Numerical Optimization for Machine Learning SGD with Constant Step Sizes, Growing Batches, and Over-Parameterization

Mark Schmidt

University of British Columbia

Summer 2022

Last Time: Convergence of Stochastci Gradient Descent

• We considered stochastic gradient descent (SGD),

$$w^{k+1} = w^k - \alpha_k \nabla f_{i_k}(w^k).$$

which performs a gradient descent step using a random training example i_k .

- This gives an unbiased gradient approximation, $\mathbb{E}[\nabla f_{i_k}(w^k)] = \nabla f(w^k)$.
- If we assume $\mathbb{E}[\|\nabla f_{i_k}(w^k)\|^2] \leq \sigma^2$ then we can show

$$\min_{k=0,1,\dots,t-1} \{ \mathbb{E} \| \nabla f(w^k) \|^2 \} \le \frac{f(w^0) - f^*}{\sum_{k=0}^{t-1} \alpha_k} + \frac{L\sigma^2}{2} \frac{\sum_{k=0}^{t-1} \alpha_k^2}{\sum_{k=0}^{t-1} \alpha_k},$$

where first term is like gradient descent bound and second term is effect of noise.

- Converge depends on value of $\sum_k \alpha_k^2 / \sum_k \alpha_k$.
 - $\alpha_k = \gamma/k$ converges at extremely slow $O(1/\log(k))$.
 - $\alpha_k = \gamma/\sqrt{k}$ converges at faster $\tilde{O}(1/\sqrt{k})$.
 - $\alpha_k = \gamma$ converges at faster O(1/k) but only to solution accuracy $O(\gamma \sigma^2)$.

SGD with Decreasing Step Sizes

• 10000 SGD iterations with $\alpha_k = 1/\mu k$ and $\alpha_k = 1/10\mu_k$:

• This step size works well in limited situations but is not robust:

- For strongly-convex problems, we will discuss how $\alpha_k = 1/\mu k$ has O(1/k) rate.
- But using $1/10\mu k$ leads to extremely slow convegence.
- And using $10/\mu k$ the method explodes (no iterations would fix on plot).

SGD and Over-Parameterization

SGD with Robust Decreasing Step Sizes

• 10000 SGD iterations with $\alpha_k = 10/L\sqrt{k}$, $\alpha_k = 1/L\sqrt{k}$, and $\alpha_k = 1/10L\sqrt{k}$:

• Step sizes proportional to square root of k are more robust

• Works well for a range of constants, even though "best case" rate is slower.

SGD with Constant Step Sizes

• Constant step sizes converge quickly to neighbourhood of solution.

• Then behave erratically within neighbourhood and do not converge to solution.

SGD as Gradient Descent with Random Error

• We can write the SGD step as a deterministic gradient descent step with error,

$$w^{k+1} = w^k - \alpha_k (\nabla f(w^k) + e^k),$$

where for SGD the $e^k = \nabla f_i(w^k) - \nabla f(w^k)$ is random.

• Since SGD is unbiased, for SGD the mean of e^k is 0:

$$\mathbb{E}[e^k] = \mathbb{E}[\nabla f_i(w^k)] - \nabla f(w^k) = 0.$$

- Progress for gradient descent with error is affect by $||e^k||^2$.
 - To guarantee progress, we usually want $\|e^k\|^2 \leq \|\nabla f(w^k)\|^2.$
- For SGD, expected value $\|e^k\|^2$ is a measure of the variation in the gradients,

$$\mathbb{E}[\|e^k\|^2] = \mathbb{E}[\|\nabla f_i(w^k) - \nabla f(w^k)\|^2].$$

Convergence of SGD with More-Realistic Noise Bound

- The assumption that $\mathbb{E}[\|\nabla f_{i_k}(w^k)\|^2] \leq \sigma^2$ is strong.
 - Implies gradients bounded, and cannot hold globally for PL functions.
- We can instead assume variation in gradients is bounded,

$$\mathbb{E}[\|e^k\|^2] \le \sigma^2,$$

which leads to a similar bound under the descent lemma (see bonus slide).

• Following similar analysis under this assumption (and $\alpha_k < 2/L$) gives

$$\min_{x=0,1,\dots,t-1} \{ \mathbb{E} \| \nabla f(w^k) \|^2 \} \le \frac{f(w^0) - f^*}{\sum_{k=0}^{t-1} \alpha_k (1 - \frac{\alpha_k L}{2})} + \frac{L\sigma^2}{2} \frac{\sum_{k=0}^{t-1} \alpha_k^2}{\sum_{k=0}^{t-1} \alpha_k (1 - \frac{\alpha_k L}{2})}.$$

• This leads to the similar conclusions regarding choosing the step size.

SGD with Random Permutations

• In practice, SGD is often implemented with random permutations.

- A common variation is switching between 2 random permutations.
 - Yields a predictable/optimizable data access pattern.
- Bottou [2009] conjected that random permutations yields an O(1/k²) rate.
 Based on experiments.
- A sequence of papers have worked towards resolving the rate in various settings.
 - For strongly-convex functions, we now have $O(1/nk^2)$ rate after k epochs.
 - Whereas regular SGD would have O(1/nk) after same number of updates.
 - For strongly-convex quadratics, improves to $O\left(\frac{1}{(nk)^2} + \frac{1}{nk^3}\right)$.
 - Above results assume iterates stay bounded, and there are matching lower bounds.

