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Last Time: Convergence of Stochastci Gradient Descent
@ We considered stochastic gradient descent (SGD),

Wt = wk — oy V f;, ().

which performs a gradient descent step using a random training example iy.
o This gives an unbiased gradient approximation, E[V f; (w*)] = V f(w*).

o If we assume E[|V f;, (w*)||?] < o2 then we can show

0 * 2
ElV 2y f(w®) = f LUZkoak
i, BIVI@OIP) < e+ e

where first term is like gradient descent bound and second term is effect of noise.
o Converge depends on value of >, a2/ >, a.
o ajp = y/k converges at extremely slow O(1/log(k)).
o ap =v/Vk converges at faster O(1/Vk).
e «aj = 7y converges at faster O(1/k) but only to solution accuracy O(yo?).
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SGD with Decreasing Step Sizes
@ 10000 SGD iterations with oy, = 1/puk and o = 1/10p:
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@ This step size works well in limited situations but is not robust:

o For strongly-convex problems, we will discuss how ay, = 1/uk has O(1/k) rate.
e But using 1/10uk leads to extremely slow convegence.
o And using 10/puk the method explodes (no iterations would fix on plot).
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SGD with Robust Decreasing Step Sizes

@ 10000 SGD iterations with o, = 10/LVk, ap = 1/LVk, and ap = 1/10LVE:
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@ Step sizes proportional to square root of k£ are more robust
e Works well for a range of constants, even though “best case” rate is slower.
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SGD with Constant Step Sizes

@ 10000 SGD iterations with o = 1/L, oy = 1/10L, and o, = 1/100L:
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o Constant step sizes converge quickly to neighbourhood of solution.
o Then behave erratically within neighbourhood and do not converge to solution.
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SGD as Gradient Descent with Random Error
@ We can write the SGD step as a deterministic gradient descent step with error,
Wt = w* — g (Vf(w") + €¥),

where for SGD the e¥ = V f;(w*) — V f(w) is random.

@ Since SGD is unbiased, for SGD the mean of ¢* is 0:

E[e*] = E[V f;(w")] = Vf(w*) = 0.
@ Progress for gradient descent with error is affect by ||e*||2.
o To guarantee progress, we usually want [|e¥||2 < ||V f(w®)||%.

o For SGD, expected value |¢¥||? is a measure of the variation in the gradients,

E[[[e"[*) = B[V fi(w*) — Vf (w")||?].



Convergence of SGD with More-Realistic Noise Bound
@ The assumption that E[||V f;, (w¥)||?] < o2 is strong.
o Implies gradients bounded, and cannot hold globally for PL functions.
@ We can instead assume variation in gradients is bounded,
E[l|e*|?] < o?,

which leads to a similar bound under the descent lemma (see bonus slide).

e Following similar analysis under this assumption (and oy < 2/L) gives

Fw®) — f* Lo? e

E|V :
_gmmm 2V 1P }_Zk 1o 7%)+ 2 ST 001 - %)

@ This leads to the similar conclusions regarding choosing the step size.




SGD with Random Permutations

@ In practice, SGD is often implemented with random permutations.
e A common variation is switching between 2 random permutations.

o Yields a predictable/optimizable data access pattern.

e Bottou [2009] conjected that random permutations yields an O(1/k?) rate.
e Based on experiments.

@ A sequence of papers have worked towards resolving the rate in various settings.
o For strongly-convex functions, we now have O(1/nk?) rate after k epochs.
o Whereas regular SGD would have O(1/nk) after same number of updates.

e For strongly-convex quadratics, improves to O (ﬁ + #)

@ Above results assume iterates stay bounded, and there are matching lower bounds.
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SGD for PL Functions

Convergence of SGD for PL Functions

@ You can get faster rates for SGD if f is strongly-convex or PL:

o Under these assumptions you can get an O(1/k) rate.
o Requires a step size of oy, = O(1/k), but constant matters.

