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Last Time: Faster Algorithms than Gradient Descent

The heavy-ball method

wk+1 = wk − αk∇f(wk) +βk(w
k − wk−1),

is faster on strongly-convex quadratics.
And optimizing over αk and βk at each step yields conjugate gradient.

Nesterov’s accelerated gradient method,

wk+1 = vk − αk∇f(vk), vk+1 = wk+1 + βk(w
k+1 − wk),

is faster on convex and strongly-convex functions.
Restarting schemes have been proposed that adapt to strong-convexity level.

Newton’s method uses second-derivative information (or Hessian approximation),

wk+1 = wk − [∇2f(wk)]−1∇f(wk),

to achieve local superlinear convergence.
Convergence requires line-search, trust-region, or cubic regularization.

Today: algorithms with lower iteration costs than gradient descent.
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Beyond Gradient Descent

For high-dimensional problems we often prefer gradient descent over Newton.

Gradient descent often requires far more iterations.
But iteration cost is only linear in d.

For very large datasets, even gradient descent iterations can be too slow.

If iteration cost is O(nd), we may only be able to do a small number of iterations.

Two common strategies for yielding even cheaper iterations:

Coordinate optimization.
Stochastic gradient descent.
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Coordinate Optimization
Each iteration of coordinate optimization only updates on variable:

For example, on iteration k we select a variable jk and set

wk+1
jk

= wkjk − αk∇jkf(wk),

a gradient descent step for one coordinate jk (other wj stay the same).
This variation is called coordinate descent (many variations exist).
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Gradient and Coordinate Descent and Quadratics

Gradient descent vs. coordinate descent on a quadratic (αk = 1/L):

Where coordinate descent alternates between jk = 1 and jk = 2.

Both methods decrease the function on each step.
But coordinate descent only updates one coordinate on each step.
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Why use Coordinate Descent?

Theoretically, coordinate descent is a provably bad algorithm:

The convergence rate is slower than gradient descent.
The iteration cost can be similar to gradient descent.

Computing 1 partial derivative may have same cost as computing gradient.

But it is widely-used in practice:

Nothing works better for certain problems.
Certain fields think it is the “ultimate” algorithm.

???????????????????????????????????????????

Renewed theoretical interest began with a paper by Nesterov in 2010:

Showed global convergence rate for randomized coordinate selection.
Coordinate descent is faster than gradient descent if iterations are d times cheaper.

Sometimes called coordinate-friendly structures.
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Gradient and Coordinate Descent and Quadratics

Gradient descent vs. d coordinate descent steps on a quadratic (αk = 1/L):

Quadratics have a coordinate-friendly structure.

We will see that coordinate descent allows bigger step sizes than gradient descent.
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Separable Functions
For what functions is coordinate descent d times faster than gradient descent?

The simplest example is separable functions,

f(w) =

d∑

j=1

fj(wj),

Here f is the sum of an fj applied to each wj , like f(w) = λ
2‖w‖2 =

∑d
j=1

λ

2
w2
j

︸︷︷︸
fj(wj)

.

Cost of gradient descent vs. coordinate descent:
Gradient descent costs O(d) to compute each f ′j(w

k
j ).

Coordinate descent costs O(1) to compute the one f ′jk(wkjk).

In fact, for separable functions you should only use coordinate optimization.
The variables wj have “separate” effects, so can be minimized independently.
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Pairwise-Separable Functions

A more interesting example is pairwise-separable functions,

f(w) =

d∑

i=1

d∑

j=1

fij(wi, wj),

which depend on a function of each pair of variables.
This includes quadratic functions.

An example is label propagation for semi-supervised learning.
In this application, each fij measures how similar labels are between neighbours.

Cost of gradient descent vs. coordinate descent:
Double-sum has O(d2) terms.

Gradient descent needs to compute gradient of all these terms.

Each wj only appears in O(d) terms.
Coordinate optimization only needs to use these terms.
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Label Propagation
The label propagation example looks a bit more like this:

f(w) =

d∑

j=1

fj(wj) +
∑

(i,j)∈E

fij(wi, wj),

where E is a set of (i, j) pairs (“edges” in a graph).

