satisfy secant equations,

(wk − wk−1) = [Bk+1]
−1∇f(wk)−∇f(wk−1).

This gives an alternate Barzilai-Borwein step size of

αk+1 =
(wk − wk−1)T (∇f(wk)−∇f(wk−1))

‖∇f(wk)−∇f(wk−1)‖2 ,

which is the one used in findMin and my previous demos.
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BFGS Quasi-Newton Method

Most quasi-Newton methods use dense matrices Bk.

In this case there may be an infinite number of solutions to secant equations.

Many methods exist, and typical methods also require:

Bk+1 to be symmetric.
Bk+1 to be close to Bk under some norm.

Most popular is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update:

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
,

where sk = wk − wk−1 and yk = ∇f(wk)−∇f(wk−1).

Derived as rank-2 update which stays close to previous matrix in some norm.



Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

BFGS Convergence

If yTk sk > 0 and Bk is positive-definite, then Bk+1 is positive-definite.

Some implementations “skip” updates when this does not hold (other “dampen”).
Guaranteed to have yTk sk > 0 if f is strongly-convex or we use Wolfe line-search.

BFGS with standard line-searches converges if γ1I � Bk � γ2I.

For some γ1 > 0 and γ2 <∞, for all k.
Unfortunately, this may not hold for the updates.

If BFGS does converge to minimizer, then local rate is suplinear.

Under typical assumptions like strong convexity and Lipshictz-continuity of Hessian.
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Limited-Memory BFGS (L-BFGS)

Cost of inverting a dense Bk is O(d3).
For BFGS this can reduced to O(d2) using a matrix inversion formula.

Limited-memory BFGS (L-BFGS) reduces the cost/memory to O(md).
Instead of storing Bk, only stores m vectors sk and yk.
Uses an update based on a matrix Hk and this “limited” memory.
Applies the BFGS update m times starting from Hk.

Recursive algorithm costs O(md), plus the cost of inverting Hk.

Typically we choose Hk = αkI for some αk.

L-BFGS is widely-used and is often the “default” deterministic optimizer.
Hard to beat on many problems, and linear cost allows scaling to large problems.
With limited memory, L-BFGS loses the superlinear convergence of BFGS.

And inherits the potential for non-convergence.

Explaining when L-BFGS works and does not work is an open problem.
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Initializing BFGS and L-BFGS

Performance of BFGS depends heavily on B0.

A poor choice can lead to many poor iterations at the start.

A choice that often works well is B0 = α−1BBI.
Where αBB is the alternate Barzilai-Borwein step size after the first iteration.

So we do a gradient descent step on iteration 1, then choose the “initial” matrix.

For L-BFGS, we can use this scaling on each iteration.

We do this by setting Hk to the the Barzilai-Borwein approximation.
This “trick” often drastically improves performance of L-BFGS, even over BFGS.
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Other Quasi-Newton Methods

An alternative to BFGS is the symmetric rank-1 (SR1) update.

A rank-1 update that gives a better Hessian approximation than BFGS.
Does not maintain positive-definitness.

This is annoying for line-search methods but may be better for non-convex problems.

There exist methods that combine Hessian-free and quasi-Newton methods.

For example, use L-BFGS matrix as a preconditioner for Hessian-free Newton.
For some problems this drastically reduces number of CG iterations.

In the last few years, explicit superlinear rates have been derived.

First papers considered greedy/random quasi-Newton methods.
More recently, explicit rates have been derived for BFGS and SR1.
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Numerical Comparison with minFunc

In my experience L-BFGS performs best for many problems.

But for some problems Hessian-free Newton or non-linear CG are better.

Barzilai-Borwein is a great choice if you have to implement from scratch.

Result after 25 evaluations of limited-memory solvers on 2D rosenbrock:
—————————————
x1 = 0.0000, x2 = 0.0000 (starting point)
x1 = 1.0000, x2 = 1.0000 (optimal solution)
—————————————
x1 = 0.3654, x2 = 0.1230 (minFunc with gradient descent)
x1 = 0.8756, x2 = 0.7661 (minFunc with Barzilai-Borwein)
x1 = 0.5840, x2 = 0.3169 (minFunc with Hessian-free Newton)
x1 = 0.7478, x2 = 0.5559 (minFunc with preconditioned Hessian-free Newton)
x1 = 1.0010, x2 = 1.0020 (minFunc with non-linear conjugate gradient)
x1 = 1.0000, x2 = 1.0000 (minFunc with limited-memory BFGS - default)
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Summary

Stochastic average gradient: O(log(1/ε)) iterations with 1 gradient per iteration.