@ For strongly-convex f, using aj = 1/uk gives the O(1/k) rate.
e Initial steps are huge, then it slowly converges to solution.
o Might do worse than slower O(1/+/k) step sizes after finite steps.

e And be careful, if you over-estimate p rate can be much worse.
e The only problem where | have seen a, = O(1/k) work effectively is binary SVMs.

o Where a = 1/pk is tough to beat.
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Convergence Rate of SGD with Constant Step under PL

@ We showed that SGD with constant step size has rate O(1/ak) + O(ac?).
o For f bounded below, V£ Lipschitz, and noise bounded by o2.
e Convergence rate of gradient descent.
e Up to accuracy proportional to step size and noise bound.

o As before, we can derive faster rates under PL: O(p(a)¥) 4+ O(ao?).
e Linear convergence up to solution level proportional to step size and noise bound.
o The number of p(a) will depend on the precise step-size we choose.

o We will show this assuming o < 1/2p and E[||V f(w)]|?]

o?
o Bonus slides show this for a < 2/L and weaker E[||e¥||?] o?.

IAIA

@ Constant step sizes adapt to problem.
e Do not need to know if f is convex or PL.
e Do not need to know which variation bound is satisfied.
o This is more like gradient descent where ap, = 1/L works for many problems.
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Convergence Rate of SGD with Constant Step under PL

@ To derive the result under PL, we start with our SGD progress bound:

E[f ()] < F(u¥) — an| Vf (0] + of o S BV Fir (b))

good

bad
e Bound with PL (||V£(w*)||? > 2u(f(w*) — f*)) and variation bound,

ELF(w)] < £(u) — a2l F(0t) - ) + a3 22

@ Subtract f* from both sides and factorize,

ELA ()] = £ < (1 = 2000 (0") - ) + 0} 22
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Convergence Rate of SGD with Constant Step under PL
@ Bound from previous slide, with a constant step size a; = «:

E[f (™)) = f* < (1= 2ap)(f(w®) - ) + agL;jQ
a— |t

(with tower prop) < (1 — 2apu) ((1 — 20) (f (w71 — f*) + 5 5

— (1= 200" = 1) + 0227 (14 (1= 2000).

o Applying bound recursively from k down to 0 we get

k

0_2
E[f(wh)] - £* < (1 — 20" (F(wh) — 1) + 220 31— 2ap).

2
t=0

e We have Zfzo(l —2ap)t < 3272 (1 = 2ap)t = 1/2au (geometric series).
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SGD with Constant Step Size
@ Convergence rate of SGD with constant step size a for PL f:

B @) £ < (1 - 200 () = Fw") + 0" L.

@ First term looks like linear convergence, but second term does not go to zero.
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@ Theory justifies “divide the step-size in half if it looks like it's stalled” heuristic.
o Halving « divides bound on distance to f* in half (similar for non-convex).
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SGD with Constant Step Size
@ Convergence rate of SGD with constant step size a for PL f:
L
E[f(w*) = f7 < (1= 2ap)"(f(w°) = f(w")) + M2471,'

@ First term looks like linear convergence, but second term does not go to zero.
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@ Theory justifies “divide the step-size in half if it looks like it's stalled” heuristic
o Halving « divides bound on distance to f* in half (similar for non-convex).
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SGD with Constant Step Sizes

@ For strongly-convex, we get the same type of convergence in terms of iterates.

@ 10000 SGD iterations with ap, = 1/L, o, = 1/2L, and oy, = 1/4L:
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o Constant step sizes converges linearly to neighbourhood of solution.

o Then behave erratically within neighbourhood.
o Size of neighbourhood is propotional to «y.
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Optimization vs. Machine Learning

o Optimization: we want V f(w") to converge to 0.

e So we need to use decreasing step sizes to guarantee continued progress.
o But as we decrease the step size SGD will converge slower.

@ Machine learning: we only need V f(w") close to 0.
o We expect test error to be similar for all w; “close enough” to stationary point.

e May only care about 2 decimal places of accuracy (model is not perfect anyways).
@ So do not need 10 decimal places of optimization accuracy.

@ For any “closeness”, we could use a small-enough constant step size a, = a.
o Guarantee expected progress when V f(wy,) is large.

o Adapts to the difficulty of the problem (same for PL, convex, and non-convex).
e But in areas where gradient is small, SGD can behave erratically.
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Early Stopping: A Practical Strategy for Deciding When to Stop

@ How do you decide when to stop?

o In gradient descent, we stop when gradient is close to zero.

e In SGD:

e Individual gradients do not necessarily go to zero.
e We cannot see full gradient, so we do not know when to stop.