Adding a separable function doesn’t change costs.
We could just combine each fj with one fij .

Restricting (i, j) to E makes gradient descent cheaper:
Now costs O(|E|) to compute gradient.
Coordinate descent could also cost O(|E|) if degree of jk is O(|E|).

Coordinate descent is still d times faster in expectation if you randomly pick jk.
Each f ′ij is needed with probability 2/d.
So expected cost of O(|E|/d) to compute one partial derivative of f .
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Label Propagation with Coordinate Optimization

Label propagation with coordinate optimization (rounding to nearest label):

Starts with a small number of labeled examples.

Optimizing objective “propagates” labels to unlabeled examples.
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Label Propagation with Coordinate Optimization

Label propagation with coordinate optimization (rounding to nearest label):

Starts with a small number of labeled examples.
Optimizing objective “propagates” labels to unlabeled examples.
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Linear Compositions

Another coordinate-friendly structure is linear compositions,

f(w) = g(Aw),

for a matrix an n× d matrix X and smooth function g.
Includes least squares and logistic regression.

It is still coordinate friendly if we add a separable function,

f(w) = g(Aw) +

d∑

j=1

fj(wj),

like an L2-regularizer.

Key idea: you can track Awk as you go for a cost O(n) instead of O(nd).
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Efficiently Tracking Awk for Linear Compositions

For linear compositions problems,

f(w) = g(Aw),

the partial derivatives on iteration k has the form.

∇jf(wk) = a>j g
′(Awk),

where aj is column j of A.

If we have Awk, this costs O(n) instead of O(nd) for the full gradient.
(Assuming g′ costs O(n))

We can track the product Awk as we go with O(n) cost,

Awk+1 = A(wk + γkejk) = Awk︸︷︷︸
old value

+γkXejk︸ ︷︷ ︸
O(n)

,

this allows computing partial derivatives and implement line-search steps in O(n).



Coordinate-Friendly Structures Convergence of Randomized Coordinate Descent Faster Coordinate Optimization Stochastic Gradient Descent

Other Coordinate-Friendly Structures

Other problems with coordinate-friendly strucutres:

Matrix factorization (and tensor factorization) problems like PCA (covered 340),

f(Z,W ) =
1

2
‖ZW −X‖2.

Log-determinant problems like fitting Gaussians (covered in 440),

f(Θ) = Tr(SΘ)− log |Θ|.

Convex extensions of sub-modular functions.

On the other hand, neural networks are usually not coordinate friendly.

Would need something like “number of units after first hidden layer is tiny”.
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Analyzing Coordinate Descent

To analyze coordinate descent, we can write it as

wk+1 = wk − αk∇jkf(wk)ejk ,

where “elementary vector” ej has a zero in every position except j,

e>3 =
[
0 0 1 0 0 0 0

]

We usually assume that each ∇jf is L-Lipshitz (“coordinate-wise Lipschitz”),

|∇jf(w + γej)−∇jf(w)| ≤ L|γ|,

which for C2 functions is equivalent to |∇2
jjf(w)| ≤ L for all j.

(diagonals of Hessian are at most L)

This is not a stronger assumption than for gradient descent:
If the gradient is L-Lipschitz then it is also coordinate-wise L-Lipschitz.
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Convergence Rate of Coordinate Optimization

Coordinate-wise Lipschitz assumption implies descent lemma coordinate-wise,

f(wk+1) ≤ f(wk) +∇jf(wk)(wk+1 − wk)j +
L

2
(wk+1 − wk)2j ,

for any wk+1 and wk that only differ in coordinate j.

With αk = 1/L (for simplicity), plugging in (wk+1 − wk) = −(1/L)ejk∇jkf(wk)
gives

f(wk+1) ≤ f(wk)− 1

2L
|∇jkf(wk)|2,

a progress bound based on only updating coordinate jk.
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Convergence Rate of Randomized Coordinate Optimization

Our bound for updating coordinate jk is

f(wk+1) ≤ f(wk)− 1

2L
|∇jkf(wk)|2,

so progress depends on which jk that we choose.