SGD for PL Functions

Mini-Batch SGD and Growing Batche

SGD and Over-Parameterization

Faster Algorithms under Over-Parameterization

SGD for PL Functions

2 Mini-Batch SGD and Growing Batches

3 SGD and Over-Parameterization

4 Faster Algorithms under Over-Parameterization

Convergence of SGD for PL Functions

- You can get faster rates for SGD if f is strongly-convex or PL:
 - Under these assumptions you can get an O(1/k) rate.
 - Requires a step size of $\alpha_k = O(1/k)$, but constant matters.
- For strongly-convex f, using $\alpha_k=1/\mu k$ gives the O(1/k) rate.
 - Initial steps are huge, then it slowly converges to solution.
 - Might do worse than slower $O(1/\sqrt{k})$ step sizes after finite steps.
 - And be careful, if you over-estimate μ rate can be much worse.
 - The only problem where I have seen $\alpha_k = O(1/k)$ work effectively is binary SVMs.
 - Where $\alpha_k = 1/\mu k$ is tough to beat.

Convergence Rate of SGD with Constant Step under PL

- We showed that SGD with constant step size has rate $O(1/\alpha k) + O(\alpha \sigma^2)$.
 - For f bounded below, ∇f Lipschitz, and noise bounded by σ^2 .
 - Convergence rate of gradient descent.
 - Up to accuracy proportional to step size and noise bound.
- As before, we can derive faster rates under PL: $O(\rho(\alpha)^k) + O(\alpha\sigma^2)$.
 - Linear convergence up to solution level proportional to step size and noise bound.
 - The number of $\rho(\alpha)$ will depend on the precise step-size we choose.
 - We will show this assuming $\alpha < 1/2\mu$ and $\mathbb{E}[\|\nabla f(w)\|^2] \leq \sigma^2$.
 - Bonus slides show this for $\alpha < 2/L$ and weaker $\mathbb{E}[\|e^k\|^2] \leq \sigma^2$.
- Constant step sizes adapt to problem.
 - Do not need to know if f is convex or PL.
 - Do not need to know which variation bound is satisfied.
 - This is more like gradient descent where $\alpha_k = 1/L$ works for many problems.

Convergence Rate of SGD with Constant Step under PL

• To derive the result under PL, we start with our SGD progress bound:

$$\mathbb{E}[f(w^{k+1})] \le f(w^k) - \alpha_k \underbrace{\|\nabla f(w^k)\|^2}_{\text{good}} + \alpha_k^2 \underbrace{\frac{L}{2} \mathbb{E}[\|\nabla f_{i_k}(w^k)\|^2]}_{\text{bad}}.$$

• Bound with PL ($\|\nabla f(w^k)\|^2 \geq 2\mu(f(w^k)-f^*))$ and variation bound,

$$\mathbb{E}[f(w^{k+1})] \le f(w^k) - \alpha_k 2\mu(f(w^k) - f^*) + \alpha_k^2 \frac{L\sigma^2}{2}.$$

• Subtract f^* from both sides and factorize,

$$\mathbb{E}[f(w^{k+1})] - f^* \le (1 - 2\alpha_k \mu)(f(w^k) - f^*) + \alpha_k^2 \frac{L\sigma^2}{2}.$$

Convergence Rate of SGD with Constant Step under PL

• Bound from previous slide, with a constant step size $\alpha_k = \alpha$:

$$\begin{split} \mathbb{E}[f(w^{k+1})] - f^* &\leq (1 - 2\alpha\mu)(f(w^k) - f^*) + \alpha^2 \frac{L\sigma^2}{2} \\ (\text{with tower prop}) &\leq (1 - 2\alpha\mu)\left((1 - 2\alpha\mu)(f(w^{k-1}) - f^*) + \alpha^2 \frac{L\sigma^2}{2}\right) + \alpha^2 \frac{L\sigma^2}{2} \\ &= (1 - 2\alpha\mu)^2(f(w^{k-1}) - f^*) + \alpha^2 \frac{L\sigma^2}{2}\left(1 + (1 - 2\alpha\mu)\right). \end{split}$$

 \bullet Applying bound recursively from k down to 0 we get

$$\mathbb{E}[f(w^k)] - f^* \le (1 - 2\alpha\mu)^k (f(w^k) - f^*) + \alpha^2 \frac{L\sigma^2}{2} \sum_{t=0}^k (1 - 2\alpha\mu)^t.$$

• We have $\sum_{t=0}^{k} (1 - 2\alpha\mu)^t < \sum_{t=0}^{\infty} (1 - 2\alpha\mu)^t = 1/2\alpha\mu$ (geometric series).

SGD with Constant Step Size

• Convergence rate of SGD with constant step size α for PL f:

$$\mathbb{E}[f(w^{k}) - f^{*}] \le (1 - 2\alpha\mu)^{k}(f(w^{0}) - f(w^{*})) + \alpha\sigma^{2}\frac{L}{4\mu}$$

• First term looks like linear convergence, but second term does not go to zero.