@ Practical trick for machine learning problems:

o Every k iterations (for some large k), measure validation set error.

e Stop if the validation set error “is not improving” ..
@ We do not check gradient, since it takes a lot longer for gradient to get small.
e Early stopping can also reduce overfitting (chosen iteration was validated).
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SGD with Mini-Batches

@ Deterministic gradient descent uses all n gradients,
1 n
Vi) = - DV i(wh).
i=1

@ Stochastic gradient descent approximates it with 1 sample,
Vi) ~ V fir (w®).

@ A common variant is to use m samples as a mini-batch B*,

Vi) ~ % Z V fi(w®).

icBF

Mini-batches are particularly useful for vectorization /parallelization.
e For example, with 16 cores set m = 16 and compute 16 gradients at once.
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Unbiasedness of Mini-Batch Approximation

e Taking expectation over choice of mini-batch gives:

E |~ > Viiw)| = 1k >V fi(w) (linearity of E)
M ies T ieB
= T %ZBE[Vfi(wn (linearity of E)
=— %; V f(w) (unbiased estimate)
- %v f(w) (term is repeated |B| times)
= Vf(w),

so mini-batch approximation is unbiased.
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Variation in Mini-Batch Approximation

@ To analyze variation in gradients, we use a variance-like identity:
e If random variable g is an unbiased approximation of vector u, then

Elllg — pl?]

Elllgl® — 29" p+ [|l|”] (expand square)
lgll?) = 2E[g)" 1o + || (linearity of E)
[
[

g11%) = 26" e+ || ul? (unbiased)

E
E
E(llgll*] = ll*.
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Variation in Mini-Batch Approximation

@ We also need expectation of inner product between independent samples:

BV £ @)V w) =33 %v Fi(w) TV (w) (definition of E)
i=1j=1

= vaz(w ( va] w)) (distributive)

= % vai(w)va(w) (gradient of f)
i=1
1 & r
= <n Z Vi (w)) Vf(w) (distributive)
i=1
= V@) TV f(w) = V5 (w)]? (gradient of f),

which is squared gradient norm.
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Variation Bound for Mini-Batch Approximation

o Let go(w) = 2(Vf;(w) + V£;(w)) be mini-batch approximation with 2 samples.

1
Elllgz(w) = VS @)I*] = Elll (¥ fi(w) + V5 @)% = V£ (w)]* (variance identity)
1 1 1

= JENVA @]+ SEIV£i (@) TV f5 ()] + JEIV£5@)1%] = 1V £ ()] (expand square)
_ g 2, 1 T 2 _
= SEIVF@)I%] + SEIV i () TV f5 ()] = [V f(w)] (EIV £;] = E[V £;))
_ llE ) 2 1 2 2 o2
= SENVA@IP] + SIVF@)I® = V@) (E[VFiV ;] = V)

-t (2] = L1 )
= SENVA@)IT] = IV

= % (EUV £ ()I%) = 119 £ (w)1%) (factor é)
= %]E[vai(w) — Vfw)|?] (variance identity)
o(w)?

= (v:r2 is 1-sample variation)

@ So SGD error E[||e¥||?] is cut in half compared to using 1 sample.
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Variance of Mini-Batch Approximation

e With m samples in our mini-batch we have that (see bonus)

o wk’ 2
B[t = 20

where o2(w") is the variation in the individual gradients at w*.

o “With a mini-batch size of 100, effect of noise is divided by 100".

o Biggest gains obtained for increasing small batch sizes.

@ "“With a mini-batch size of 100, you can use a step size that is 100-times larger.”
o ‘Linear scaling rule” (but may not guarantee progress if oy, > 2/L)
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Batching: Growing the Batch Size

@ Consider mini-batch SGD under PL with small constant step size:
o Converges linearly to a sub-optimality of O(ac?/m).
e For o(w) > o for all w.