Let’s consider expected progress with random selection of jk,

E[f(wk+1)] ≤ E
[
f(wk)− 1

2L
|∇jkf(wk)|2

]
(expectation wrt jk given wk)

= E[f(wk)]− 1

2L
E[|∇jkf(wk)|2] (linearity of expectation)

= f(wk)︸ ︷︷ ︸
no jk

− 1

2L

d∑

j=1

p(jk = j)|∇jf(wk)|2 (definition of expectation)

Above, expectation is conditioned on all iterates/gradients/step-sizes up to time k.



Coordinate-Friendly Structures Convergence of Randomized Coordinate Descent Faster Coordinate Optimization Stochastic Gradient Descent

Convergence Rate of Randomized Coordinate Optimization

The bound from the previous slide is

E[f(wk+1)] ≤ f(wk)− 1

2L

d∑

j=1

p(jk = j)|∇jf(wk)|2.

Let’s choose jk uniformly at random in this bound, p(jk = j) = 1/d.

E[f(wk+1)] ≤ f(wk)− 1

2L

d∑

j=1

1

d
|∇jf(wk)|2

= f(wk)− 1

2dL

d∑

j=1

|∇jf(wk)|2

= f(wk)− 1

2dL
‖∇f(wk)‖2.
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Convergence Rate of Randomized Coordinate Optimization

Our guaranteed progress bound for randomized coordinate optimization,

E[f(wk+1))] ≤ f(wk)− 1

2dL
‖∇f(wk)‖2.

If we use strongly convexity or PL and recurse carefully (see bonus) we get

E[f(wk)]− f∗ ≤
(

1− µ

dL

)k
[f(w0)− f∗].

If we want O(
(
1− µ

dL

)k
) ≤ ε, we need O

(
dLµ log(1/ε)

)
iterations.

For PL functions gradient descent needs O
(
L
µ log(1/ε)

)
iterations.

So coordinate optimization needs d-times as many iterations?
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Randomized Coordinate Optimization vs. Gradient Descent

If coordinate descent step are d-times cheaper then both algorithms need

O

(
L

µ
log(1/ε)

)
,

in terms of “gradient descent iteration cost”.

So why prefer coordinate optimization?

The Lipschitz constants L are different.
Let Lf be maximum gradient changes if you change all coordinates.
Let Lc be the maximum partial derivative changes if you change one coordinate.
Gradient descent uses Lf and coordinate optimization uses Lc.

Since Lc ≤ Lf , coordinate optimization is faster.
The gain is because coordinate descent allows bigger step-sizes.
For [non-]convex functions, similar trade-off: O(Lf/ε) vs. O(dLc/ε) iterations.

Comparison is harder if we start adding practical tricks like line-search.
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Gradient and Coordinate Descent and Quadratics

Gradient descent (α = 1/Lf ) vs. d coordinate descent steps (α = 1/Lc):

Coordinate descent allows larger step sizes than gradient descent.

In this case Lf = 3.8 and Lc = 2.
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Setting the Step Size in Practice

As with gradient descent, you can often take bigger steps than αk = 1/L.

Though the difference is typically not as dramatic.

Standard choices include:

Approximating L using the backtracking procedure we have previously discussed.
Approximating an Lj for each coordinate (works much better).
Armijo backtracking.
Exact line-search (for quadratics, or numerically for other functions).
Coordinate-wise Newton steps (to initialize Armijo or implement line-search).

This is cheap because we are only working with coordinate.

Coordinate-friendly structures often allow efficient line-search and Newton steps.

For example, computing Hessian diagonal has same cost as partial derivative.
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Practical Step Sizes for Coordinate Descent

Coordinate descent with αk = 1/Lc and αk = 1/L̂c on Rosenbrock:

As before, estimating the Lipschitz constant works better than knowing/using it.