Theory justifies "divide the step-size in half if it looks like it's stalled" heuristic.
Halving α divides bound on distance to f* in half (similar for non-convex).

SGD with Constant Step Size

• Convergence rate of SGD with constant step size α for PL f:

$$\mathbb{E}[f(w^{k}) - f^{*}] \le (1 - 2\alpha\mu)^{k}(f(w^{0}) - f(w^{*})) + \alpha\sigma^{2}\frac{L}{4\mu}$$

• First term looks like linear convergence, but second term does not go to zero.

Theory justifies "divide the step-size in half if it looks like it's stalled" heuristic.
Halving α divides bound on distance to f* in half (similar for non-convex).

SGD with Constant Step Sizes

- For strongly-convex, we get the same type of convergence in terms of iterates.
- 10000 SGD iterations with $\alpha_k = 1/L$, $\alpha_k = 1/2L$, and $\alpha_k = 1/4L$:

- Constant step sizes converges linearly to neighbourhood of solution.
 - Then behave erratically within neighbourhood.
 - Size of neighbourhood is propotional to α_k .

Optimization vs. Machine Learning

- Optimization: we want $\nabla f(w^k)$ to converge to 0.
 - So we need to use decreasing step sizes to guarantee continued progress.
 - But as we decrease the step size SGD will converge slower.
- Machine learning: we only need $\nabla f(w^k)$ close to 0.
 - We expect test error to be similar for all w_k "close enough" to stationary point.
 - May only care about 2 decimal places of accuracy (model is not perfect anyways).
 - So do not need 10 decimal places of optimization accuracy.
- For any "closeness", we could use a small-enough constant step size $\alpha_k = \alpha$.
 - Guarantee expected progress when $\nabla f(w_k)$ is large.
 - Adapts to the difficulty of the problem (same for PL, convex, and non-convex).
 - But in areas where gradient is small, SGD can behave erratically.

Early Stopping: A Practical Strategy for Deciding When to Stop

- How do you decide when to stop?
 - In gradient descent, we stop when gradient is close to zero.
- In SGD:
 - Individual gradients do not necessarily go to zero.
 - We cannot see full gradient, so we do not know when to stop.
- Practical trick for machine learning problems:
 - Every k iterations (for some large k), measure validation set error.
 - Stop if the validation set error "is not improving"...
 - We do not check gradient, since it takes a lot longer for gradient to get small.
 - Early stopping can also reduce overfitting (chosen iteration was validated).

SGD for PL Functions

Mini-Batch SGD and Growing Batches

SGD and Over-Parameterization

Faster Algorithms under Over-Parameterization

Outline

1 SGD for PL Functions

2 Mini-Batch SGD and Growing Batches

- 3 SGD and Over-Parameterization
- 4 Faster Algorithms under Over-Parameterization

Faster Algorithms under Over-Parameterization

SGD with Mini-Batches

• Deterministic gradient descent uses all n gradients,

$$\nabla f(w^k) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w^k).$$

• Stochastic gradient descent approximates it with 1 sample,

$$\nabla f(w^k) \approx \nabla f_{i_k}(w^k).$$

• A common variant is to use m samples as a mini-batch \mathcal{B}^k ,

$$\nabla f(w^k) \approx \frac{1}{m} \sum_{i \in \mathcal{B}^k} \nabla f_i(w^k).$$

- Mini-batches are particularly useful for vectorization/parallelization.
 - For example, with 16 cores set m = 16 and compute 16 gradients at once.

Unbiasedness of Mini-Batch Approximation

• Taking expectation over choice of mini-batch gives:

$$\mathbb{E}\left[\frac{1}{m}\sum_{i\in\mathcal{B}}\nabla f_i(w)\right] = \frac{1}{m}\mathbb{E}\left[\sum_{i\in\mathcal{B}}\nabla f_i(w)\right] \qquad (\text{linearity of }\mathbb{E})$$
$$= \frac{1}{m}\sum_{i\in\mathcal{B}}\mathbb{E}[\nabla f_i(w)] \qquad (\text{linearity of }\mathbb{E})$$
$$= \frac{1}{m}\sum_{i\in\mathcal{B}}\nabla f(w) \qquad (\text{unbiased estimate})$$
$$= \frac{m}{m}\nabla f(w) \qquad (\text{term is repeated }|\mathcal{B}| \text{ times})$$
$$= \nabla f(w),$$

so mini-batch approximation is unbiased.

Π

Variation in Mini-Batch Approximation

- To analyze variation in gradients, we use a variance-like identity:
 - If random variable g is an unbiased approximation of vector μ , then

$$\begin{split} \mathbb{E}[\|g - \mu\|^2] &= \mathbb{E}[\|g\|^2 - 2g^T \mu + \|\mu\|^2] & (\text{expand square}) \\ &= \mathbb{E}[\|g\|^2] - 2\mathbb{E}[g]^T \mu + \|\mu\|^2 & (\text{linearity of } \mathbb{E}) \\ &= \mathbb{E}[\|g\|^2] - 2\mu^T \mu + \|\mu\|^2 & (\text{unbiased}) \\ &= \mathbb{E}[\|g\|^2] - \|\mu\|^2. \end{split}$$