@ You could decrease oy, to get closer to the solution.
e But this makes SGD converge more slowly.

@ Or, you can increase the batch size m.
e Doubling batch size has same effect as halving the step size.
@ But without needing to use a smaller step size.
e If you grow the batch size over the iterations, converges with a constant step size.

o Effect of noise goes to 0 as the batch size increases.
o Growing batch size methods are sometimes called batching methods.



Mini-Batch SGD and Growing Batches
Variance of Mini-Batch Approximation for Finite Data
@ Variance of mini-batch approximation is smaller for finite datasets.
o If we sample without replacement from a set of n examples we have

o(wk)2n —m

E[lle]%] =

m n '

where the extra term is called the finite sample correction.
e This term is less than 1 so variance is strictly better for “with replacement” sampling.

@ Finite sample correction is minor when m is small.

@ But as m approaches n the finite-sample correction drives effect of noise to O.
e Because you sample a greater portion of the overall dataset.
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Stochastic Heavy-Ball/Nesterov/Newton or Line Search?

@ Should we use heavy-ball/Nesterov/Newton-like stochastic methods?

e May improve dependency on L and pu.

o But do not improve dependency on noise o?.
@ So do not improve the convergence rate over SGD.

e These can even amplify the effect of the noise.
o Need momentum to converge to 0 for SGD+momentum to converge.

@ Can get faster rates with growing batch sizes using these techniques.
o Need to grow batch size so E[[|e¥||?] goes to 0 at the fast rate.
o If you want linear convergence rate with constant v, need E[|[e*||?] = O(¥).

e But this increases the iteration cost.

@ Similar ideas hold for line-search:
o With fixed batch size, standard line-search methods do not work.
o With line-search converges with growing batch sizes.
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Comparison of Deterministic, Stochastic, and Hybrid

@ For training a conditional random field, below plot compares:
o Deterministic: quasi-Newton method (L-BFGS) with Wolfe line-search.
o Stochastic: SGD with the 3 best-performing step sizes (among powers of 10).
o Hybrid: growing-batch quasi-Newton method (L-BFGS) with Armijo line-search.
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Motivation: Over-Parameterized Models in Machine Learning

Modern machine learning practioners often do a weird thing:
o Train (and get excellent performance) with models that are over-parameterized.

@ "“The model is so complicated that you can fit the data perfectly”.
@ The exact setting where we normally teach students that bad overfitting happens.

@ Examples:
e Many state-of-the-art deep computer vision models are over-parameterized.
@ Models powerful enough to fit training set with random labels [Zhang et al., 2017].
o Linear models with sufficiently expressive features [Liang & Rakhlin, 2018].

Many recent papers study benefits of over-parameterization in various settings:

e Algorithms may have implicit regularization that reduces overfitting.
o Optimizers may find global optima in problems we normally view as hard.

Over-parameterization significantly changes the behaviour of SGD.
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SGD and Over-Parameterization

Faster Algorithms under Over-Parameterization

Effect of Over-Parameterization on SGD

@ We say a model is over-parameterized if it can exactly fit all training examples.
o Unlike usual bounded variance assumption, we have V f;(w,) = 0 for all i

Gradients at solutiol

(bounded variance)

Gradients at solution (

pver-parameterized)

o For over-parameterized models, the variance is 0 at minimizers.
e And SGD converges with a sufficiently small constant step size.
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Stochastic Convergence Rates under Over-Parameterization

@ One way to characterize over-parameterization: strong growth condition (SGC),
E[|Vfi(w) ] < plIV f(w)]?,

which implies the interpolation property that V f(w) =0 — V f;(w) = 0 for all 1.

@ Under the SGC, SGD achieves the deterministic convergence rates,
o E[f(w)] — f* = O(4*) for strongly-convex and PL functions (for some v < 1).

o E[f(w)] — f* = O(1/k) for convex functions.
o E[|Vf(w)||?)] = O(1/k) for bounded-below functions (which may be non-convex).

