Stochastic Average Gradient

Variance-Reduced Stochastic Gradient 1.5-Order Methods

Numerical Optimization for Machine Learning
Variance Reduction and 1.5-Order Methods

Mark Schmidt

University of British Columbia

Summer 2022

Quasi-Newton Methods

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Last Time: Constant Steps, Mini-Batches, and Over-Parameterization

@ With constant step size «, under PL SGD satisfies

F®) = 1 < pla)* (f(w®) =) + Olac? /m),

where m is the mini-batch size.

e Linear convergence up to some solution accuracy.
e Solution accuracy proportional to step size and inversely proportional to batch size.

@ We discussed growing batch strategies and over-parameterization:

o Gives fast convergence of SGD with constant step size.
o Allows using deterministic tricks like line search.

@ But over-parameterization is a strong assumtpion and growing batches increases cost.

@ Today: avoiding high iteration costs or over-parameterization assumptions?

Outline

@ Stochastic Average Gradient
© Variance-Reduced Stochastic Gradient
© 1.5-Order Methods

@ Quasi-Newton Methods

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Deterministic vs. Stochastic vs. Hybrid

stochastic

deterministic

log(excess cost)

hybrid

time

@ Stochastic methods:
e O(1/e) iterations but requires 1 gradient per iterations.
@ Deterministic methods:
o O(log(1/e)) iterations but requires n gradients per iteration.
e Growing-batch (“batching”) or “switching” methods:
o O(log(1/e)) iterations, requires fewer than n gradients in early iterations.

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Deterministic vs. Stochastic vs. Hybrid

stochastic

deterministic

log(excess cost)

@ Stochastic methods:
o O(1/e) iterations but requires 1 gradient per iterations.
@ Deterministic methods:
e O(log(1/¢)) iterations but requires n gradients per iteration.
e Growing-batch (“batching”) or “switching” methods:
o O(log(1/¢)) iterations, requires fewer than n gradients in early iterations.

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Stochastic Average Gradient

e Growing |B*| eventually requires O(n) iteration cost.

e Can we have 1 gradient per iteration and only O(log(1/¢)) iterations?
o YES! First method was the stochastic average gradient (SAG) algorithm in 2012.

@ To motivate SAG, let's view gradient descent as performing the iteration

n
oy)
Rtk QRN
n

w
i=1

where on each step we set vF = V f;(w") for all i.

@ SAG method: only set vf”k = Vf;, (w") for a randomly-chosen i.

o All other vF are kept at their previous value.

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Stochastic Average Gradient

@ We can think of SAG as having a memory:

U1
V2

vy ——
where v¥ is the gradient V f;(w*) from the last k where i was selected.

@ On each iteration we:

e Randomly choose one of the v; and update it to the current gradient.
o We take a step in the direction of the average of these v;.

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

SGD vs. SAG

@ SAG update leads to convergence with a constant step size:
SGD SAG

0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04

@ Without needing to assume over-parameterization or growing batches.

Stochastic Average Gradient

Stochastic Average Gradient

@ Basic SAG algorithm (maintains g = > | v;):
e Set g = 0 and gradient approximation v; =0 fori =1,2,...,n.
o while(1)

Sample ¢ from {1,2,...,n}.

Compute V f;(w).

g=9—vi+Vfi(w).

V; = Vfl(w)

— =
w=w-— g.

@ lteration cost is O(d), and "lazy updates” allow O(z) with sparse gradients.
@ For linear models where f;(w) = h(w'?), it only requires O(n) memory:

. N T, .4 7
Vii(w)=h(w'z") z* .
scalar data

o Least squares is h(z) = 1(z — y*)?, logistic is h(z) = log(1 + exp(—y'z)), etc.

@ For neural networks, would need to store all activations (typically impractical).

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Stochastic Average Gradient

@ The SAG iteration is

n

Qg
wk:+l — wk Uk ’UZk,
n <
=1

where on each iteration we set vfk = Vf;, (w") for a randomly-chosen i.