Variation in Mini-Batch Approximation

• We also need expectation of inner product between independent samples:

$$\begin{split} \mathbb{E}[\nabla f_i(w)^T \nabla f_j(w)] &= \sum_{i=1}^n \sum_{j=1}^n \frac{1}{n^2} \nabla f_i(w)^T \nabla f_j(w) & \text{(definition of } \mathbb{E}) \\ &= \frac{1}{n} \sum_{i=1}^n \nabla f_i(w)^T \left(\frac{1}{n} \sum_{j=1}^n \nabla f_j(w) \right) & \text{(distributive)} \\ &= \frac{1}{n} \sum_{i=1}^n \nabla f_i(w)^T \nabla f(w) & \text{(gradient of } f) \\ &= \left(\frac{1}{n} \sum_{i=1}^n \nabla f_i(w) \right)^T \nabla f(w) & \text{(distributive)} \\ &= \nabla f(w)^T \nabla f(w) = \| \nabla f(w) \|^2 & \text{(gradient of } f), \end{split}$$

which is squared gradient norm.

Variation Bound for Mini-Batch Approximation

• Let $g_2(w) = \frac{1}{2}(\nabla f_i(w) + \nabla f_j(w))$ be mini-batch approximation with 2 samples.

$$\begin{split} \mathbb{E}[\|g_{2}(w) - \nabla f(w)\|^{2}] &= \mathbb{E}[\|\frac{1}{2}(\nabla f_{i}(w) + \nabla f_{j}(w))\|^{2}] - \|\nabla f(w)\|^{2} & \text{(variance identity)} \\ &= \frac{1}{4}\mathbb{E}[\|\nabla f_{i}(w)\|^{2}] + \frac{1}{2}\mathbb{E}[\nabla f_{i}(w)^{T}\nabla f_{j}(w)] + \frac{1}{4}\mathbb{E}[\|\nabla f_{j}(w)\|^{2}] - \|\nabla f(w)\|^{2} & \text{(expand square)} \\ &= \frac{1}{2}\mathbb{E}[\|\nabla f_{i}(w)\|^{2}] + \frac{1}{2}\mathbb{E}[\nabla f_{i}(w)^{T}\nabla f_{j}(w)] - \|\nabla f(w)\|^{2} & (\mathbb{E}[\nabla f_{i}] = \mathbb{E}[\nabla f_{j}]) \\ &= \frac{1}{2}\mathbb{E}[\|\nabla f_{i}(w)\|^{2}] + \frac{1}{2}\|\nabla f(w)\|^{2} - \|\nabla f(w)\|^{2} & (\mathbb{E}[\nabla f_{i}] = \nabla f^{2}) \\ &= \frac{1}{2}\mathbb{E}[\|\nabla f_{i}(w)\|^{2}] - \frac{1}{2}\|\nabla f(w)\|^{2} \\ &= \frac{1}{2}\left(\mathbb{E}[\|\nabla f_{i}(w)\|^{2}] - \|\nabla f(w)\|^{2}\right) & (\text{factor } \frac{1}{2}) \end{split}$$

$$= \frac{1}{2} \mathbb{E}[\|\nabla f_i(w) - \nabla f(w)\|^2]$$
 (variance identity)
$$= \frac{\sigma(w)^2}{2}$$
 (σ^2 is 1-sample variation)

• So SGD error $\mathbb{E}[\|e^k\|^2]$ is cut in half compared to using 1 sample.

Variance of Mini-Batch Approximation

• With *m* samples in our mini-batch we have that (see bonus)

$$\mathbb{E}[\|e^k\|^2] = rac{\sigma(w^k)^2}{m},$$

where $\sigma^2(w^k)$ is the variation in the individual gradients at w^k .

- "With a mini-batch size of 100, effect of noise is divided by 100".
 Biggest gains obtained for increasing small batch sizes.
- "With a mini-batch size of 100, you can use a step size that is 100-times larger."
 "Linear scaling rule" (but may not guarantee progress if α_k ≥ 2/L)

Batching: Growing the Batch Size

• Consider mini-batch SGD under PL with small constant step size:

- Converges linearly to a sub-optimality of $O(\alpha\sigma^2/m)$.
 - For $\sigma(w) > \sigma$ for all w.
- You could decrease α_k to get closer to the solution.
 - But this makes SGD converge more slowly.
- Or, you can increase the batch size m.
 - Doubling batch size has same effect as halving the step size.
 - But without needing to use a smaller step size.
 - If you grow the batch size over the iterations, converges with a constant step size.
 - Effect of noise goes to 0 as the batch size increases.
 - Growing batch size methods are sometimes called batching methods.

Variance of Mini-Batch Approximation for Finite Data

- Variance of mini-batch approximation is smaller for finite datasets.
- If we sample without replacement from a set of n examples we have

$$\mathbb{E}[\|e^k\|^2] = \frac{\sigma(w^k)^2}{m} \frac{n-m}{n},$$

where the extra term is called the finite sample correction.

- This term is less than 1 so variance is strictly better for "with replacement" sampling.
- Finite sample correction is minor when m is small.
- But as m approaches n the finite-sample correction drives effect of noise to 0.
 - Because you sample a greater portion of the overall dataset.

Stochastic Heavy-Ball/Nesterov/Newton or Line Search?

