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Last Time: Convergence of Stochastci Gradient Descent

We considered stochastic gradient descent (SGD),

wk+1 = wk − αk∇fik(wk).

which performs a gradient descent step using a random training example ik.
This gives an unbiased gradient approximation, E[∇fik(wk)] = ∇f(wk).

If we assume E[‖∇fik(wk)‖2] ≤ σ2 then we can show

min
k=0,1,...,t−1

{E‖∇f(wk)‖2} ≤ f(w0)− f∗∑t−1
k=0 αk

+
Lσ2

2

∑t−1
k=0 α

2
k∑t−1

k=0 αk
,

where first term is like gradient descent bound and second term is effect of noise.
Converge depends on value of

∑
k α

2
k/
∑

k αk.
αk = γ/k converges at extremely slow O(1/ log(k)).
αk = γ/

√
k converges at faster Õ(1/

√
k).

αk = γ converges at faster O(1/k) but only to solution accuracy O(γσ2).



SGD for PL Functions Mini-Batch SGD and Growing Batches SGD and Over-Parameterization Faster Algorithms under Over-Parameterization

SGD with Decreasing Step Sizes

10000 SGD iterations with αk = 1/µk and αk = 1/10µk:

This step size works well in limited situations but is not robust:

For strongly-convex problems, we will discuss how αk = 1/µk has O(1/k) rate.
But using 1/10µk leads to extremely slow convegence.
And using 10/µk the method explodes (no iterations would fix on plot).
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SGD with Robust Decreasing Step Sizes

10000 SGD iterations with αk = 10/L
√
k, αk = 1/L

√
k, and αk = 1/10L

√
k:

Step sizes proportional to square root of k are more robust

Works well for a range of constants, even though “best case” rate is slower.
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SGD with Constant Step Sizes

10000 SGD iterations with αk = 1/L, αk = 1/10L, and αk = 1/100L:

Constant step sizes converge quickly to neighbourhood of solution.

Then behave erratically within neighbourhood and do not converge to solution.
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SGD as Gradient Descent with Random Error

We can write the SGD step as a deterministic gradient descent step with error,

wk+1 = wk − αk(∇f(wk) + ek),

where for SGD the ek = ∇fi(wk)−∇f(wk) is random.

Since SGD is unbiased, for SGD the mean of ek is 0:

E[ek] = E[∇fi(wk)]−∇f(wk) = 0.

Progress for gradient descent with error is affect by ‖ek‖2.
To guarantee progress, we usually want ‖ek‖2 ≤ ‖∇f(wk)‖2.

For SGD, expected value ‖ek‖2 is a measure of the variation in the gradients,

E[‖ek‖2] = E[‖∇fi(wk)−∇f(wk)‖2].
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Convergence of SGD with More-Realistic Noise Bound

The assumption that E[‖∇fik(wk)‖2] ≤ σ2 is strong.

Implies gradients bounded, and cannot hold globally for PL functions.

We can instead assume variation in gradients is bounded,

E[‖ek‖2] ≤ σ2,

which leads to a similar bound under the descent lemma (see bonus slide).

Following similar analysis under this assumption (and αk < 2/L) gives

min
k=0,1,...,t−1

{E‖∇f(wk)‖2} ≤ f(w0)− f∗∑t−1
k=0 αk(1−

αkL
2 )

+
Lσ2

2

∑t−1
k=0 α

2
k∑t−1

k=0 αk(1−
αkL
2 )

.

This leads to the similar conclusions regarding choosing the step size.
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SGD with Random Permutations

In practice, SGD is often implemented with random permutations.
A common variation is switching between 2 random permutations.

Yields a predictable/optimizable data access pattern.

Bottou [2009] conjected that random permutations yields an O(1/k2) rate.

Based on experiments.

A sequence of papers have worked towards resolving the rate in various settings.
For strongly-convex functions, we now have O(1/nk2) rate after k epochs.

Whereas regular SGD would have O(1/nk) after same number of updates.

For strongly-convex quadratics, improves to O
(

1
(nk)2 + 1

nk3

)
.

