Numerical Optimization for Machine Learning Momentum, Acceleration, and Second-Order Methods

Mark Schmidt

University of British Columbia

Summer 2022

Last Time: Convergence Rate of Gradient Descent

- We considered gradient descent, $w^{k+1} = w^k \alpha_k \nabla f(w^k)$.
- If gradient is Lipschitz continuous and function is bounded below:
 - Needs $t = O(L/\epsilon)$ iterations to find a w with $\|\nabla f(w)\|^2 \le \epsilon$.
- If gradient is Lipschitz continuous and function satisfies PL (or strong-convexity):
 Needs t = O((L/μ) log(1/ε)) iterations to a find a w with f(w) − f(w*) ≤ ε.
- \bullet Above hold for fixed step size of $\alpha_k=1/L$, and various practical methods.
 - Practical methods work better in practice since they often take bigger step sizes.
- Today: do algorithms that converge faster exist?

Oracle Model of Computation

- To analyze algorithms and *what is possible* we need two ingredients:
 - **(**) Assumptions about the function like Lipschitz, PL, convexity, and so on.
 - If the set of functions is unrestricted, we can design impossible-to-optimize functions.
 - Ø Model of computation, restricting what the algorithm can do.
 - If the algorithm is unrestricted, then our algorithm could be: return $w^*.$
- Standard model of computation is the first-order oracle model:
 - **(**) At each iteration the algorithm chooses a point w^k .
 - 2 The algorithm then receives $f(w^k)$ and $\nabla f(w^k)$.
- We analyze how many iterations are needed to make some quantity small.
 Usually ||∇f(w^k)||, f(w^k) f^{*}, or ||w^k w^{*}||.
- Given assumptions and oracle model, many works:
 - Prove upper bounds on iteration complexity of specific algorithms.
 - Prove lower bounds on iteration complexity across algorithms.

Iteration Complexity Lower and Upper Bounds

- In first-order oracle model the algorithm itself is often unrestricted, but it can only learn about the function through evaluations at the chosen w^k.
- Often prove lower bounds by designing a "worst function" under the assumptions.
 - And show that you can only slowly discover the minimum location from oracle.
- Common variations on the first-order oracle model:
 - Zero-order oracles only return $f(w^k)$.
 - Second-order oracles also return $\nabla^2 f(w^k)$.
- Another variation is requiring the algorithm to be dimension independent:
 - The number of oracle calls does not directly depend on the dimension d.
 - Our gradient descent bounds were dimension independent.
 - It may depend on quantities L, that might grow as d increases.
 - $\bullet\,$ But you can have infinite-dimensional problems where L is finite.

Nesterov Acceleration for Convex Funcitons

Newton Second-Order Method

Outline

First-Order Oracle Model

2 Heavy-Ball and Conjugate Gradient

3 Nesterov Acceleration for Convex Funcitons

4 Newton Second-Order Method

• Consider a minimizing a strongly-convex quadratic function,

$$f(w) = \frac{1}{2}w^T A w + b^T w + c,$$

where $\mu I \preceq A \preceq LI$ for positive μ and L.

- So the quadratic is strongly-convex with a Lipschitz-continuous gradient.
- Examples: least squares with independent features, L2-regularized least squares.
- With $\alpha_k = 1/L$ gradient descent satisfies

$$||w^k - w^*|| = \left(1 - \frac{\mu}{L}\right)^k ||w^0 - w^*||.$$

 $\bullet\,$ The optimal step size is $\alpha_k=2/(L+\mu)$ which gives

$$||w^k - w^*|| = \left(\frac{L - \mu}{L + \mu}\right)^k ||w^0 - w^*||,$$

which is faster because $(1 - \mu/L) = (L - \mu)/L < (L - \mu)/(L + \mu)$.

• And descent lemma with $\nabla f(w^*) = 0$ implies $f(w^k) - f(w^*) \leq \frac{L}{2} ||w^k - w^*||^2$.