- Should we use heavy-ball/Nesterov/Newton-like stochastic methods?
 - May improve dependency on L and μ .
 - But do not improve dependency on noise σ^2 .
 - So do not improve the convergence rate over SGD.
 - These can even amplify the effect of the noise.
 - $\bullet\,$ Need momentum to converge to 0 for SGD+momentum to converge.
- Can get faster rates with growing batch sizes using these techniques.
 - $\bullet\,$ Need to grow batch size so $\mathbb{E}[\|e^k\|^2]$ goes to 0 at the fast rate.
 - If you want linear convergence rate with constant γ , need $\mathbb{E}[\|e^k\|^2] = O(\gamma^k)$.
 - But this increases the iteration cost.
- Similar ideas hold for line-search:
 - With fixed batch size, standard line-search methods do not work.
 - With line-search converges with growing batch sizes.

Comparison of Deterministic, Stochastic, and Hybrid

- For training a conditional random field, below plot compares:
 - Deterministic: quasi-Newton method (L-BFGS) with Wolfe line-search.
 - Stochastic: SGD with the 3 best-performing step sizes (among powers of 10).
 - Hybrid: growing-batch quasi-Newton method (L-BFGS) with Armijo line-search.

SGD for PL Functions

Mini-Batch SGD and Growing Batche

SGD and Over-Parameterization

Faster Algorithms under Over-Parameterization

SGD for PL Functions

2 Mini-Batch SGD and Growing Batches

3 SGD and Over-Parameterization

4 Faster Algorithms under Over-Parameterization

Motivation: Over-Parameterized Models in Machine Learning

- Modern machine learning practioners often do a weird thing:
 - Train (and get excellent performance) with models that are over-parameterized.
 - "The model is so complicated that you can fit the data perfectly".
 - The exact setting where we normally teach students that bad overfitting happens.
- Examples:
 - Many state-of-the-art deep computer vision models are over-parameterized.
 - Models powerful enough to fit training set with random labels [Zhang et al., 2017].
 - Linear models with sufficiently expressive features [Liang & Rakhlin, 2018].
- Many recent papers study benefits of over-parameterization in various settings:
 - Algorithms may have implicit regularization that reduces overfitting.
 - Optimizers may find global optima in problems we normally view as hard.
- Over-parameterization significantly changes the behaviour of SGD.

Effect of Over-Parameterization on SGD

- We say a model is over-parameterized if it can exactly fit all training examples.
 - Unlike usual bounded variance assumption, we have $\nabla f_i(w_*) = 0$ for all *i*:

- For over-parameterized models, the variance is 0 at minimizers.
 - And SGD converges with a sufficiently small constant step size.

Stochastic Convergence Rates under Over-Parameterization

• One way to characterize over-parameterization: strong growth condition (SGC),

 $\mathbb{E}[\|\nabla f_i(w)\|^2] \le \rho \|\nabla f(w)\|^2,$

which implies the interpolation property that $\nabla f(w) = 0 \rightarrow \nabla f_i(w) = 0$ for all *i*.

- Under the SGC, SGD achieves the deterministic convergence rates,
 - $\mathbb{E}[f(w)] f^* = O(\gamma^k)$ for strongly-convex and PL functions (for some $\gamma < 1$).
 - $\mathbb{E}[f(w)] f^* = O(1/k)$ for convex functions.
 - $\mathbb{E}[\|\nabla f(w)\|^2] = O(1/k)$ for bounded-below functions (which may be non-convex).
- All of these above rates are obtained for any sufficiently small step size.
 - So SGD adapts to the difficulty of the problem.
 - The same step size works for strongly-convex and non-convex problems.
 - Partial explanation for the success of constant step sizes in practice.
 - Which do not converge in the usual setting.

Stochastic Convergence Rates under Over-Parameterization

• Comparison of least squares performance in under-/over-parameterized models:

Bound on Error under the SGC

• Under the SGC the SGD error is bounded by the full gradient size,

$$\begin{split} \mathbb{E}[\|e^{k}\|^{2}] &= \mathbb{E}[\|\nabla f_{i}(w^{k}) - \nabla f(w^{k})\|^{2}] & (\text{definition of } e^{k}) \\ &= \mathbb{E}[\|\nabla f_{i}(w^{k})\|^{2}] - \|\nabla f_{i}(w^{k})\|^{2} & (\text{variance identity}) \\ &= \frac{1}{n} \sum_{i=1}^{n} \|\nabla f_{i}(w^{k})\|^{2} - \|\nabla f_{i}(w^{k})\|^{2} & (\text{expand } \mathbb{E}) \\ &\leq \frac{1}{n} \sum_{i=1}^{n} \rho \|\nabla f(w^{k})\|^{2} - \|\nabla f(w^{k})\|^{2} & (\text{use SGC}) \\ &= (\rho - 1) \|\nabla f(w^{k})\|^{2} & (\text{simplify}) \end{split}$$

• So under the SGC, we do not need an assumption like $\mathbb{E}[\|e^k\|] \leq \sigma^2$.

Progress Bound under the SGC

• Using SGD in descent lemma with $\alpha_k = 1/L\rho$, with SGC we obtain

$$\mathbb{E}[f(w^{k+1})] \le f(w^k) - \frac{1}{2L\rho} \|\nabla f(w^k)\|^2,$$

the function decrease of deterministic gradient descent up to a factor of ρ .