SVRG removes the memory requirement of SAG.

Cheap Hessian approximations are used to reduce cost of Newton.

Diagonal approximations are the most common.

Hessian-free Newton uses first-order method to solve Newton system.

Relies on cheap Hessian-vector products, and usually conjugate gradient.

Quasi-Newton build a sequence of approximations to the Hessian.
Most popular quasi-Newton methods are variants of BFGS.

Superlinear local convergence but convergence not guaranteed.

Limited-memory BFGS (L-BFGS) is a variant with linear iteration cost.

Only linear convergence but often works well in practice.

Next time: will probably be in 2 weeks (but might be longer, check website).
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SAG Practical Implementation Issues

Implementation tricks:
Improve performance at start using 1

mg instead of 1
ng.

m is the number of examples visited.

Common to use αk = 1/L and use adaptive L.

Start with L̂ = 1 and double it whenever we don’t satisfiy

fik

(
wk − 1

L̂
∇fik (wk)

)
≤ fik (wk)− 1

2L̂
‖∇fik (wk)‖2,

and ‖∇fik (wk)‖ is non-trivial. Costs O(1) for linear models in terms of n and d.

Can use ‖wk+1 − wk‖/α = 1
n‖g‖ ≈ ‖∇f(wk)‖ to decide when to stop.

Lipschitz sampling of examples improves convergence rate:
As with coordinate descent, sample the ones that can change quickly more often.
For classic SG methods, this only changes constants.
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Complex-Step Derivative
The usual finite-difference approximation of derivative:

f ′(w) ≈ f(w + δ)− f(w)
δ

.

Has O(δ2) error from Taylor expansion.

f(w + δ) = f(w) + δf ′(w) +O(δ2).

But h cannot be too small: floating-point cancellation in f(w + δ)− f(w).
For analytic functions, the complex-step derivative uses

f(w + iδ) = f(w) + iδf ′(w) +O(δ2),

that also gives function and derivative to accuracy O(δ2):

real(f(w + iδ)) = f(w) +O(δ2),
imag(f(w + iδ))

δ
= f ′(w) +O(h2),

which we can use to get Hessian-vector products of arbitrary accuracy.
First appearance is apparently Squire & Trapp [1998].
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Preconditioning and Re-Parameterization

Consider the preconditioned gradient descent iteration

wk+1 = wk − αkM∇f(wk),

for some positive-definite matrix M .

We can interpret this as gradient descent under a change of variables wk = Rvk

where M = RRT ,
vk+1 = vk − αk∇g(vk),

where g(v) = f(Rw).

Using that ∇g(v) = RT∇f(Rv) and multiplying update by R gives

Rvk+1︸ ︷︷ ︸
wk+1

= Rvk︸︷︷︸
wk

−αk RRT︸ ︷︷ ︸
M

∇f(Rvk︸︷︷︸
wk

),

which in wk space gives the preconditioned gradient descent iteration above.
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Preconditioning and Re-Parameterization

Previous slide: preconditioning by M can be viewed as gradient descent on
f(Rw).

Changes convergence rate since (if C2) Hessian of re-parameterized problem is

RT∇2f(Rw)R.

So instead of usual µI � ∇2f(w) � LI, we care about eigenvalues of above
matrices.

If we have a quadratic with fixed Hessian H, choose RRT = H−1 and get

RT∇2f(Rw)R = RTH−1R = RT (RRT )−1R = RTR−TR−1R = I,

so L = µ and we converge in 1 step.
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Preconditioning and Re-Parameterization

Should we scale the momentum term too?

If we apply the heavy-ball method in the v space we get

vk+1 = vk − αk∇g(vk) + βk(vk − vk−1),

which in the w space corresponds to (by multiplying by R),

wk+1 = wk − αkM∇f(wk) + βk(wk − wk−1),

so under this logic you would not scale the momentum term.


	Stochastic Average Gradient
	Variance-Reduced Stochastic Gradient
	1.5-Order Methods
	Quasi-Newton Methods