Lc = 1202 on [0, 1]2 while final L̂c = 256 for this function.
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Practical Step Sizes for Coordinate Descent

Coordinate descent with αk = 1/L̂c and αk = 1/L̂j on Rosenbrock:

Using a Lipshitz constant for each coordinate (rigtht) works better.

For this problem L1 = 1202 and L2 = 200 (final estimate was 256 for both).
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Practical Step Sizes for Coordinate Descent

Coordinate descent with αk = 1/L̂j and Armijo initialized with Newton:

Newton initialization allows step size to increase across iterations.

Step size αk = 1 (pure Newton) was only rejected by Armijo on second iteration.
But this “coordinate Newton” method does not have superlinear convergence.
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Cyclic and Random-Shuffling Coordinate Selection

An alternative to random selection of jk is cyclic selection:
1 Set j1 = 1, j2 = 2, . . . , jd = d.
2 Set jd+1 = 1, jd+2 = 2, . . . , j2d = d.
3 Set j2d+1 = 1, j2d+2 = 2, . . . , j3d = d.

Cyclic often outperforms random in practice, but is worse in theory.

For some problems, a bad ordering leads to provably-bad performance for cyclic.

A hybrid between cyclic and random is using random shuffling:
1 Chooses random permutation r and sets j1 = r[1], j2 = r[2], . . . , jd = r[d].
2 Choosesrandom permutation r and sets jd+1 = r[1], jd+2 = r[2], . . . , j2d = r[d].
3 Chooses random permutation r and sets j2d+1 = r[1], j2d+2 = r[2], . . . , j3d = r[d].

Recent work shows that this fixes cyclic coordinate descent in some settings.

Conjectured that random shuffling is faster than cyclic and random.
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Gauss-Southwell: Greedy Coordinate Descent

Instead of cyclic or random, there are also greedy coordinate selection methods.

The classic greedy method is the Gauss-Southwell rule,

jk ∈ argmax
j
{|∇jf(wk)|},

which choose the coordinate with the largest directional derivative.

x1 x2 x3
Gauss-Southwell
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Implementing Greedy Coordinate Descent

Is it possible to be coordinate-friendly with respect to the Gauss-Southwell rule?

Can we ever find largest |∇jf(w)| value d-times cheaper than computing ∇f(w)?

Yes!
Possible for pairwise-separable functions if maximum degree = O(average degree).

Includes lattice-structured graphs, complete graphs, and Facebook graph.

This is possible for linear compositions with a row-sparse and column-sparse matrix.

Requires (max non-zeroes in each row and column)2 = O((total non-zeroes)/d).

Key idea: track the gradient values and track the max with a max-heap.
The above restrictions guarantee that the structure is coordinate friendly.

Up to a log factor due to the heap operations.
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Analyzing Greedy Coordinate Descent

Our bound on the progress if we choose coordinate jk is

f(wk+1) ≤ f(wk)− 1

2L
|∇jkf(wk)|2.

and the Gauss-Southwell rule chooses

jk ∈ argmax
j
{|∇jf(wk)|}.

This leads to a progress bound of

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2∞,

which is similar to gradient descent but in a different norm.

Unlike random coordinate descent, this is dimension independent (no d).
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Gauss-Southwell Convergence Rate

The progress bound under the greedy Gauss-Southwell rule is

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2∞,

and for PL functions this leads to a rate of

f(wk)− f∗ ≤
(

1− µ1
L

)k
[f(w0)− f∗],

where µ1 is the PL constant in the ∞-norm

µ1[f(w)− f∗] ≤ 1

2
‖f(w)‖2∞.

This is faster than random because µ
d ≤ µ1 ≤ µ (by norm equivalences).

The µ1-PL condition is implied by strong-convexity in the 1-norm.
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Individual Lipschitz Constants and Non-Uniform Sampling

For randomized selection, is uniform sampling distribution?

You can go faster if you have an Lj for each coordinate:

|∇jf(w + γej)−∇jf(w)| ≤ Lj |γ|.