- See bonus slide for the case of a general step size.
- Any step size $\alpha < 2/L\rho$ guarantees descent.
- From this inequality you can derive the rates under the different assumptions.

Close to Over-Parameterized

- Often we are not over-parameterized but close to over-parameterized.
 - Training error can be made small but not exactly 0.
- To address this case you add a constant term to the SGC,

 $\mathbb{E}[\|\nabla f_i(w)\|^2] \le \rho \|\nabla f(w)\|^2 + \sigma^2,$

combining SGC with earlier assumption on expected gradient size.

- This condition is weaker than both of those, and allowing smaller ρ or σ .
- This is not sufficient for convergence with a constant step size.
 - But with constant step will converge quickly to region of size $O(\alpha\sigma^2)$.
 - If σ^2 is small, this may be all you need.
 - And again note that σ^2 decreases with the batch size.

SGC vs. Interpolation

• Under strong-convexity and SGC, SGD obtains a rate

$$\mathbb{E}[f(w^k)] - f(w^*) \le \left(1 - \frac{\mu}{\rho L}\right)^k [f(w^0) - f(w^*)].$$

- But in the worst case, ρ can be as large as L_{\max}/μ .
 - Where L_{\max} is the maximum Lipschitz constant of the ∇f_i $(L_{\max} \ge L)$.
- Assuming only the interpolation property (implied by SGC)

$$\mathbb{E}[\|\nabla f_i(w^*)\|^2] = 0,$$

we can show an alternate rate of

$$\mathbb{E}[f(w^k)] - f(w^*) \le \left(1 - \frac{\mu}{L_{\max}}\right)^k [f(w^0) - f(w^*)],$$

which is faster for problems where $\rho L > L_{\max}$.

- Interpolation is not sufficient to get convergence for bounded-below functions.
- Bonus slides discuss weak growth condition which leads to faster rates than both.

Faster Algorithms under Over-Parameterization

SGD for PL Functions

2 Mini-Batch SGD and Growing Batches

4 Faster Algorithms under Over-Parameterization

Faster SGD for Over-Parameterized Models?

- Over-parameterization leads to faster convergence rates for SGD.
- But can we exploit over-parameterization to develop faster methods than SGD?
 - Without needing to grow the batch size.
- Yes, there now exist methods that go faster in over-parameterized setting:
 - With Nesterov acceleration you can improve rate to $(1 \sqrt{\mu/\rho L})$.
 - With non-uniform sampling proportional to L_i you can rates depending on \overline{L} .
 - With second-order updates and growing batch you can get faster local convergence.
 - With a much-slower growth in the batch size than without over-parameterization.
- Under over-parameterization, you can also use SGD with a line-search.

Review of Standard Methods to Automatically Set Step Size

- There are a huge number of papers on setting SGD step size as we go.
 - "Update step size based on some simple statistics".
 - "Do gradient descent on the step size".
 - "Use a line-search/trust-region based on the mini-batch".
- Most of these methods have at least one of these problems:
 - Introduces new hyper-parameter that is just as hard to tune as the step size.
 - Do not converge theoretically (and can catastrophically fail).
 - Converges theoretically, but works badly in practice.
 - Needs to assume that σ_k goes to 0 to work.
- Student recommendation when not over-parameterized: coin betting.
- If growing batch size or over-parameterized:
 - Can adapt step sizes and line searches designed for deterministic gradient descent.

Stochastic Line Search - Theory

• An Armijo line-search on the mini-batch selects a step size satisfying

$$f_{i_k}(w_k - \alpha_k \nabla f_{i_k}) \le f_{i_k}(w_k) - c\alpha_k \|\nabla f_{i_k}(w_k)\|^2,$$

for some constant c > 0.

• Without interpolation this does not work (satisfied by steps that are too large).

• With interpolation, can guarantee sufficient progress towards solution.

Stochastic Line Search - Theory

- Consider using the largest step-size satisfying Armijo condition on $[0, \alpha_{\max}]$.
 - $\bullet\,$ Under interpolation and strong-convexity, c=1/2 and α_{\max} sufficiently large gives

$$\mathbb{E}\left[\|w_k - w_*\|^2\right] = \left(1 - \frac{\mu}{L_{\max}}\right)^k \|w_0 - w_*\|^2.$$

- Same rate we achieve knowing smoothness constant under interpolation.
- For convex objectives we obtain an O(1/k) rate.
- $\bullet\,$ For non-convex objectives we obtain the O(1/k) rate if α_{\max} is small enough.
- In practice, we can use a backtracking line search.
 - You can alternately use the stochastic Polyak step size if you know f^* .

Superiority of Line Search over Theoretical Step Sizes

- The line search guarantees same rate as when we know smoothness constant.
 - But this is in the worst case.
- We expect the line-search to converge faster in practice.

- Red dotted line is bound obtained with known smoothness for an f_i .
 - Using $\alpha_k = 1/L_{\max}$ moves to minimizer within green region.
- Armijo accepts step sizes in the yellow region (blue line is gradient of an f_i).
 - Armijo allows larger step sizes that decrease the function by a larger amount.