@ Unlike batching, we use a gradient for every example.
e But the gradients might be out of date.

@ Stochastic variant of earlier increment aggregated gradient (IAG).
o Selects iy, cyclically, which destroys performance.

o Key proof idea: v¥ — V f;(w*) at the same rate that w* — w*:
o So the variance |le||? (“bad term") converges linearly to 0.

Stochastic Average Gradient

Convergence Rate of SAG

If each V f; is L—continuous and f is strongly-convex, with o, = 1/16L SAG has

E[f(w*) - f(w")] <O ((1 - mm{lgL, ;n})k>

@ Number of V f; evaluations to reach accuracy e:

o Stochastic: O(ﬁ(l/e)) (Best when n is enormous)
o Gradient: O(n% log(1/e)).
o Nesterov: O(n\/%log(l/e)). (Best when n is small and L/ is big)

SAG: O(max{n, %} log(1/e)).

@ But note that the L values are different between algorithms.

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Comparing Deterministic and Stochastic Methods

@ Two benchmark L2-regularized logistic regression datasets:

100 | 1 1 1 1 100 | 1 1 1 1

Objective minus Optimum
Objective minus Optimum
<)

T

S

Effective Passes Effective Passes

@ Averaging makes SG work better, deterministic methods eventually catch up.

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

SAG Compared to Deterministic/Stochastic Methods

@ Two benchmark L2-regularized logistic regression datasets:

Objective minus Optimum
Objective minus Optimum

T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes

e Starts like stochastic but linear rate, SAG step-size set to L approximation.

Stochastic Average Gradient

Variance-Reduced Stochastic Gradient

1.5-Order Methods

Quasi-Newton Methods

SAG Compared to Deterministic/Stochastic Methods

@ Comparison of methods to train a conditional random field:

1 1 1 1 1 1
—
Pegasos
10 4 (Y}k | Pugasos’—
3 10° - -
© 5
£ pdeGra E
. a
% 107 4 ASGL%
£ Hyby; £ 10° A -
£ SaG brig g0
g g
5 5
9 2
Ko} - -
g Saa 0 10° A B
N{’\S‘-
1072 T T T 107 T T T T
0 20 40 60 80 100 0 20 40 60 80 100

@ SAG-NUS* is a variation on Lipschitz sampling using local approximations L;.
e Bonus slide discusses various practical implementation issues.

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Outline

@ Variance-Reduced Stochastic Gradient

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Variance-Reduced Stochastic Gradient Methods

@ Now exists a variety of fast stochastic finite for finite-sum problems:
e SDCA, MISO, mixedGrad, SVRG, Finito, SAGA, SARAH, SPIDER, and so on.

@ Strategies to develop faster methods:
e Non-uniform sampling using Lipschitz constants of examples:
o Improves complexity from O(n + Lumax/it)) to O(n + L/u).
o Accelerated methods:
@ Improves complexity from O(n + Lmax/pt) to O(n + /N Lmax/11)-
o Newton-like methods and methods designed for non-convex problems.

o Still active area of research, achieve faster rates in some settings.

@ There are also methods that reduce the memory to O(d).

o Most common approach is stochastic variance-reduced gradient (SVRG).
o We will first cover a simpler but non-implementable method called SGD*.

Variance-Reduced Stochastic Gradient

SVRG Warm-Up: SGD*

Suppose we knew w*, and use the following SGD* iteration:

whtl =k — ar(Vfi, (wk) — V fi, (w")).

9k

Similar to SGD, using g gives an unbiased gradient approximation:
E[gx] = E[V fi\, (w®)] = E[V fi,, (w")]
= V(") = Vf(w*) = Vf(w").
0

But (for convex f;) you can show gradient approximation goes to 0 as w* — w*,

Elllgx”] < 2Lmax(f (w") = f*).

This makes SGD* behave like over-parameterized SGD.
o And for over-parameterized problems, SGD* is just SGD since V f;(w*) = 0 for all 1.