• Gradient descent with $\alpha_k = 1/L$ (left) and $\alpha_k = 2/(L + \mu)$ (right) on a quadratic:

• Both step-sizes satisfy $\alpha_k < 2/L$ so decrease function at each step.

- Using $\alpha_k = 2/(L + \mu)$ takes bigger steps but requires knowing μ .
- For the above function, $1/L \approx 0.26$ and $2/(L + \mu) \approx 0.5$.

• Gradient descent with $\alpha_k = 1/\hat{L}$ (left) and $\alpha_k = 2/(L+\mu)$ (right) on a quadratic:

- The approximate Lipschitz constant \hat{L} is 0.5 after the first iteration.
 - So it is close to $2/(L + \mu)$ without knowing L or μ .
 - But for other functions this step size may be better or worse.

• Gradient descent with $\alpha_k = 2/(L + \mu)$ (left) and optimal α_k on a quadratic:

• For quadratic functions, you can solve for optimal step-size at each step.

- Does not require knowing μ : $\alpha_k = \nabla f(w^k)^T \nabla f(w^k) / \nabla f(w^k)^T A \nabla f(w^k)$.
- Above, $2/(L + \mu) \approx 0.5$, optimal step alternated between ≈ 0.37 and ≈ 0.76 .

• The "optimal" step size may not make the most progress across iterations:

- Step sizes left to right: optimal, Malitsky-Mischenko, Polyak, Barzilai-Borwein.
- The Barzilai-Borwein step size leads to superlinear convergence for 2d quadatics.
 - Basically solves the above problem in 5 steps.
 - Convergence rate beyond 2d quadratics case not known

Heavy-Ball Method

- The $(L \mu)/(L + \mu)$ rate is tight for gradient descent on SC quadratics
 - There exist quadratic where the method converges at exactly this rate.
 - Optimal dimension-independent rate for gradient descent.
- But there exist faster algorithm for SC quadratics in the first-order oracle model.
- A classic example is Polyak's heavy-ball method [1964],

$$w^{k+1} = w^k - \alpha_k \nabla f(w^k) + \beta_k (w^k - w^{k-1}),$$

which adds a momentum term to gradient descent for k > 1.

- Extra term makes us "go further in the previous direction".
- Has an extra momentum parameter $\beta_k \in [0, 1)$.

Gradient Descent vs. Heavy Ball on Rosenbrock

• Gradient descent ($\alpha_k = 1/L$) vs. heavy ball ($\alpha_k = 1/L$ and $\beta_k = 0.9$):

• Momentum in heavy-ball can significantly speed up gradient descent.

Gradient Descent vs. Heavy Ball on Quadratic

• Gradient descent ($\alpha_k = 1/L$) vs. heavy ball ($\alpha_k = 1/L$ and $\beta_k = 0.9$):

• Heavy-ball method can increase function and "overshoot" the optimum.

• But iterations may be closer to solution on average.

Fast Convergence of Heavy-Ball Method on Quadratics

• Consider the heavy-ball method with the choices

$$\alpha_k = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}, \quad \beta_k = \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2.$$

• Under these choices the heavy-ball method has

$$||w^{k} - w^{*}|| \le \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}} + \epsilon_{k}\right)^{k} ||w^{0} - w^{*}||$$

where $\epsilon_k \to 0$.

- Instead of directly bounding $\|w^k x^*\|$, proof bounds $\|w^k w^*\|^2 + \|w^{k-1} w^*\|^2$.
- This is a special case of the Lyapunov potential function proof technique.
 - Show that a function "bigger than what you want" is converging at right rate.
- The optimal dimension-independent rate in first-oracle model is $\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}$.
 - So with this choice the heavy-ball method is close to optimal.

Heavy Ball on Quadratic

• Heavy ball ($\alpha_k = 1/L$ and $\beta_k = 0.9$) and $\left(\alpha_k = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}, \beta_k = \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2\right)$.

• For this problem, β_k on the left is ≈ 0.4 .

• Unfortunately, the setting on the right requires knowing μ .