Stochastic Line Search - Practice

• In our experiments:

- We used c = 0.1 in the Armijo condition.
- We multiply the step size by 0.8 if the Armijo condition fails.
- We increase the step size between iterations.
 - Specifically, we initialize the line search with $\max\{10, \alpha_{k-1}2^{(\text{ratio of training data used})}\}$.
- With these choices, median number of times we test Armijo condition was 1.
 - Running this algorithm has similar cost to trying 2 fixed step sizes.

Experimental Results with Stochastic Line Search

- We did a variety of experiments, including training CNNs on standard problems.
 - Better than fixed step sizes, adaptive methods, alternate adaptive step sizes.

Experimental Results with Stochastic Line Search

• Step sizes over time under line search for different datasets.

SGD+Armijo Step-Sizes

Stochastic Line Search - Discussion

- The same line search can be used for different types of functions.
 - Strongly-convex, PL, or convex. (And bounded below under restriction of α_{\max} .)
 - Adaptivity to problem difficulty.
- We were not the first to try line searches for SGD.
 - Or even Armijo line search for SGD applied to deep learning benchmarks.
 - But we showed why over-parameterization is key to performance.
- On synthetic experiments conrolling degree of over-parameterization.
 - With over-parameterization, the stochastic line search works great.
 - If close to over-parameterized, line search still works really well.
 - Theory can be modified to handle case of being close to over-parameterized.
 - If far from over-parameterized, line search catastrophically fails.
- Line search experiments were done with batch normalization.
 - This is not covered by the theory.
 - Armijo still seems effective but gap is not as large.

Problems with Current Over-Parameterization Optimization Theory

- Line search is not as effective for LSTMs or transformers.
 - Adam seems to have an advantage here.
 - Theoretical and practical details to be worked out.
- Some deep learning losses like in GANs do not fit over-parameterized regime. (Chavdarova et al., 2019)
- Theory is still incomplete for non-convex functions:
 - Interpolation not sufficient for SGD to converge for non-convex.
 - Non-convex results rely on PL or SGC.
 - Line-search is not sufficient for convergence on non-convex.
 - Non-convex results require $\alpha_{\max} = O(1/L)$.

Summary

- Convergence of SGD with constant step size
 - Similar speed to gradient descent, up to accuracy proportional to step size.
 - For machine learning, this may be all you need.
- Mini-batch SGD:
 - Effect of noise is divided by the mini-batch size.
 - Effect of noise decrease faster for without-replacement sampling.
 - Growing batch sizes allow you use tricks for deterministic gradient descent.
 - Like acceleration, second-order information, and line searches.
- Over-Parameterized SGD:
 - For many problems we can exactly fit every example.
 - In this setting, SGD converges like gradient descent.
 - You can develop faster accelerated and second-order methods for this setting.
 - You can use line search or other clever step sizes in this setting.
- No lecture next week (I will be away).

Descent Lemma for Gradient Descent with Error

Recall the descent lemma,

$$f(w^{k+1} \le f(w^k) + \nabla f(w^k)^T (w^{k+1} - w^k) + \frac{L}{2} \|\nabla f(w^k)\|^2.$$

• Pluggin in gradient descent with error, $w^{k+1} - w^k = -\alpha_k (\nabla f(w^k) + e^k)$:

$$f(w^{k+1}) \le f(w^k) - \alpha_k \|\nabla f(w^k)\|^2 - \alpha_k \nabla f(w^k)^T e^k + \frac{\alpha^2 L}{2} \left(\|\nabla f(w^k)\|^2 - 2\nabla f(w^k)^T e^k + \|e^k\|^2 \right).$$

• If e^k is unbiased then $\nabla f(w^k)^T \mathbb{E}[e^k] = 0$ and after simplifying we get

$$\mathbb{E}[f(w^{k+1})] \le f(w^k) - \alpha_k \left(1 - \frac{\alpha_k L}{2}\right) \|\nabla f(w^k)\|^2 + \frac{\alpha^2 L}{2} \mathbb{E}[\|e^k\|^2],$$

where the middle term on the right is negative if $\alpha_k < 2/L$.

Convergence Rate under PL and Bounded Variation

• Descent lemma for gradient descent with generic unbiased error e^k :

$$\mathbb{E}[f(w^{k+1})] \le f(w^k) - \alpha_k \left(1 - \frac{\alpha_k L}{2}\right) \|\nabla f(w^k)\|^2 + \frac{\alpha^2 L}{2} \mathbb{E}[\|e^k\|^2].$$

• With
$$\alpha_k < 2/L$$
, PL $(\|\nabla f(w^k)\|^2 \ge 2\mu(f(w^k) - f^*))$, and $\mathbb{E}[\|e^k\|^2] \le \sigma^2$ gives
 $\mathbb{E}[f(w^{k+1})] \le f(w^k) - 2\mu\alpha_k \left(1 - \frac{\alpha_k L}{2}\right)(f(w^k) - f^*) + \frac{\alpha^2 L \sigma^2}{2}.$

• Subtracting f^* from both sides and recursing with constant $\alpha_k = \alpha$ as before gives

$$\mathbb{E}[f(w^{k+1})] - f^* \le \left(1 - 2\mu\alpha \left(1 - \frac{\alpha L}{2}\right)\right)^k \left(f(w^0) - f^*\right) + \alpha\sigma^2 \frac{L}{4\mu} \frac{1}{\left(1 - \frac{\alpha L}{2}\right)},$$

which is the result we had before with some extra factors.