Variance-Reduced Stochastic Gradient

SGD* Convergence Rate (using Descent Lemma)
Recall our progress bound for any unbiased SGD method:

E[f ()] < Ft) — oxlo* | + o3 2 Elge]
——

—_—

good bad

Using PL (||Vf(w®)||? > 2u(f(w") — f*)) and E[||gx||?] bound (previous slide),
E[f(w*™)] < f(w") = 2apu(f (w*) = f*) + af LLmax(f (w*) — f*).
If you subtact f* and recurse, then with ay = 1/ LLmax SGD* satisfies
2

k
Bl - 7)< (1- =)) - 1)

Get a (1 — it/ Lmax) rate by analyzing ||w* — w*|| instead (using ax = 1/Lmax))-
o We will consider this proof technique later when we disucss non-smooth optimization.

Variance-Reduced Stochastic Gradient

From SGD* to SVRG
@ Since Vf(w*) =0, we can re-write SGD* as
Wt = WP —ay(V iy (w®) = Vfi, (w*) + Vf(w?)),
0
which achieves fast rate without a memory by evaluating 2 gradients per iteration.

o We evalute Vf;, at w® and w*.

@ This is a special case of using a control variate estimate of the graident.
o "“Add random variable and subtract its mean” .
e Gives an unbiased Monte Carlo estimate, that can have reduced variance.

@ Stochastic variance-reduced gradient (SVRG) uses a similar control variate:
W = wt — ag(Vfiy (") = Vi, (o) + VIY)),

k is some previous iterate rather than the global minimum w*.

where v

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Stochastic Variance Reduced Gradient Method

@ The SVRG iteration

Wttt = Wk — g (V f, (wF) — V fi, (0F) + V F (7).

Ik

@ Unlike SAG, but similar to SGD*, this gives an unbiased gradient approximation:

Elg] = Vf(w*) —E[V f;, (0F)] + V () .
0

@ And can show that gradient approximation goes to 0 as w* and v* approach w*,

Elllgkll?] < AL(f(w") — f*) + AL(f(v*) — 7).

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Stochastic Variance Reduced Gradient Method
@ To implement the SVRG iterations,

Wt = Wb — ag(V f, (@F) = Vi, (0F) + Vf(0F)),

we have two types of iterations:
© On most iterations we set v* = v*~1 (“cheap iterations”).
o These iterations only require 2 gradient evaluations if we have stored V f(v*~1).
@ On some iterations we set v* = w" (“expensive iterations”).
o These iterations cost n gradients evaluations to update V f(v*).

k—1

@ Obtain fast rates under appropriate oy, and expensive iteration frequency.
o If a3, = 1/6L and we update v* with probability 1/n:
o SVRG achieves the SAG complexity of O((n + Limax/11)).
e With the standard O(d) memory and an average cost of 3 gradients per iteration.

e In practice, using ay = 1/L and updating v¥ every n iterations often works well.
o And you can/should using a growing-batch estimate of V f(v*) (“practical SVRG").

Stochastic Average Gradient

Stochastic Variance Reduced Gradient Method

e Comparison of various methods for fitting a logistic regerssion model:

9

xH

|zp — 2

@ The above is with “no tricks".

Variance-Reduced Stochastic Gradient

Distance to optimum

1.5-Order Methods

10!

10!

103

10-°

107

N T eE==D -
A

“-\.}{:...-.\-\,u‘.w‘u&-.wnvu

—— GD N

— = AGD 'Q,\\

—- SGD N~y

Y \-\\\

— - SAG NN

— = SVRG s

0 10 20 30 10

Epochs

Quasi-Newton Methods

With tricks SAG tends to outperform SVRG.

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

SVRG for Deep Learning?

@ Variance-reduced methods are not typically used for deep learning.
e SVRG does not converge noticeably faster for neural networks.

@ This might be because we often use over-parameterized neural networks.

o For over-parameterzied models SVRG still needs O(n + Limax/f1) iterations.
o But plain SGD only needs O(Lmax/) iterations.