Conjugate Gradient: Heavy-Ball with Optimal Parameters

- \bullet For quadratics, we could optimize α_k and β_k on each iteration.
 - At each iteration, choose α_k and β_k that maximally decrease f.
 - "Plane search" ("subspace optimization") along two directions instead of "line search".
- This "optimal heavy-ball" method is called the conjugate gradient (CG) method:

 $\begin{aligned} &\alpha_{k} = \nabla f(w^{k})^{T} d^{k} / d_{k}^{T} A d_{k} & \text{(step size for gradient direction)} \\ &\beta_{k} = \alpha_{k} \hat{\beta}_{k-1} / \alpha_{k-1} & \text{(momentum parameter, } \beta_{0} = 0\text{)} \\ &w^{k+1} = w^{k} - \alpha_{k} \nabla f(w^{k}) + \beta_{k} (w^{k} - w^{k-1}) & \text{(heavy-ball update)} \\ &\hat{\beta}_{k} = \nabla f(w^{k-1})^{T} A d_{k-1} / d_{k-1}^{T} A d_{k-1} \\ &d_{k} = -\nabla f(w^{k}) + \hat{\beta}_{k} d_{k-1} & \text{(search direction, } d_{0} = -\nabla f(w^{0})\text{)} \end{aligned}$

- Properties:
 - Gradients between iterations are orthogonal, $\nabla f(w^k)^T \nabla f(w^{k-1}) = 0.$
 - Achieves optimal $(\sqrt{L} \sqrt{\mu})/(\sqrt{L} + \sqrt{\mu})$ dimension-independent rate.
 - Faster dimension-dependent analysis (via Chebyshev polynomials).

- Conjugate gradient method minimizes the two-dimensional quadratic in 2 steps.
 - $\bullet\,$ You can show that CG minimizes a $d\mbox{-dimensional quadratic in}\,d$ steps.
 - Tends not to happen on computers due to floating point issues.
 - Note that conjugate gradient does not need to know L or μ .

Newton Second-Order Method

First-Order Oracle Model

Particular Sector Particula

3 Nesterov Acceleration for Convex Funcitons

Convex Functions

- An important generalization of quadratics is convex functions.
- Fitting many models involves minimizing a non-quadratic convex function:
 - Robust regression with the Huber loss or L1-loss.
 - Binary and multi-class logistic regression.
 - Binary and multi-class support vector machines.
 - Density estimation with exponential family distributions like Gaussians.
 - Fitting various types of graphical models.
 - Adding L2-regularization or L1-regularization to any of the above.
 - With L2-regularization, they are all strongly-convex.
- Convexity implies that all stationary points are global optima.
 - So differentiable convex functions can be optimized with gradient descent.
- We are not going to review properties of convex functions during these lectures.
 - See the webpage for notes on convex sets and functions.

Converge Rates of First-Order Methods on [Strongly-]Convex Functions

- Convergence rates for gradient descent applied to convex functions:
 - With $\alpha_k = 1/L$, requires O(1/k) iterations for convex.
 - Using telescoping argument as we did for non-convex functions.
 - With $\alpha_k = 1/L$, requires $O((1 \mu/L)^{2k})$ for strongly-convex.
 - We showed a similar rate for the special case of PL functions.
 - With $\alpha_k = 2/(L + \mu)$, requires $O(((L \mu)/(L + \mu)))^{2k})$ for strongly-convex.
- Dimension-independent lower bounds (Lipschitz gradient, first-order oracle):
 - There exist convex functions requiring $\Omega(1/k^2)$ iterations to have $f(w^k) f^* \leq \epsilon$.
 - For any algorithm (so we can expect sublinear rates at best).
 - For strongly-convex functions we require $\Omega(((\sqrt{L} \sqrt{\mu})/(\sqrt{L} + \sqrt{\mu}))^{2k})$.
 - The same speed we saw for strongly-convex quadratics.
- We call a first-order method accelerated if it either:
 - Has a $O(1/k^2)$ rate for convex functions.
 - Has a linear rate depending on \sqrt{L} and $\sqrt{\mu}$ for strongly-convex functions.