• If $\alpha = 1/L$ RHS simplifies to $(1 - \mu/L)^k (f(w^0) - f^*) + \frac{\sigma^2}{2\mu}$.

• Or if
$$\alpha = \gamma/L$$
 for $\gamma < 2$ we get $(1 - \gamma(2 - \gamma)\mu/L)^k(f(w^0) - f^*) + \frac{\gamma\sigma^2}{2\mu(2-\gamma)}$.

Variation Bound for Mini-Batch Approximation

• Variation of mini-batch approximation with batch size of m:

$$\begin{split} \mathbb{E}[\|g_{m}(w) - \nabla f(w)\|^{2}] &= \mathbb{E}[\|\frac{1}{m} \sum_{i \in \mathcal{B}} \nabla f_{i}(w)\|^{2}] - \|\nabla f(w)\|^{2} \qquad (\text{variance identity}) \\ &= \frac{1}{m^{2}} \sum_{i \in \mathcal{B}} \mathbb{E}[\|\nabla f_{i}(w)\|^{2}] + \frac{2}{m^{2}} \sum_{i \in \mathcal{B}} \sum_{j \in \mathcal{B}, j \neq i} \mathbb{E}[\nabla f_{i}(w)^{T} \nabla f_{j}(w)] - \|\nabla f(w)\|^{2} \qquad (\text{expand square}) \\ &= \frac{m}{m^{2}} \mathbb{E}[\|\nabla f_{i}(w)\|^{2}] + \frac{m(m-1)}{m^{2}} \nabla f(w)^{T} \nabla f(w) - \|\nabla f(w)\|^{2} \qquad (\text{repeated terms}) \\ &= \frac{1}{m} \mathbb{E}[\|\nabla f_{i}(w)\|^{2}] - \frac{1}{m} \|\nabla f(w)\|^{2} \qquad (\text{simplify}) \\ &= \frac{1}{m} \mathbb{E}[\|\nabla f_{i}(w) - \nabla f(w)\|^{2}] \qquad (\text{variance identity}) \\ &= \frac{\sigma^{2}}{m} \qquad (\sigma^{2} \text{ is 1-sample variation}) \end{split}$$

Progress Bound under SGC with Generic Step Size

• Descent lemma for gradient descent with generic unbiased error e^k :

$$\mathbb{E}[f(w^{k+1})] \le f(w^k) - \alpha_k \left(1 - \frac{\alpha_k L}{2}\right) \|\nabla f(w^k)\|^2 + \frac{\alpha^2 L}{2} \mathbb{E}[\|e^k\|^2].$$

 \bullet With SGC we have $\mathbb{E}[\|e^k\|^2] \leq (\rho-1) \|\nabla f(w^k)\|^2$, giving

$$\mathbb{E}[f(w^{k+1})] \le f(w^k) - \alpha_k \left(1 - \frac{\alpha_k L}{2}\right) \|\nabla f(w^k)\|^2 + \frac{\alpha^2 L}{2} (\rho - 1) \|\nabla f(w^k)\|^2 \\ = f(w^k) - \alpha_k \left(1 - \frac{\alpha L \rho}{2}\right) \|\nabla f(w^k)\|^2.$$

- The second term is negative for any $\alpha_k < 2/L\rho$.
- With $\alpha_k = 1/L\rho$ we get

$$\mathbb{E}[f(w^{k+1})] \le \left(1 - \frac{\mu}{L\rho}\right) \|\nabla f(w^k)\|^2$$

Ways to Characterize Over-Parameterization

- First over-parameterization results are due to Solodov [1998] and Tseng [1998].
 - They considered variation on what is now called the strong growth condition (SGC),

 $\mathbb{E}[\|\nabla f_i(w)\|^2] \le \rho \|\nabla f(w)\|^2.$

- $\bullet\,$ Bach & Moulines [2011] later analyze SGD when variance at solution is 0.
 - We call this the interpolation property (which is implied by the SGC),

 $\mathbb{E}[\|\nabla f_i(w_*)\|^2] = 0.$

- An alternate condition was considerd by Vaswani et al. [2019].
 - The weak growth condition (WGC) for an L-smooth function is

 $\mathbb{E}[\|\nabla f_i(w)\|^2] \le 2\rho L(f(w) - f(w_*)).$

- Relation between conditions for L-smooth f and L_{max} -smooth f_i :
 - SGC \rightarrow interpolation and WGC.
 - For invex functions: interpolation \rightarrow WGC.
 - For PL functions: WGC \rightarrow SGC.

Strong Growth Condition vs. Weak Growth Condition

- SGC implies each f_i is stationary when f is stationary.
- Interpolation and WGC imply each f_i is stationary at global minizers.

- Neither condition rules out non-isolated or multiple global minimizers.
- The constant under WGC may be smaller:
 - For PL functions satisfying SGC we have $\rho \leq L_{\max}/\mu$.
 - For invex functions satisfying WGC we have $\rho \leq L_{\max}/L$.