@ Or it could be that networks are close to over-parameterized.
e Or that we do not need to run the methods long enough to see a difference.

@ Recent work argues that variance reduction may be useful for GANs.

Outline

@ Stochastic Average Gradient
© Variance-Reduced Stochastic Gradient
© 1.5-Order Methods

@ Quasi-Newton Methods

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Motivation: Cost of Newton lterations

@ Newton's method is expensive if dimension d is large:
e Requires solving V2 f(w"*)d* = V f(w").
o For logistic regression, this costs O(nd?) to form Hessian and O(d®) to solve.

@ Many methods proposed to approximate Newton's method at reduced cost.

@ Cheaper Hessian approximations.
@ Hessian-free Newton methods.
© Quasi-Newton methods.

@ We will overview some representative ones.

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Cheaper Hessian Approximation #1: Diagonal Hessian
@ A simple strategy is to use a diagonal approximation of the Hessian,
[V2f(wh)] " =~ D",

where D is a diagonal matrix.

@ This gives the (damped) Newton step the form
whtt = wh — ap DFV f(wh),

which only costs O(d) instead of O(d®) to compute.
@ A common choice is using inverse of Hessian diagonals DY = (V2 f(w*))~1.
e Corresponding to a coordinate-wise Newton step along each dimension.

@ Diagonal approximations lose superlinear convergence.
e For some problems Hessian diagonals outperforms gradient descent.
e For many problems using Hessian diagonals is worse than gradient descent.

1.5-Order Methods

Cheap Hessian Approximation #2: Preconditioning

@ Some methods use a Newton-style update with a positive-definite fixed matrix,
wh T = wP — ap MV f(w).

@ Matrix M could be chosen to include some second-order information.
o And may be chosen so that multiplication by M costs less than O(d?).

@ We call this approach preconditioning (details in bonus slides).
o It can be viewed as performing gradient descent under change of variables.

o Choosing a matrix R such that RRT = M (like Cholesky factorization).
@ Preconditioned update corresponds to gradient descont on v, where w = Rw.

o Convergence rate (for C?) functions depends on RTV?2f(Rw)R instead of V2 f(w).
o For strongly-convex quadratics, ideal preconditioner would be M = [V?f(w)]™".

1.5-Order Methods

Preconditioner Variation: Matrix Upper Bound
@ Our usual Lipschitz continuity assumption on the gradient is that
IVf(w) = VF()| < Lljw —vl|.
@ We could instead assume 1-Lipschitz continuity with respect to a matrix M,
IVf(w) = Vi@)llp-1 < llw—vlla,

where ||d||; = VdTMd and we assume M is positive definite.
e For quadratic functions, we can use M = V?f(w) and we get Newton.

@ For binary logistic regression, we can use M = iXTX.

o We have V2f(w) = X7 D(w)X, where diagonal D(w) has diagonal entries < 1.

1.5-Order Methods

Preconditioner Variation: Matrix Upper Bound

@ The matrix-norm Lipschitz continuity leads to a descent lemma of the form
1
F) < f(w?) + V f ()T (W —w?) + §||wk+1 —wh|l3y,

and minimizing the righ side yields the Newton-like step
whtl = WP — M_IVf(wk).

@ This step does not require a step size and guarantees descent.
e With appropriate M guarantees more progress per iteration than gradient descent.
@ Which is more than we can say about Newton when not close to the solution.
e Though in practice you may get better performance using a line-search.

@ But loses superlinear convergence and cost is still O(d?) per iteration.
o Or O(d) if M is diagonal.
@ And not obvious how to find upper-bound matrices M (backtracking?).

1.5-Order Methods

Cheaper Hessian Approximation #3: Mini-Batch Hessian

@ For ML problems some have explored using a mini-batch Hessian approximation,

VQf(wk) = 7112 2fz |B’ ZVsz 7

o=l 1€B

which removes dependence on n in the Hessian calculation.

o Newton update can be solved quickly under this approximation for some problems.
o For L2-regularized logistic regression, costs O(|B|?d + |B|?).

o By using kernelized version.