Above results assume iterates stay bounded, and there are matching lower bounds.
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Convergence of SGD for PL Functions

You can get faster rates for SGD if f is strongly-convex or PL:

Under these assumptions you can get an O(1/k) rate.
Requires a step size of αk = O(1/k), but constant matters.

For strongly-convex f , using αk = 1/µk gives the O(1/k) rate.
Initial steps are huge, then it slowly converges to solution.

Might do worse than slower O(1/
√
k) step sizes after finite steps.

And be careful, if you over-estimate µ rate can be much worse.
The only problem where I have seen αk = O(1/k) work effectively is binary SVMs.

Where αk = 1/µk is tough to beat.
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Convergence Rate of SGD with Constant Step under PL
We showed that SGD with constant step size has rate O(1/αk) +O(ασ2).

For f bounded below, ∇f Lipschitz, and noise bounded by σ2.
Convergence rate of gradient descent.
Up to accuracy proportional to step size and noise bound.

As before, we can derive faster rates under PL: O(ρ(α)k) +O(ασ2).
Linear convergence up to solution level proportional to step size and noise bound.
The number of ρ(α) will depend on the precise step-size we choose.

We will show this assuming α < 1/2µ and E[‖∇f(w)‖2] ≤ σ2.
Bonus slides show this for α < 2/L and weaker E[‖ek‖2] ≤ σ2.

Constant step sizes adapt to problem.
Do not need to know if f is convex or PL.
Do not need to know which variation bound is satisfied.
This is more like gradient descent where αk = 1/L works for many problems.



SGD for PL Functions Mini-Batch SGD and Growing Batches SGD and Over-Parameterization Faster Algorithms under Over-Parameterization

Convergence Rate of SGD with Constant Step under PL

To derive the result under PL, we start with our SGD progress bound:

E[f(wk+1)] ≤ f(wk)− αk‖∇f(wk)‖2︸ ︷︷ ︸
good

+ α2
k

L

2
E[‖∇fik(wk)‖2]︸ ︷︷ ︸

bad

.

Bound with PL (‖∇f(wk)‖2 ≥ 2µ(f(wk)− f∗)) and variation bound,

E[f(wk+1)] ≤ f(wk)− αk2µ(f(wk)− f∗) + α2
k

Lσ2

2
.

Subtract f∗ from both sides and factorize,

E[f(wk+1)]− f∗ ≤ (1− 2αkµ)(f(wk)− f∗) + α2
k

Lσ2

2
.
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Convergence Rate of SGD with Constant Step under PL

Bound from previous slide, with a constant step size αk = α:

E[f(wk+1)]− f∗ ≤ (1− 2αµ)(f(wk)− f∗) + α2Lσ
2

2

(with tower prop) ≤ (1− 2αµ)

(
(1− 2αµ)(f(wk−1)− f∗) + α2Lσ

2

2

)
+ α2Lσ

2

2

= (1− 2αµ)2(f(wk−1)− f∗) + α2Lσ
2

2
(1 + (1− 2αµ)).

Applying bound recursively from k down to 0 we get

E[f(wk)]− f∗ ≤ (1− 2αµ)k(f(wk)− f∗) + α2Lσ
2

2

k∑
t=0

(1− 2αµ)t.

We have
∑k

t=0(1− 2αµ)t <
∑∞

t=0(1− 2αµ)t = 1/2αµ (geometric series).
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SGD with Constant Step Size
Convergence rate of SGD with constant step size α for PL f :

E[f(wk)− f∗] ≤ (1− 2αµ)k(f(w0)− f(w∗)) + ασ2
L

4µ
.

First term looks like linear convergence, but second term does not go to zero.

Theory justifies “divide the step-size in half if it looks like it’s stalled” heuristic.
Halving α divides bound on distance to f∗ in half (similar for non-convex).
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SGD with Constant Step Size
Convergence rate of SGD with constant step size α for PL f :

E[f(wk)− f∗] ≤ (1− 2αµ)k(f(w0)− f(w∗)) + ασ2
L

4µ
.