@ All of these above rates are obtained for any sufficiently small step size.

e So SGD adapts to the difficulty of the problem.
@ The same step size works for strongly-convex and non-convex problems.

e Partial explanation for the success of constant step sizes in practice.
@ Which do not converge in the usual setting.
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Stochastic Convergence Rates under Over-Parameterization

e Comparison of least squares performance in under-/over-parameterized models:

Underparametrized Overparametrized
102 102
— GD
1 —— SGD (decreasing) )
v 1073 —— sGD (constant) 10 5
g
§ 10°4 100 5
9]
c
>
* 1071 4 1071 5
1072 . . . 1072 . . .
0 100 200 300 400 0 100 200 300 400

Gradient evaluations Gradient evaluations
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Bound on Error under the SGC

@ Under the SGC the SGD error is bounded by the full gradient size,

E[||€¥]1?] = E[||V fi(w*) — V f(w*)|?] (definition of ¢*)
= E[HVfZ( k)\|2] — ||sz(wk)H2 (variance identity)

= Z IV fi(w®) 1P = ||V fi(w®)]? (expand E)
ZPHVf )= IV f(w*)]? (use SGC)

=(p— 1)||Vf(w M2 (simplify)

@ So under the SGC, we do not need an assumption like E[||e*||] < o
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Progress Bound under the SGC

@ Using SGD in descent lemma with o, = 1/Lp, with SGC we obtain

E[f(w**1)] < fu) - 2ip||w<wk>u2,

the function decrease of deterministic gradient descent up to a factor of p.

e See bonus slide for the case of a general step size.
o Any step size o < 2/Lp guarantees descent.

@ From this inequality you can derive the rates under the different assumptions.
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Close to Over-Parameterized

@ Often we are not over-parameterized but close to over-parameterized.
e Training error can be made small but not exactly 0.

@ To address this case you add a constant term to the SGC,
E[IV fi(w) %] < plIV f(w)|[*+07,

combining SGC with earlier assumption on expected gradient size.
e This condition is weaker than both of those, and allowing smaller p or o.

@ This is not sufficient for convergence with a constant step size.

o But with constant step will converge quickly to region of size O(ac?).

o If o2 is small, this may be all you need.

o And again note that o decreases with the batch size.
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SGC vs. Interpolation
@ Under strong-convexity and SGC, SGD obtains a rate
k
Blf(wh] - ) < (1- 25 ) 1) - fw)l

@ But in the worst case, p can be as large as Luyax//t-
o Where L.y is the maximum Lipschitz constant of the V f; (Lmax > L).

@ Assuming only the interpolation property (implied by SGC)
E[||V fi(w*)||?] = 0,

we can show an alternate rate of

u\E
E[f(w*)] - f(w") < (1 - ) @) — Fw),

max

which is faster for problems where pL > Lax.
o Interpolation is not sufficient to get convergence for bounded-below functions.
e Bonus slides discuss weak growth condition which leads to faster rates than both.
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Faster SGD for Over-Parameterized Models?

@ Over-parameterization leads to faster convergence rates for SGD.

@ But can we exploit over-parameterization to develop faster methods than SGD?
e Without needing to grow the batch size.

@ Yes, there now exist methods that go faster in over-parameterized setting:

o With Nesterov acceleration you can improve rate to (1 — \/u/pL). -
e With non-uniform sampling proportional to L; you can rates depending on L.
e With second-order updates and growing batch you can get faster local convergence.

@ With a much-slower growth in the batch size than without over-parameterization.

@ Under over-parameterization, you can also use SGD with a line-search.
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Review of Standard Methods to Automatically Set Step Size

@ There are a huge number of papers on setting SGD step size as we go.
o “Update step size based on some simple statistics” .
e “Do gradient descent on the step size”.
e “Use a line-search/trust-region based on the mini-batch”.

Most of these methods have at least one of these problems:

e Introduces new hyper-parameter that is just as hard to tune as the step size.
o Do not converge theoretically (and can catastrophically fail).

e Converges theoretically, but works badly in practice.

o Needs to assume that oy goes to 0 to work.

Student recommendation when not over-parameterized: coin betting.

If growing batch size or over-parameterized:
o Can adapt step sizes and line searches designed for deterministic gradient descent.
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Stochastic Line Search - Theory

@ An Armijo line-search on the mini-batch selects a step size satisfying

fir(we — iV fi,) < fi, (i) — copl|V fi, (wi)]%,

for some constant ¢ > 0.

e Without interpolation this does not work (satisfied by steps that are too large).