@ Leads to superlinear convergence if batch size grows fast enough.

@ But for general problems still require O(d?) to solve Newton system.

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Hessian-Free Newton Methods (“Truncated Newton™)

Cheap Hessian methods approximate V2 f(w"), and lose superlinear convergence.

Hessian-free Newton use exact V2 f(w") but approximates the Newton direction.

@ As an example, for strongly-convex f Newton's method minimizes a quadratic,

argrmin (") + V1 (@) Tg + 59"V (b,
g9

We have good first-order methods for minimizing strongly-convex quadratics.
e You could use conjugate gradient (heavy-ball with optimal o and B; on each step).

@ To use a first-order method we need to compute gradient with respect to g,
0+ Vf(w") + V2f(wh)g,

which requires Hessian-vector products.
e So why is it called “Hessian-free"?

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Hessian-Vector Products are Cheap

@ Cost of a Hessian-vector product is at most the cost of computing gradient.

@ Example: for binary logistic regression we have
Viw) =X"r(w), Vf(w)=X"Dw)X,

where 7(w) and D(w) each cost O(n) to compute for n training examples.

o Cost of computing gradient is O(nd) due to the matrix-vector product.
o Cost of computing Hessian is O(nd?) due to the matrix-matrix product.

e But cost of computing Hessian-vector product is only O(nd),

V2f(w)d = XTD(w)Xd
= X7 (D(w)(Xd)).

due to the matrix-vector products.

1.5-Order Methods

Hessian-Vector Products and Automatic Differentiation

More generally, Hessian-vector product is a directional derivative of gradient,

V2 f(w)g = lim, = (Vf(w+5g) Vf(w)).

You could thus use a finite-difference approximation of Hessian-vector product.

Or you could compute exactly with forward-mode automatic differentiation.
e This is different than the usual “reverse mode” we use to get gradients.
Gives Hessian-vector product for cost of computing gradient.

e Does not have the high memory requirements of reverse mode.
o No need to worry about things like “checkpointing”.

Bonus slide shows complex-step derivative if you do not have AD code.
o Allows computing Hessian-vector products to arbitrary accuracy using complex
numbers.

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Hessian-Free Newton - Local Convergence Rates

@ Key ideas behind Hessian-free Newton methods:
o Approximately compute Newton direction using conjugate gradient.
o Each iteration of conjugate gradient only needs a (cheap) Hessian-vector product.

@ Key to reducing iteration cost compared to exact Newton method:
e We do not run conjugate gradient to convergence.
o Hessian-free Newton is also called “truncated Newton” or “inexact Newton”.

@ Local convergence rates of Hessian-free Newton depend on the accuracy:
o Let r¥ = Vf(w¥) + V2 f(w")g* be the gradient for the final g*.
o We get linear convergence if ||7"|| < ng ||V £(w®)| for nx < n < 1.
o We get superlinear convergence if the above holds with n, — 0.
o We get quadratic convergence if ny = O(||V f(w")]]).
e For superlinear convergence, a typical forcing sequence is

M = min{0.5, \/[|V f(w*)]]},

which forces CG to solve Newton system more accurately as the gradient decreases.

1.5-Order Methods

Hessian-Free Netwon - Globalization and Negative Curvature

@ To ensure convergence, you still need to use a globalization strategy.

o Use the approximate Newton direction generated by CG within a line-search.
e Or run CG until you are outside the trust region raidus.

o Conjugate gradient only applies to convex quadratic functions.
e For non-convex problems, the Hessian may have negative eigenvalues.

o During the CG iterations, we can test whether d”V? f(w*)d < 0.
o If so, we have detected a direction of negative curvature.
o We usually stop running CG if this is detected.
o Descent directions of negative curvature can make excellent search directions.

@ "The function starts decreasing faster if we move in this direction”.
@ Some codes switch to using a precise line-search if such a direction is found.