First term looks like linear convergence, but second term does not go to zero.

Theory justifies “divide the step-size in half if it looks like it’s stalled” heuristic.
Halving α divides bound on distance to f∗ in half (similar for non-convex).
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SGD with Constant Step Sizes

For strongly-convex, we get the same type of convergence in terms of iterates.

10000 SGD iterations with αk = 1/L, αk = 1/2L, and αk = 1/4L:

Constant step sizes converges linearly to neighbourhood of solution.

Then behave erratically within neighbourhood.
Size of neighbourhood is propotional to αk.
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Optimization vs. Machine Learning

Optimization: we want ∇f(wk) to converge to 0.
So we need to use decreasing step sizes to guarantee continued progress.

But as we decrease the step size SGD will converge slower.

Machine learning: we only need ∇f(wk) close to 0.
We expect test error to be similar for all wk “close enough” to stationary point.

May only care about 2 decimal places of accuracy (model is not perfect anyways).
So do not need 10 decimal places of optimization accuracy.

For any “closeness”, we could use a small-enough constant step size αk = α.

Guarantee expected progress when ∇f(wk) is large.
Adapts to the difficulty of the problem (same for PL, convex, and non-convex).
But in areas where gradient is small, SGD can behave erratically.
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Early Stopping: A Practical Strategy for Deciding When to Stop

How do you decide when to stop?

In gradient descent, we stop when gradient is close to zero.

In SGD:

Individual gradients do not necessarily go to zero.
We cannot see full gradient, so we do not know when to stop.

Practical trick for machine learning problems:

Every k iterations (for some large k), measure validation set error.
Stop if the validation set error “is not improving”..

We do not check gradient, since it takes a lot longer for gradient to get small.
Early stopping can also reduce overfitting (chosen iteration was validated).
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SGD with Mini-Batches

Deterministic gradient descent uses all n gradients,

∇f(wk) =
1

n

n∑
i=1

∇fi(wk).

Stochastic gradient descent approximates it with 1 sample,

∇f(wk) ≈ ∇fik(wk).

A common variant is to use m samples as a mini-batch Bk,

∇f(wk) ≈ 1

m

∑
i∈Bk
∇fi(wk).

Mini-batches are particularly useful for vectorization/parallelization.
For example, with 16 cores set m = 16 and compute 16 gradients at once.
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Unbiasedness of Mini-Batch Approximation

Taking expectation over choice of mini-batch gives:

E

[
1

m

∑
i∈B
∇fi(w)

]
=

1

m
E

[∑
i∈B
∇fi(w)

]
(linearity of E)

=
1

m

∑
i∈B

E[∇fi(w)] (linearity of E)

=
1

m

∑
i∈B
∇f(w) (unbiased estimate)

=
m

m
∇f(w) (term is repeated |B| times)

= ∇f(w),

so mini-batch approximation is unbiased.
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Variation in Mini-Batch Approximation

To analyze variation in gradients, we use a variance-like identity:

If random variable g is an unbiased approximation of vector µ, then

E[‖g − µ‖2] = E[‖g‖2 − 2gTµ+ ‖µ‖2] (expand square)

= E[‖g‖2]− 2E[g]Tµ+ ‖µ‖2 (linearity of E)

= E[‖g‖2]− 2µTµ+ ‖µ‖2 (unbiased)

= E[‖g‖2]− ‖µ‖2.
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Variation in Mini-Batch Approximation

We also need expectation of inner product between independent samples:

E[∇fi(w)T∇fj(w)] =
n∑
i=1

n∑
j=1

1

n2
∇fi(w)T∇fj(w) (definition of E)

=
1

n

n∑
i=1

∇fi(w)T
 1

n

n∑
j=1

∇fj(w)

 (distributive)

=
1

n

n∑
i=1

∇fi(w)T∇f(w) (gradient of f)

=

(
1

n

n∑
i=1

∇fi(w)
)T
∇f(w) (distributive)

= ∇f(w)T∇f(w) = ‖∇f(w)‖2 (gradient of f),

which is squared gradient norm.
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Variation Bound for Mini-Batch Approximation

Let g2(w) = 1
2(∇fi(w) +∇fj(w)) be mini-batch approximation with 2 samples.