If f(w) = 1
2‖Xw − y‖2 + λ

2 ‖w‖2, we would have Lj = ‖xj‖2 + λ.
Where xj is column j of X.

Consider sampling jk proportional to these Lipschitz constants,

p(jk = j) =
Lj∑d
j′=1 Lj′

,

“Sample more often the coordinate where the gradient can change quickly”.
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Progress Bound under Lipschitz Sampling

Our bound for updating coordinate jk with a step size of αk = 1/Ljk is

f(wk+1) ≤ f(wk)− 1

2Ljk
|∇jkf(wk)|2,

Taking expectation with Lipschitz sampling gives

E[f(wk+1] ≤ f(wk)− 1

2

d∑

j=1

p(jk = j)

Lj
|∇jf(wk)|2

E[f(wk+1] ≤ f(wk)− 1

2

d∑

j=1

Lj

Lj
∑d

j′=1 Lj′
|∇jf(wk)|2

E[f(wk+1] ≤ f(wk)− 1

2
∑d

j′=1 Lj′
‖∇f(wk)‖2.

where compared to uniform result replaces the factor dLc with smaller
∑d

j′=1 Lj′ .
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Convergence Rate under Lipschitz Sampling

We can re-write the progress from the previous slide as

E[f(wk+1] ≤ f(wk)− 1

2dL̄
‖∇f(wk)‖2.

where L̄ is the average Lipschitz constant.

Our uniform sampling result depends on the maximum Lj .

If we assume PL then we obtain a rate for Lipschitz sampling of

E[f(wk)]− f∗ ≤
(

1− µ

dL̄

)k
[f(w0)− f∗],

It is also possible to analyze uniform sampling under these larger step sizes.

If you do this, Lipschitz sampling is not necessarily faster.
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Lipschitz Sampling - Estimating L̂j

Instead of using each Lj , we could approximate them with backtracking.

But sampling from the L̂j can go badly:

Start with all Lj = 1:
[
1 1 1 1 1

]
.

Selected coordinate 4 and backtrack, giving
[
1 1 1 1024 1

]
.

Sample coordinate 4 a hundred times before trying a different coordinate.

My trick to avoid this problem:

Let m be the number of coordinates that chosen at least once (“visited”).
With probability m/d, sample from “visited” coordinates proportional to their L̂j .
With probability 1−m/d, sample uniformly from the “unvisited” coordinates.

Guarantees you solve the “coupon collector” problem at same speed as uniform.
After O(d log d) iterations, all coordinates have an initialized estimate of L̂j .
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Lipschitz Sampling - Cost of Sampling

Cost of sampling from a non-uniform distribution is O(d).

Which may not be coordinate-friendly for some problems.

But cost sampling k variables is only O(d+ k log d).

O(d) once to compute cumunlative distribution function.
O(log d) to generate each sample by binary search (see CPSC 440).

You can maintain the above cost if one Lj changes on each iteration.

By maintaining the Lj in a sum-heap.

But Lipschitz sampling may still not be coordinate friendly even when uniform is.

Requires similar conditions to Gauss-Southwell to be coordinate friendly.
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Numerical Comparison of Coordinate Selection Rules

Comparison on problems where greedy and random have similar cost:
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Greedy rules tend to work a lot better when they are coordinate friendly.
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Gauss-Southwell-Lipschitz
Our bound on the progress with an Lj for each coordinate is

f(wk+1) ≤ f(wk)− 1

2Ljk
|∇jkf(wk)|2.

The best coordinate to update according to this bound is

jk ∈ argmax
j

|∇jf(wk)|2
Lj

which is called the Gauss-Southwell-Lipschitz rule.
“If gradients are similar, pick the one that changes more slowly”.

x1
x2

Gauss-SouthwellGauss-Southwell-Lipschitz

This is the optimal update for quadratic functions.
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Block Coordinate Descent

Instead of updating 1 variable, block coordinate descent updates a “block”.

Examples where you might want to do this:
Coordinate descent steps converge too slow or don’t fully-utilize parallel resources:

Better to do a Newton step on 50 variables on each iteration?