1.5-Order Methods

Sketched Newton - Random Hessian-Vector Products

@ Several recent works consider sketched Newton methods.

e Performs Hessian-vector products with random directions.
o Uses the resulting vectors to build an approximation to the Hessian.

@ Usually converges to Newton direction slower than running conjugate gradient.

e But random Hessian-vector products can be computed in parallel.
o Alternately, for some problems allows faster Hessian-vector products.

e By using the structure of the Hessian and sparse random vectors.

1.5-Order Methods

2.5-Order Methods

@ Key to Hessian-free Newton methods is cost of Hessian-vector products.
o Hessian-vector products have same cost as computing gradient.
o Allows us to implement an approximate second-order method.

@ But consider a scenario where we can afford to compute the Hessian.
e Can compute tensor-vector products with 3rd-order tensor for same cost.
o Allows us to implement an approximate third-order method.

@ A “tensor-free" method might use tensor-vector products to try to minimize

1 1 T
k k\T T2 k 3 k 3 4
Fw®) + V(W) g+ 59" VEF(w®)g + V£ (w)lg]” + o llall,
where T is the Lipschitz constant of the third-order tensor.
e Third-order methods give faster rates.
e In practice | have found that they usually only save 1 iteration compared to Newton.
e This is sensible because unless g is close to 0 the approximation is not good.

Outline

@ Stochastic Average Gradient
© Variance-Reduced Stochastic Gradient
© 1.5-Order Methods

@ Quasi-Newton Methods

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Quasi-Newton Methods: Overview

@ We have discussed methods that use limited information about current Hessian.
e Diagonals of Hessian, Hessian-vector products, and so on.

@ Quasi-Newton build a sequence of Hessian approximations By, Bi, Bo,..., and
use

Wt = wh — ap BV f(wh),
with the goal that approximations eventually act like the Hessian.
o Typically used with a line-search that initially tries aj = 1.

@ Classic quasi-Newton methods choose By, to satisfy the secant equations,
B (wF — w* 1) = Vf(wk) — Vf(wh),

which only uses iterate and gradient differences (no Hessian information).
e Roughly, “multiplying by Bj1 acts like a Hessian vector product”.
e Secant equations give superlinear local convergence for one-dimensional problems.

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Barzilai-Borwein Method: Quasi-Newton with Scaled Identity

A simple quasi-Newton method is the Barzilai-Borwein method.

Uses an approximation of the form By = (1/ay)1 for a scalar ay.
e So it is equivalent to gradient descent with a particular step size.

This By cannot always solve the secant equations, so we minimize squared error,

pp1 € argmin || By (w* — w1 — (Vf(wh) = V()|

which gives
_ Hwk _wk71”2
T (R = R TV f(wF) = V()
Barzilai and Borwein showed this gives superlinear convergence for 2d quadratics.
o Now extended to 3d quadratics, but not faster than gradient descent in general.
Often used with safeguards and “non-monotonic Armijo" line-search.
e Empirical convergence rate is often very fast, but almost no theory on why.

Quasi-Newton Methods

Alternate Secant Equations and BB Step Size

@ Usual secant equations are
B (w® — w1 = Vf(w*) = Vf(w*),
but we could alternately require inverse to satisfy secant equations,
(w* — 1) = [Bpa] 'V f(wF) = Vf(w).
@ This gives an alternate Barzilai-Borwein step size of

s @ =0 HT(V () = VF(rT)
e IVf(F) = V@2

which is the one used in findMin and my previous demos.

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

BFGS Quasi-Newton Method

@ Most quasi-Newton methods use dense matrices By.

o In this case there may be an infinite number of solutions to secant equations.
@ Many methods exist, and typical methods also require:

e Bji1 to be symmetric.

e By, to be close to By under some norm.

@ Most popular is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update:

Bisksi By ykyl

Byy1 = By —
T T.
sy, Brsk Yy, Sk

where s, = w* — w*! and 3, = Vf(w) — Vf(wF).

@ Derived as rank-2 update which stays close to previous matrix in some norm.