E[‖g2(w)−∇f(w)‖2] = E[‖
1

2
(∇fi(w) +∇fj(w))‖2]− ‖∇f(w)‖2 (variance identity)

=
1

4
E[‖∇fi(w)‖2] +

1

2
E[∇fi(w)

T∇fj(w)] +
1

4
E[‖∇fj(w)‖2]− ‖∇f(w)‖2 (expand square)

=
1

2
E[‖∇fi(w)‖2] +

1

2
E[∇fi(w)

T∇fj(w)]− ‖∇f(w)‖2 (E[∇fi] = E[∇fj ])

=
1

2
E[‖∇fi(w)‖2] +

1

2
‖∇f(w)‖2 − ‖∇f(w)‖2 (E[∇fi∇fj ] = ∇f

2)

=
1

2
E[‖∇fi(w)‖2]−

1

2
‖∇f(w)‖2

=
1

2

(
E[‖∇fi(w)‖2]− ‖∇f(w)‖2

)
(factor

1

2
)

=
1

2
E[‖∇fi(w)−∇f(w)‖2] (variance identity)

=
σ(w)2

2
(σ2 is 1-sample variation)

So SGD error E[‖ek‖2] is cut in half compared to using 1 sample.
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Variance of Mini-Batch Approximation

With m samples in our mini-batch we have that (see bonus)

E[‖ek‖2] =
σ(wk)2

m
,

where σ2(wk) is the variation in the individual gradients at wk.

“With a mini-batch size of 100, effect of noise is divided by 100”.

Biggest gains obtained for increasing small batch sizes.

“With a mini-batch size of 100, you can use a step size that is 100-times larger.”

“Linear scaling rule” (but may not guarantee progress if αk ≥ 2/L)
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Batching: Growing the Batch Size

Consider mini-batch SGD under PL with small constant step size:
Converges linearly to a sub-optimality of O(ασ2/m).

For σ(w) > σ for all w.

You could decrease αk to get closer to the solution.

But this makes SGD converge more slowly.

Or, you can increase the batch size m.
Doubling batch size has same effect as halving the step size.

But without needing to use a smaller step size.

If you grow the batch size over the iterations, converges with a constant step size.

Effect of noise goes to 0 as the batch size increases.
Growing batch size methods are sometimes called batching methods.
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Variance of Mini-Batch Approximation for Finite Data

Variance of mini-batch approximation is smaller for finite datasets.

If we sample without replacement from a set of n examples we have

E[‖ek‖2] =
σ(wk)2

m

n−m
n

,

where the extra term is called the finite sample correction.

This term is less than 1 so variance is strictly better for “with replacement” sampling.

Finite sample correction is minor when m is small.

But as m approaches n the finite-sample correction drives effect of noise to 0.

Because you sample a greater portion of the overall dataset.
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Stochastic Heavy-Ball/Nesterov/Newton or Line Search?

Should we use heavy-ball/Nesterov/Newton-like stochastic methods?
May improve dependency on L and µ.
But do not improve dependency on noise σ2.

So do not improve the convergence rate over SGD.

These can even amplify the effect of the noise.

Need momentum to converge to 0 for SGD+momentum to converge.

Can get faster rates with growing batch sizes using these techniques.
Need to grow batch size so E[‖ek‖2] goes to 0 at the fast rate.

If you want linear convergence rate with constant γ, need E[‖ek‖2] = O(γk).

But this increases the iteration cost.

Similar ideas hold for line-search:
With fixed batch size, standard line-search methods do not work.
With line-search converges with growing batch sizes.



SGD for PL Functions Mini-Batch SGD and Growing Batches SGD and Over-Parameterization Faster Algorithms under Over-Parameterization

Comparison of Deterministic, Stochastic, and Hybrid
For training a conditional random field, below plot compares:

Deterministic: quasi-Newton method (L-BFGS) with Wolfe line-search.
Stochastic: SGD with the 3 best-performing step sizes (among powers of 10).
Hybrid: growing-batch quasi-Newton method (L-BFGS) with Armijo line-search.