Problems with special structure, like multi-class logistic regression on n examples,

f(W ) =

n∑

i=1

[
−w>yixi + log

(∑

c

exp
(
w>c x

i
)
)]

,

the cost of computing/updating 1 partial derivative wjc is the same as for wc.
So you could update an entire vector for cost of updating 1 parameter.

There also exist accelerated coordinate descent methods.
Form of update is similar to Nesterov’s accelerated gradient method.
Requires careful implementation for momentum to be coordinate friendly.
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Finite-Sum Optimization Problems

We have been discussing optimizing a generic function f ,

argmin
w∈Rd

f(w).

But in machine learning f is often an average over functions fi,

argmin
w∈Rd

1

n

n∑

i=1

fi(w),

where typically fi will measure the error on training example i.
For least squares we would have fi(w) = 1

2 (wTxi − yi)2.

Gradient methods are effective when d is very large.

What if number of training examples n is very large?
E.g., ImageNet has ≈ 14 million annotated images.
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing f(w) = 1
n

∑n
i=1 fi(w).

Deterministic gradient method [Cauchy, 1847]:

wk+1 = wk − αk∇f(wk) = wk − αk
n

n∑

i=1

∇fi(wk).

Iteration cost is linear in n.
Convergence with constant αk or line-search.

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)
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Stochastic vs. Deterministic Gradient Methods
Stochastic gradient method [Robbins & Monro, 1951]:

Random selection of ik from {1, 2, . . . , n}.
wk+1 = wk − αk∇fik(wk).

With p(ik = i) = 1/n, the stochastic gradient is an unbiased estimate of gradient,

E[∇fik(w)] =
n∑

i=1

p(ik = i)∇fi(w) =

n∑

i=1

1

n
∇fi(w) =

1

n

n∑

i=1

∇fi(w) = ∇f(w).

Iteration cost is independent of n.
Convergence requires αk → 0.

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)
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Stochastic vs. Deterministic Gradient Methods
Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descnet

PL O(log(1/ε)) O(1/ε)
Convex O(1/ε) O(1/ε2)

Non-Convex O(1/ε) O(1/ε2)

Stochastic has low iteration cost but slow convergence rate.
Sublinear rate even in strongly-convex case.
Bounds are unimprovable under standard assumptions.

Oracle returns an unbiased gradient approximation with bounded variance.

Momentum and Newton-like methods do not improve rates in stochastic case.
Can only improve constant factors (bottleneck is variance, not condition number).
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Stochastic vs. Deterministic Convergence Rates

Plot of convergence rates in strongly-convex case:

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time

lo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

Stochastic will be superior for low-accuracy/time situations.
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Progress Bound for Stochastic Gradient Method

The stochastic gradient descent (SGD) update is

wk+1 = wk − αk∇fik(wk).

Recall the the descent lemma applied to wk+1 and wk,

f(wk+1) ≤ f(wk) +∇f(wk)>(wk+1 − wk) +
L

2
‖wk+1 − wk‖2.

Plugging in SGD iteration (wk+1 − wk) = −αk∇fik(wk) gives

f(wk+1) ≤ f(wk)− αk∇f(wk)>∇fik(wk) + α2
k

L

2
‖∇fik(wk)‖2.
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Progress Bound for Stochastic Gradient Method

So far any choice of αk and ik we have

f(wk+1) ≤ f(wk)− αk∇f(wk)>∇fik(wk) + α2
k

L

2
‖∇fik(wk)‖2.

Let’s take the expectation and assume αk does not depend on ik,

E[f(wk+1)] ≤ E[f(wk)− αk∇f(wk)>∇fik(wk) + α2
k

L

2
‖∇fik(wk)‖2]

= f(wk)− αk∇f(wk)>E[∇fik(wk)] + α2
k

L

2
E[‖∇fik(wk)‖2],

where the second line uses linearity of expectation.