Quasi-Newton Methods

BFGS Convergence

o If ygsk > (0 and By, is positive-definite, then B} is positive-definite.
e Some implementations “skip” updates when this does not hold (other “dampen”).
o Guaranteed to have y/'s;, > 0 if f is strongly-convex or we use Wolfe line-search.

@ BFGS with standard line-searches converges if v11 = By = yo1.

e For some 7 > 0 and 2 < oo, for all k.
e Unfortunately, this may not hold for the updates.

o If BFGS does converge to minimizer, then local rate is suplinear.
e Under typical assumptions like strong convexity and Lipshictz-continuity of Hessian.

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Limited-Memory BFGS (L-BFGS)

e Cost of inverting a dense By, is O(d?).
o For BFGS this can reduced to O(d?) using a matrix inversion formula.

e Limited-memory BFGS (L-BFGS) reduces the cost/memory to O(md).

e Instead of storing By, only stores m vectors s; and y.
e Uses an update based on a matrix Hj and this “limited” memory.
o Applies the BFGS update m times starting from Hj.

o Recursive algorithm costs O(md), plus the cost of inverting Hy.

Typically we choose Hy = ay I for some ay.

o L-BFGS is widely-used and is often the “default” deterministic optimizer.

e Hard to beat on many problems, and linear cost allows scaling to large problems.
o With limited memory, L-BFGS loses the superlinear convergence of BFGS.

@ And inherits the potential for non-convergence.
o Explaining when L-BFGS works and does not work is an open problem.

Stochastic Average Gradient Variance-Reduced Stochastic Gradient 1.5-Order Methods Quasi-Newton Methods

Initializing BFGS and L-BFGS

@ Performance of BFGS depends heavily on By.
e A poor choice can lead to many poor iterations at the start.

o A choice that often works well is By = aggl.
o Where apg is the alternate Barzilai-Borwein step size after the first iteration.
@ So we do a gradient descent step on iteration 1, then choose the “initial” matrix.

@ For L-BFGS, we can use this scaling on each iteration.

e We do this by setting Hj, to the the Barzilai-Borwein approximation.
e This “trick” often drastically improves performance of L-BFGS, even over BFGS.

Quasi-Newton Methods

Other Quasi-Newton Methods

@ An alternative to BFGS is the symmetric rank-1 (SR1) update.

o A rank-1 update that gives a better Hessian approximation than BFGS.
e Does not maintain positive-definitness.

e This is annoying for line-search methods but may be better for non-convex problems.

@ There exist methods that combine Hessian-free and quasi-Newton methods.

o For example, use L-BFGS matrix as a preconditioner for Hessian-free Newton.
e For some problems this drastically reduces number of CG iterations.

@ In the last few years, explicit superlinear rates have been derived.

o First papers considered greedy/random quasi-Newton methods.
o More recently, explicit rates have been derived for BFGS and SR1.

Quasi-Newton Methods

Numerical Comparison with minFunc

In my experience L-BFGS performs best for many problems.
@ But for some problems Hessian-free Newton or non-linear CG are better.

@ Barzilai-Borwein is a great choice if you have to implement from scratch.

Result after 25 evaluations of limited-memory solvers on 2D rosenbrock:

x1 = 0.0000, x2 = 0.0000 (starting point)
x1 = 1.0000, x2 = 1.0000 (optimal solution)

x1 = 0.3654, x2 = 0.1230
x1 = 0.8756, x2 = 0.7661
x1 = 0.5840, x2 = 0.3169
x1 = 0.7478, x2 = 0.5559
x1 = 1.0010, x2 = 1.0020
x1 = 1.0000, x2 = 1.0000

minFunc with gradient descent)

minFunc with Barzilai-Borwein)

minFunc with Hessian-free Newton)

minFunc with preconditioned Hessian-free Newton)
minFunc with non-linear conjugate gradient)
minFunc with limited-memory BFGS - default)

Py

Quasi-Newton Methods

Summary

Stochastic average gradient: O(log(1/€)) iterations with 1 gradient per iteration.