0 20 40 60 80 100

10
2

10
3

10
4

10
5

Passes through data

O
b

je
c

ti
v

e
 m

in
u

s 
O

p
ti
m

a
l

 

 
Stochastic1(1e−01)

Stochastic1(1e−02)

Stochastic1(1e−03)

Hybrid

Deterministic



SGD for PL Functions Mini-Batch SGD and Growing Batches SGD and Over-Parameterization Faster Algorithms under Over-Parameterization

Outline

1 SGD for PL Functions

2 Mini-Batch SGD and Growing Batches

3 SGD and Over-Parameterization

4 Faster Algorithms under Over-Parameterization



SGD for PL Functions Mini-Batch SGD and Growing Batches SGD and Over-Parameterization Faster Algorithms under Over-Parameterization

Motivation: Over-Parameterized Models in Machine Learning

Modern machine learning practioners often do a weird thing:
Train (and get excellent performance) with models that are over-parameterized.

“The model is so complicated that you can fit the data perfectly”.
The exact setting where we normally teach students that bad overfitting happens.

Examples:
Many state-of-the-art deep computer vision models are over-parameterized.

Models powerful enough to fit training set with random labels [Zhang et al., 2017].

Linear models with sufficiently expressive features [Liang & Rakhlin, 2018].

Many recent papers study benefits of over-parameterization in various settings:
Algorithms may have implicit regularization that reduces overfitting.
Optimizers may find global optima in problems we normally view as hard.

Over-parameterization significantly changes the behaviour of SGD.
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Effect of Over-Parameterization on SGD

We say a model is over-parameterized if it can exactly fit all training examples.

Unlike usual bounded variance assumption, we have ∇fi(w∗) = 0 for all i:

For over-parameterized models, the variance is 0 at minimizers.

And SGD converges with a sufficiently small constant step size.
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Stochastic Convergence Rates under Over-Parameterization

One way to characterize over-parameterization: strong growth condition (SGC),

E[‖∇fi(w)‖2] ≤ ρ‖∇f(w)‖2,

which implies the interpolation property that ∇f(w) = 0→ ∇fi(w) = 0 for all i.

Under the SGC, SGD achieves the deterministic convergence rates,
E[f(w)]− f∗ = O(γk) for strongly-convex and PL functions (for some γ < 1).
E[f(w)]− f∗ = O(1/k) for convex functions.
E[‖∇f(w)‖2] = O(1/k) for bounded-below functions (which may be non-convex).

All of these above rates are obtained for any sufficiently small step size.
So SGD adapts to the difficulty of the problem.

The same step size works for strongly-convex and non-convex problems.

Partial explanation for the success of constant step sizes in practice.
Which do not converge in the usual setting.



SGD for PL Functions Mini-Batch SGD and Growing Batches SGD and Over-Parameterization Faster Algorithms under Over-Parameterization

Stochastic Convergence Rates under Over-Parameterization

Comparison of least squares performance in under-/over-parameterized models:
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Bound on Error under the SGC

Under the SGC the SGD error is bounded by the full gradient size,

E[‖ek‖2] = E[‖∇fi(wk)−∇f(wk)‖2] (definition of ek)

= E[‖∇fi(wk)‖2]− ‖∇fi(wk)‖2 (variance identity)

=
1

n

n∑
i=1

‖∇fi(wk)‖2 − ‖∇fi(wk)‖2 (expand E)

≤ 1

n

n∑
i=1

ρ‖∇f(wk)‖2 − ‖∇f(wk)‖2 (use SGC)

= (ρ− 1)‖∇f(wk)‖2 (simplify)

So under the SGC, we do not need an assumption like E[‖ek‖] ≤ σ2.
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Progress Bound under the SGC

Using SGD in descent lemma with αk = 1/Lρ, with SGC we obtain

E[f(wk+1)] ≤ f(wk)− 1

2Lρ
‖∇f(wk)‖2,

the function decrease of deterministic gradient descent up to a factor of ρ.