No Interpolation Interpolation

@ With interpolation, can guarantee sufficient progress towards solution.
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Stochastic Line Search - Theory

o Consider using the largest step-size satisfying Armijo condition on [0, &max]-
o Under interpolation and strong-convexity, ¢ = 1/2 and amayx sufficiently large gives

k
1
E [[lwy, — wsl*] = (1 -7 ) lwo — w. 1.
max

e Same rate we achieve knowing smoothness constant under interpolation.
o For convex objectives we obtain an O(1/k) rate.
e For non-convex objectives we obtain the O(1/k) rate if cymax is small enough.

@ In practice, we can use a backtracking line search.
e You can alternately use the stochastic Polyak step size if you know f*.
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Superiority of Line Search over Theoretical Step Sizes
@ The line search guarantees same rate as when we know smoothness constant.

o But this is in the worst case.

@ We expect the line-search to converge faster in practice.

fu(n)

Ly (n)

@ Red dotted line is bound obtained with known smoothness for an f;.
o Using a = 1/Lmax moves to minimizer within green region.

@ Armijo accepts step sizes in the yellow region (blue line is gradient of an f;).
e Armijo allows larger step sizes that decrease the function by a larger amount.
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Stochastic Line Search - Practice

@ In our experiments:

o We used ¢ = 0.1 in the Armijo condition.
e We multiply the step size by 0.8 if the Armijo condition fails.
e We increase the step size between iterations.

o Specifically, we initialize the line search with max{10, oy, 2" of training data used) |

@ With these choices, median number of times we test Armijo condition was 1.
e Running this algorithm has similar cost to trying 2 fixed step sizes.
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Experimental Results with Stochastic Line Search

@ We did a variety of experiments, including training CNNs on standard problems.
o Better than fixed step sizes, adaptive methods, alternate adaptive step sizes.

94 CIFAR1O ResNet CIFAR100 ResNet 76 CIFAR100 DenseNet
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Experimental Results with Stochastic Line Search

@ Step sizes over time under line search for different datasets.

SGD+Armijo Step-Sizes
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Stochastic Line Search - Discussion

@ The same line search can be used for different types of functions.
o Strongly-convex, PL, or convex. (And bounded below under restriction of amax.)

e Adaptivity to problem difficulty.

@ We were not the first to try line searches for SGD.
e Or even Armijo line search for SGD applied to deep learning benchmarks.
e But we showed why over-parameterization is key to performance.

@ On synthetic experiments conrolling degree of over-parameterization.
e With over-parameterization, the stochastic line search works great.
o If close to over-parameterized, line search still works really well.
@ Theory can be modified to handle case of being close to over-parameterized.

o If far from over-parameterized, line search catastrophically fails.

@ Line search experiments were done with batch normalization.
e This is not covered by the theory.
e Armijo still seems effective but gap is not as large.
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Problems with Current Over-Parameterization Optimization Theory

@ Line search is not as effective for LSTMs or transformers.

o Adam seems to have an advantage here.
e Theoretical and practical details to be worked out.

@ Some deep learning losses like in GANs do not fit over-parameterized regime.
(Chavdarova et al., 2019)

@ Theory is still incomplete for non-convex functions:
e Interpolation not sufficient for SGD to converge for non-convex.
@ Non-convex results rely on PL or SGC.
e Line-search is not sufficient for convergence on non-convex.
@ Non-convex results require amax = O(1/L).
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Summary

Convergence of SGD with constant step size
e Similar speed to gradient descent, up to accuracy proportional to step size.
e For machine learning, this may be all you need.
Mini-batch SGD:
o Effect of noise is divided by the mini-batch size.
o Effect of noise decrease faster for without-replacement sampling.
e Growing batch sizes allow you use tricks for deterministic gradient descent.
@ Like acceleration, second-order information, and line searches.
Over-Parameterized SGD:
e For many problems we can exactly fit every example.
o In this setting, SGD converges like gradient descent.
e You can develop faster accelerated and second-order methods for this setting.
e You can use line search or other clever step sizes in this setting.