Under uniform sampling E[∇fik(wk)] = ∇f(wk) (unbiased) so this gives

E[f(wk+1)] ≤ f(wk)− αk‖∇f(wk)‖2︸ ︷︷ ︸
good

+ α2
k

L

2
E[‖∇fik(wk)‖2]

︸ ︷︷ ︸
bad

.
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Convergence Rate of Stochastic Gradient Method

So a progress bound for stochastic gradient is

E[f(wk+1)] ≤ f(wk)− αk‖∇f(wk)‖2︸ ︷︷ ︸
good

+ α2
k

L

2
E[‖∇fik(wk)‖2]

︸ ︷︷ ︸
bad

.

“Good” term looks like usual measure of progress: big gradient → big progress.

“Bad” term is the problem: less progress if gradients are very different.

And now choosing αk = 1/L might not be small enough.
But we can control badness: if αk is small then αk >> α2

k.

Step-size αk controls how fast we move towards solution.

And squared step-size α2
k controls how much noise moves us away.

This term destroys linear convergence even under PL.
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Bounded Variance Assumption

We will first analyze SGD assuming only that f is bounded below.
So it could be non-convex.

To bound the effect of the noise, we assume for some σ that

E[‖∇fi(w)‖2] ≤ σ2,

for all w.

This assumption is strong.
It implies gradients are bounded, and cannot hold for PL functions on all of Rd.

Common weaker assumptions include:
Variation of gradients is bounded: E[‖∇fi(w)−∇f(w)‖2] ≤ σ2 (for all w).
Variation of gradients at solution is bounded: E[‖∇fi(w∗)‖2] ≤ σ2.

Get similar results under these assumptions, but they are a bit uglier.
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Convergence Rate of Stochastic Gradient Method

Using our noise assumption inside the progress bound,

E[f(wk+1)] ≤ f(wk)− αk‖∇f(wk)‖2 + α2
k

L

2
E[‖∇fik(wk)‖2]

≤ f(wk)− αk‖∇f(wk)‖2 + α2
k

Lσ2

2
.

As before, re-arrange to get the gradient norm on the left side,

αk‖∇f(wk)‖2 ≤ f(wk)− E[f(wk+1)] + α2
k

Lσ2

2
.

Sum this up (and use iterated expectation) to get

t∑

k=1

αk−1E‖∇f(wk−1)‖2 ≤
t∑

k=1

[Ef(wk−1)− Ef(wk)] +

t∑

k=1

α2
k−1

Lσ2

2
.
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Convergence Rate of Stochastic Gradient Method

The bound from the previous slide:

t∑

k=1

αk−1E‖∇f(wk−1)‖2︸ ︷︷ ︸
bound by min

≤
t∑

k=1

[Ef(wk−1)− Ef(wk)︸ ︷︷ ︸
telescope

] +

t∑

k=1

α2
k−1

Lσ2

2︸︷︷︸
no k

.

Applying the above operations gives

min
k=0,1,...,t−1

{E‖∇f(wk)‖2}
t−1∑

k=0

αk ≤ f(w0)− Ef(wt) +
Lσ2

2

t−1∑

k=0

α2
k.

Using Ef(wk) ≥ f∗ and dividing both sides by
∑

k αk−1 gives

min
k=0,1,...,t−1

{E‖∇f(wk)‖2} ≤ f(w0)− f∗∑t−1
k=0 αk

+
Lσ2

2

∑t−1
k=0 α

2
k∑t−1

k=0 αk
.
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Convergence Rate of Stochastic Gradient Method

The final bound:

min
k=0,1,...,t−1

{E‖∇f(wk)‖2} ≤ f(w0)− f∗∑t−1
k=0 αk

+
Lσ2

2

∑t−1
k=0 α

2
k∑t−1

k=0 αk
.

Something weird: we do not observe ∇f(wk) so do not know which one is min.

Bonus slides show how you can get same rate with a random iterate.

First term on right above looks like the deterministic bound.

If you use αk = 1/L the first term would be L(f(w0)− f∗)/∑k αk.

But due to stochasticity, convergence rate is determined by
∑

k α
2
k/
∑

k αk.