See bonus slide for the case of a general step size.
Any step size α < 2/Lρ guarantees descent.

From this inequality you can derive the rates under the different assumptions.
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Close to Over-Parameterized

Often we are not over-parameterized but close to over-parameterized.

Training error can be made small but not exactly 0.

To address this case you add a constant term to the SGC,

E[‖∇fi(w)‖2] ≤ ρ‖∇f(w)‖2+σ2,

combining SGC with earlier assumption on expected gradient size.

This condition is weaker than both of those, and allowing smaller ρ or σ.

This is not sufficient for convergence with a constant step size.
But with constant step will converge quickly to region of size O(ασ2).

If σ2 is small, this may be all you need.
And again note that σ2 decreases with the batch size.
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SGC vs. Interpolation

Under strong-convexity and SGC, SGD obtains a rate

E[f(wk)]− f(w∗) ≤
(

1− µ

ρL

)k
[f(w0)− f(w∗)].

But in the worst case, ρ can be as large as Lmax/µ.
Where Lmax is the maximum Lipschitz constant of the ∇fi (Lmax ≥ L).

Assuming only the interpolation property (implied by SGC)

E[‖∇fi(w∗)‖2] = 0,

we can show an alternate rate of

E[f(wk)]− f(w∗) ≤
(

1− µ

Lmax

)k
[f(w0)− f(w∗)],

which is faster for problems where ρL > Lmax.
Interpolation is not sufficient to get convergence for bounded-below functions.
Bonus slides discuss weak growth condition which leads to faster rates than both.
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Faster SGD for Over-Parameterized Models?

Over-parameterization leads to faster convergence rates for SGD.

But can we exploit over-parameterization to develop faster methods than SGD?

Without needing to grow the batch size.

Yes, there now exist methods that go faster in over-parameterized setting:

With Nesterov acceleration you can improve rate to (1−
√
µ/ρL).

With non-uniform sampling proportional to Li you can rates depending on L̄.
With second-order updates and growing batch you can get faster local convergence.

With a much-slower growth in the batch size than without over-parameterization.

Under over-parameterization, you can also use SGD with a line-search.
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Review of Standard Methods to Automatically Set Step Size

There are a huge number of papers on setting SGD step size as we go.

“Update step size based on some simple statistics”.
“Do gradient descent on the step size”.
“Use a line-search/trust-region based on the mini-batch”.

Most of these methods have at least one of these problems:

Introduces new hyper-parameter that is just as hard to tune as the step size.
Do not converge theoretically (and can catastrophically fail).
Converges theoretically, but works badly in practice.
Needs to assume that σk goes to 0 to work.

Student recommendation when not over-parameterized: coin betting.

If growing batch size or over-parameterized:

Can adapt step sizes and line searches designed for deterministic gradient descent.
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Stochastic Line Search - Theory

An Armijo line-search on the mini-batch selects a step size satisfying

fik(wk − αk∇fik) ≤ fik(wk)− cαk‖∇fik(wk)‖2,

for some constant c > 0.

Without interpolation this does not work (satisfied by steps that are too large).

With interpolation, can guarantee sufficient progress towards solution.
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Stochastic Line Search - Theory

Consider using the largest step-size satisfying Armijo condition on [0, αmax].

Under interpolation and strong-convexity, c = 1/2 and αmax sufficiently large gives

E
[
‖wk − w∗‖2

]
=

(
1− µ

Lmax

)k

‖w0 − w∗‖2.

Same rate we achieve knowing smoothness constant under interpolation.
For convex objectives we obtain an O(1/k) rate.
For non-convex objectives we obtain the O(1/k) rate if αmax is small enough.

In practice, we can use a backtracking line search.

You can alternately use the stochastic Polyak step size if you know f∗.
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Superiority of Line Search over Theoretical Step Sizes

The line search guarantees same rate as when we know smoothness constant.
But this is in the worst case.

We expect the line-search to converge faster in practice.