SVRG removes the memory requirement of SAG.
Cheap Hessian approximations are used to reduce cost of Newton.
e Diagonal approximations are the most common.
Hessian-free Newton uses first-order method to solve Newton system.
o Relies on cheap Hessian-vector products, and usually conjugate gradient.
Quasi-Newton build a sequence of approximations to the Hessian.
e Most popular quasi-Newton methods are variants of BFGS.
@ Superlinear local convergence but convergence not guaranteed.
o Limited-memory BFGS (L-BFGS) is a variant with linear iteration cost.
@ Only linear convergence but often works well in practice.

Next time: will probably be in 2 weeks (but might be longer, check website).

Quasi-Newton Methods

SAG Practical Implementation Issues

@ Implementation tricks:
o Improve performance at start using --g instead of Lg.
@ m is the number of examples visited.

e Common to use o, = 1/L and use adaptive L.

e Start with L = 1 and double it whenever we don't satisfiy

fo (w’“ - 2Vi, (w’“>) < fiu0h) = =V M)

2

and ||V f;, (w®)]|| is non-trivial. Costs O(1) for linear models in terms of n and d.

o Can use [[w*™ — w*||/a = L||g|| = ||V f(w*)|| to decide when to stop.

o Lipschitz sampling of examples improves convergence rate:
@ As with coordinate descent, sample the ones that can change quickly more often.
e For classic SG methods, this only changes constants.

Quasi-Newton Methods

Complex-Step Derivative
@ The usual finite-difference approximation of derivative:

fuy LD =S

o Has O(4?) error from Taylor expansion.
flw+0) = f(w) +8f' (w) + O(8%).

e But h cannot be too small: floating-point cancellation in f(w + §) — f(w).
@ For analytic functions, the complex-step derivative uses

f(w+1i6) = f(w) +idf'(w) + O(6%),
that also gives function and derivative to accuracy O(52):

real (f(w + i0)) = f(w) + O(6?), imag(f(:;; +i6))

which we can use to get Hessian-vector products of arbitrary accuracy.
o First appearance is apparently Squire & Trapp [1998].

= f/(w) + O(h2)7

Quasi-Newton Methods

Preconditioning and Re-Parameterization

@ Consider the preconditioned gradient descent iteration
wh = wh — ap, MV f(w"),

for some positive-definite matrix M.
@ We can interpret this as gradient descent under a change of variables w* = Rv*
where M = RR7,
Uk-i—l — ’Uk _ oszg(vk),
where g(v) = f(Rw).
e Using that Vg(v) = RTV f(Rv) and multiplying update by R gives

Rt = Rk —ay RRT Vf(RVY),
S—— =~ SN—~—~ ~—~—
wk+1 wk M wk

which in w” space gives the preconditioned gradient descent iteration above.

Quasi-Newton Methods

Preconditioning and Re-Parameterization

@ Previous slide: preconditioning by M can be viewed as gradient descent on

f(Rw).
o Changes convergence rate since (if C2) Hessian of re-parameterized problem is
RTV?f(Rw)R.

@ So instead of usual ul < V2f(w) < LI, we care about eigenvalues of above
matrices.

o If we have a quadratic with fixed Hessian H, choose RRT = H~! and get
RIV2f(Rw)R=R'H'R=RT'(RR") 'R=RTR TR 'R=1,

so L =y and we converge in 1 step.

Quasi-Newton Methods

Preconditioning and Re-Parameterization

@ Should we scale the momentum term too?

o If we apply the heavy-ball method in the v space we get
VL = oF 0, Vg (oF) + BR ok — oF L),
which in the w space corresponds to (by multiplying by R),
Wt = wk — ap MV f(w") + BF(wF — wh1),

so under this logic you would not scale the momentum term.

	Stochastic Average Gradient
	Variance-Reduced Stochastic Gradient
	1.5-Order Methods
	Quasi-Newton Methods