No lecture next week (I will be away).
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Descent Lemma for Gradient Descent with Error
@ Recall the descent lemma,
Pt < ) + Vb @~ ub) + 2 Vb))
o Pluggin in gradient descent with error, w**! — w* = —ay(Vf(w¥) + €*):
Fh) < fw?) = ail|VF(wP)]? = apV f(w*) e
+ EL (V1) = 29T + et
o If ¥ is unbiased then V f(w*)TE[e¥] = 0 and after simplifying we get

(0 OéQ
Bl < £ - o (1= %5 ) VA + B[l

where the middle term on the right is negative if ay, < 2/L.



Faster Algorithms under Over-Parameterization

Convergence Rate under PL and Bounded Variation

Descent lemma for gradient descent with generic unbiased error e:

apL

OéQ
Bl < ) - o (1= %5 ) 19 FHI + Bl

With oy, < 2/L, PL ([VF ()| > 20(f (k) - 1)), and E[Jet]?] < o gives
042 0'2
BIf(wH)] < fw) - 2u0n (1= %) () - 1)+ 55

Subtracting f* from both sides and recursing with constant oy = « as before gives

Bl £ < (120 (1~ %)) () - £) 4o et

oL

which is the result we had before with some extra factors.
If a = 1/L RHS simplifies to (1 — i/ L)*(f(u®) — £*) + 4.

Orif a =+/L for v <2 we get (1 — (2 — 'y),u,/L)k(f(wO) -+ #‘i'y)
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Variation Bound for Mini-Batch Approximation

@ Variation of mini-batch approximation with batch size of m:

1
E[||gm (w) — V(@) [I?] = E[|— > V£i(w)[|?] — [V F(w)|? (variance identity)
™ ieB
1 2 2 T 2
=— S EIVA@ICI+ = > Y EVAw) Vi w)] - [V () cauer)
ieB M7 B jeB,j#i
m m(m — 1
= R eI+ 2D s v s w) - 1952 (repeated terms)
1 2 1 2 _—
= ;E[I\Vfl(w)\l I|= ;HVf(w)H (simplify)
1
= —E[lIVfi(w) - v (w)|?] (variance identity)

(0'2 is 1-sample variation)

S‘Qno
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Progress Bound under SGC with Generic Step Size
o Descent lemma for gradient descent with generic unbiased error e:
oL a’L
BLf ()] < £(0¥) - an (1= 25) V7 HIP + B
o With SGC we have E[||e¥||?] < (p — 1)[|Vf(w")|?, giving

oL

OéQ
L/ )] < £(¥) - o (1= 25 ) IVSAIP + SE 0= DIVIH)P?

— ) - (1- “L’)) 77| 2

@ The second term is negative for any ay < 2/Lp.
e With ag = 1/Lp we get

E[f ()] < (1—) V£ ()2
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Ways to Characterize Over-Parameterization

o First over-parameterization results are due to Solodov [1998] and Tseng [1998].
o They considered variation on what is now called the strong growth condition (SGC),

E[|V fi(w)|*] < plIV f(w)]*.

@ Bach & Moulines [2011] later analyze SGD when variance at solution is 0.
o We call this the interpolation property (which is implied by the SGC),

E[||V fi(w)]?] =

@ An alternate condition was considerd by Vaswani et al. [2019].
o The weak growth condition (WGC) for an L-smooth function is

E[|V fi(w)|*] < 2pL(f(w) — f(w.))-

e Relation between conditions for L-smooth f and Lya.-smooth f;:
e SGC — interpolation and WGC.
@ For invex functions: interpolation — WGC.
@ For PL functions: WGC — SGC.
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Strong Growth Condition vs. Weak Growth Condition

@ SGC implies each f; is stationary when f is stationary.
@ Interpolation and WGC imply each f; is stationary at global minizers.

o Neither condition rules out non-isolated or multiple global minimizers.

@ The constant under WGC may be smaller:
o For PL functions satisfying SGC we have p < Lyax/ -
e For invex functions satisfying WGC we have p < L../L.
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