Red dotted line is bound obtained with known smoothness for an fi.
Using αk = 1/Lmax moves to minimizer within green region.

Armijo accepts step sizes in the yellow region (blue line is gradient of an fi).
Armijo allows larger step sizes that decrease the function by a larger amount.
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Stochastic Line Search - Practice

In our experiments:

We used c = 0.1 in the Armijo condition.
We multiply the step size by 0.8 if the Armijo condition fails.
We increase the step size between iterations.

Specifically, we initialize the line search with max{10, αk−12
(ratio of training data used)}.

With these choices, median number of times we test Armijo condition was 1.

Running this algorithm has similar cost to trying 2 fixed step sizes.
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Experimental Results with Stochastic Line Search

We did a variety of experiments, including training CNNs on standard problems.

Better than fixed step sizes, adaptive methods, alternate adaptive step sizes.
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Experimental Results with Stochastic Line Search

Step sizes over time under line search for different datasets.
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Stochastic Line Search - Discussion
The same line search can be used for different types of functions.

Strongly-convex, PL, or convex. (And bounded below under restriction of αmax.)
Adaptivity to problem difficulty.

We were not the first to try line searches for SGD.
Or even Armijo line search for SGD applied to deep learning benchmarks.
But we showed why over-parameterization is key to performance.

On synthetic experiments conrolling degree of over-parameterization.
With over-parameterization, the stochastic line search works great.
If close to over-parameterized, line search still works really well.

Theory can be modified to handle case of being close to over-parameterized.

If far from over-parameterized, line search catastrophically fails.

Line search experiments were done with batch normalization.
This is not covered by the theory.
Armijo still seems effective but gap is not as large.
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Problems with Current Over-Parameterization Optimization Theory

Line search is not as effective for LSTMs or transformers.

Adam seems to have an advantage here.
Theoretical and practical details to be worked out.

Some deep learning losses like in GANs do not fit over-parameterized regime.
(Chavdarova et al., 2019)

Theory is still incomplete for non-convex functions:
Interpolation not sufficient for SGD to converge for non-convex.

Non-convex results rely on PL or SGC.

Line-search is not sufficient for convergence on non-convex.

Non-convex results require αmax = O(1/L).
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Summary

Convergence of SGD with constant step size
Similar speed to gradient descent, up to accuracy proportional to step size.
For machine learning, this may be all you need.

Mini-batch SGD:
Effect of noise is divided by the mini-batch size.

Effect of noise decrease faster for without-replacement sampling.

Growing batch sizes allow you use tricks for deterministic gradient descent.

Like acceleration, second-order information, and line searches.

Over-Parameterized SGD:
For many problems we can exactly fit every example.
In this setting, SGD converges like gradient descent.
You can develop faster accelerated and second-order methods for this setting.
You can use line search or other clever step sizes in this setting.

No lecture next week (I will be away).
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Descent Lemma for Gradient Descent with Error

Recall the descent lemma,

f(wk+1 ≤ f(wk) +∇f(wk)T (wk+1 − wk) +
L

2
‖∇f(wk)‖2.

Pluggin in gradient descent with error, wk+1 − wk = −αk(∇f(wk) + ek):

f(wk+1) ≤ f(wk)− αk‖∇f(wk)‖2 − αk∇f(wk)T ek

+
α2L

2

(
‖∇f(wk)‖2 − 2∇f(wk)T ek + ‖ek‖2

)
.

If ek is unbiased then ∇f(wk)TE[ek] = 0 and after simplifying we get

E[f(wk+1)] ≤ f(wk)− αk
(

1− αkL

2

)
‖∇f(wk)‖2 +

α2L

2
E[‖ek‖2],

where the middle term on the right is negative if αk < 2/L.
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Convergence Rate under PL and Bounded Variation
Descent lemma for gradient descent with generic unbiased error ek:

E[f(wk+1)] ≤ f(wk)− αk
(

1− αkL

2

)
‖∇f(wk)‖2 +

α2L

2
E[‖ek‖2].

With αk < 2/L, PL (‖∇f(wk)‖2 ≥ 2µ(f(wk)− f∗)), and E[‖ek‖2] ≤ σ2 gives

E[f(wk+1)] ≤ f(wk)− 2µαk

(
1− αkL

2

)
(f(wk)− f∗) +

α2Lσ2

2
.