We want
∑
k αk to grow quickly but

∑
k α

2
k to grow slowly.
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Convergence Rate of Stochastic Gradient Method

How does
∑

k α
2
k/
∑

k αk behave under different step size sequences?

Classic decreasing step-sizes: set αk = α/k for some α.
Gives

∑
k αk = O(log(t)) and

∑
k α

2
k = O(1), so error at k is O(1/ log(k)).

Bigger decreasing step-sizes: set αk = α/
√
k for some α.

Gives
∑
k αk = O(

√
k) and

∑
k α

2
k = O(log(k)), so error at k is O(log(k)/

√
k).

Constant step-sizes: set αk = α for some α.
Gives

∑
k αk = kα and

∑
k α

2
k = kα2, so error at k is O(1/αk) +O(α).

First term converges like O(1/k) but second term does not converge to 0.

We typically do not need error of exactly 0 but are happy with some ε.
For any ε, there is a constant step size that achieves this.
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Summary

Coordinate optimization updates one variable at a time.
Faster rates than gradient descent for coordinate-friendly structures.

We can update d variables for the cost of computing gradient.

We discussed Lipschitz sampling and Gauss-Southwell rule.

Faster convergence than uniform sampling.
Require extra assumption to preserve coordinate-friendly property.

Stochastic gradient descent uses a stochastic approximation of gradient.

Slower rates than deterministic gradient descent.
Analyzed assuming approximation is unbiased with bounded variance.
Requires decreasing step size to converge, but constant may work better.

Next time: faster SGD methods?
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Applying Expected Bound Recursively (Coordinate Optimization)

Our guaranteed progress bound for randomized coordinate optimization,

E[f(wk+1))] ≤ f(wk)− 1

2dL
‖∇f(wk)‖2.

If we subtract f∗ and use strong-convexity or PL (as before),

E[f(wk+1)]− f∗ ≤
(

1− µ

dL

)
[f(wk)− f∗].

By recursing we get linear convergence rate,

E[E[f(wk+1)]]− f∗ ≤ E
[(

1− µ

dL

)
[f(wk)− f∗]

]
(expectation wrt jk−1)

E[f(wk+1)]− f(w∗) ≤
(

1− µ

dL

)
[E[f(wk)]− f∗] (iterated expectations)

≤
(

1− µ

dL

)2
[f(wk−1)− f∗]

You keep alternating between taking an expectation back in time and recursing.
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Random Iterate for Non-Convex Rate not depending on Min

The non-convex SGD bound, but dividing both sides by
∑t

k=0 αk,

∑t
k=1 αk−1E‖∇f(wk−1)‖2∑t−1

k=0 αk
≤
∑t

k=1[Ef(wk−1)− Ef(wk)] +
∑t

k=1 α
2
k−1

Lσ2

2∑t−1
k=0 αk

Now choose k̂ ∈ {0, 1, . . . , t− 1} according to p(k̂) = αk/
∑t−1

i=0 αi.

Notice that LHS above is expectation with respect to k̂ of E‖∇f(wk̂−1)‖2,

E‖∇f(wk̂−1)‖2 ≤ f(w0)− f∗∑t−1
k=0 αk

+
Lσ2

2

∑t−1
k=0 α

2
k∑t−1

k=0 αk
.

So choosing random iterate achieves same rate without needing to know the min.
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Convergence Rate of SGD

For analyses of SGD under strong convexity, see:

Constant αk: http://circle.ubc.ca/bitstream/handle/2429/50358/

stochasticGradientConstant.pdf.
Decreasing αk: http://arxiv.org/pdf/1212.2002v2.pdf.

For both cases under PL, see Theorem 4 here:

https://arxiv.org/pdf/1608.04636v2.pdf

http://circle.ubc.ca/bitstream/handle/2429/50358/stochasticGradientConstant.pdf
http://circle.ubc.ca/bitstream/handle/2429/50358/stochasticGradientConstant.pdf
http://arxiv.org/pdf/1212.2002v2.pdf
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