Subtracting f∗ from both sides and recursing with constant αk = α as before gives

E[f(wk+1)]− f∗ ≤
(

1− 2µα

(
1− αL

2

))k
(f(w0)− f∗) + ασ2

L

4µ

1

(1− αL
2 )

,

which is the result we had before with some extra factors.

If α = 1/L RHS simplifies to (1− µ/L)k(f(w0)− f∗) + σ2

2µ .

Or if α = γ/L for γ < 2 we get (1− γ(2− γ)µ/L)k(f(w0)− f∗) + γσ2

2µ(2−γ) .
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Variation Bound for Mini-Batch Approximation

Variation of mini-batch approximation with batch size of m:

E[‖gm(w)−∇f(w)‖2] = E[‖
1

m

∑
i∈B
∇fi(w)‖2]− ‖∇f(w)‖2 (variance identity)

=
1

m2

∑
i∈B

E[‖∇fi(w)‖2] +
2

m2

∑
i∈B

∑
j∈B,j 6=i

E[∇fi(w)
T∇fj(w)]− ‖∇f(w)‖2 (expand square)

=
m

m2
E[‖∇fi(w)‖2] +

m(m− 1)

m2
∇f(w)

T∇f(w)− ‖∇f(w)‖2 (repeated terms)

=
1

m
E[‖∇fi(w)‖2]−

1

m
‖∇f(w)‖2 (simplify)

=
1

m
E[‖∇fi(w)−∇f(w)‖2] (variance identity)

=
σ2

m
(σ2 is 1-sample variation)
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Progress Bound under SGC with Generic Step Size

Descent lemma for gradient descent with generic unbiased error ek:

E[f(wk+1)] ≤ f(wk)− αk
(

1− αkL

2

)
‖∇f(wk)‖2 +

α2L

2
E[‖ek‖2].

With SGC we have E[‖ek‖2] ≤ (ρ− 1)‖∇f(wk)‖2, giving

E[f(wk+1)] ≤ f(wk)− αk
(

1− αkL

2

)
‖∇f(wk)‖2 +

α2L

2
(ρ− 1)‖∇f(wk)‖2

= f(wk)− αk
(

1− αLρ

2

)
‖∇f(wk)‖2.

The second term is negative for any αk < 2/Lρ.

With αk = 1/Lρ we get

E[f(wk+1)] ≤
(

1− µ

Lρ

)
‖∇f(wk)‖2.
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Ways to Characterize Over-Parameterization

First over-parameterization results are due to Solodov [1998] and Tseng [1998].
They considered variation on what is now called the strong growth condition (SGC),

E[‖∇fi(w)‖2] ≤ ρ‖∇f(w)‖2.

Bach & Moulines [2011] later analyze SGD when variance at solution is 0.
We call this the interpolation property (which is implied by the SGC),

E[‖∇fi(w∗)‖2] = 0.

An alternate condition was considerd by Vaswani et al. [2019].
The weak growth condition (WGC) for an L-smooth function is

E[‖∇fi(w)‖2] ≤ 2ρL(f(w)− f(w∗)).

Relation between conditions for L-smooth f and Lmax-smooth fi:
SGC → interpolation and WGC.
For invex functions: interpolation → WGC.
For PL functions: WGC → SGC.
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Strong Growth Condition vs. Weak Growth Condition

SGC implies each fi is stationary when f is stationary.

Interpolation and WGC imply each fi is stationary at global minizers.

Neither condition rules out non-isolated or multiple global minimizers.

The constant under WGC may be smaller:
For PL functions satisfying SGC we have ρ ≤ Lmax/µ.
For invex functions satisfying WGC we have ρ ≤ Lmax/L.


	SGD for PL Functions
	Mini-Batch SGD and Growing Batches
	SGD and Over-Parameterization
	Faster Algorithms under Over-Parameterization