Heavy Ball and Conjugate Gradient for Convex Functions?

- Is heavy-ball method an accelerated method?
 - No! For some convex functions heavy-ball is not faster than gradient descent.
- There are complications in generalizing conjugate gradient for acceleration:
 - For convex functions, need to optimize over a 3-dimensional subspace instead of 2.
 - For non-quadratic functions, usually have no fast way to optimize over subspaces.
 - For strongly-convex functions, also need to periodically restart the method.
 - You can restart by setting $\beta_k=0$, to "clear" the memory.
 - But unfortunately the restart frequency depends on L/μ .
- Problems where we can optimize efficiently over the subspace:
 - Linear composition problems, f(w) = g(Aw).
 - Assuming multiplication by A is bottleneck.
 - Some other functions that can be expressed as multi-linear maps.
 - Matrix factorization (PCA) with sufficiently low rank.
 - See the sequential subspace optimization (SESOP) papers and read Betty's thesis.
 - In practice, subspace optimization with gradient plus momentum works really well.

Nesterov's Accelerated Gradient Method

• In 1983 Nesterov proposed the first efficient accelerated gradient method:

$$w^{k+1} = v^k - \alpha_k \nabla f(v^k),$$

$$v^{k+1} = w^{k+1} + \beta_k (w^{k+1} - w^k),$$

• We can write the heavy-ball method in a similar form:

$$w^{k+1} = v^k - \alpha_k \nabla f(w^k)$$

$$v^{k+1} = w^{k+1} + \beta_{k+1}(w^{k+1} - w^k).$$

- Nesterov's method computes gradient after applying momentum.
 - If gradient descent is $w^{k+1} = \operatorname{GD}(w^k)$, then:
 - Momentum is $w^{k+1} = \operatorname{GD}(w^k) + \beta_k (w^k w^{k-1}).$
 - Nesterov is $w^{k+1} = \operatorname{GD}(w^k + \beta_k (w^k w^{k-1})).$

Writing Nesterov's Algorithm with 3 Directions

• We can alternately write Nesterov's algorithm as:

$$w^{k+1} = w^k - \alpha_k \nabla f(w^k) + \beta_k (w^k - w^{k-1}) - \alpha_k \beta_k (\nabla f(w^k) - \nabla f(w^{k-1})),$$

where we add "momentum of the gradient" to the heavy-ball method. (I use w^k above but this is technically the momentum sequence v^k)

• From this point of view, Nesterov's method is taking a step along 3 directions:

- Gradient and momentum (like heavy-ball and CG) and old gradient direction.
 - Using the gradient difference can be viewed as approximating effect of Hessian.
- Consider optimizing a one-dimensional convex function:
 - If sign of gradient stays same, Nesterov's algorithm speeds up heavy-ball.
 - If sign of gradient changes (overshoot min), it "slows down" faster.
- Many accelerated variations exist, proofs are often not fun or enlightening.

Nesterov's Accelerated Gradient: Setting α and β (Theory)

• Nesterov's method is typically analyzed with $\alpha_k = 1/L$.

• For convex functions, accelerated rate can be achieved with

$$\beta_k = \frac{k-1}{k+2},$$

a momentum that converges to 1.

• For strongly-convex functions, acceleration can be achieved with constant

$$eta_k = rac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}},$$

as in the heavy-ball method.

- Notice that you need different parameters for different problems.
 - Using a momentum that converges to 1 for strongly-convex could be very slow.
- Unlike gradient descent which adapts to problem with standard choices.
 - Using $\alpha_k = 1/L$ maintains rate for convex, strongly-convex, and non-convex.

Nesterov's Accelerated Gradient: Setting α and β (Practice)

• We can maintain the accelerated rate without knowing L:

- Start with a small guess \hat{L} .
- $\bullet\,$ Given the momentum step v^k , test the inequality

$$f(w^{k+1}) \le f(v^k) - \frac{1}{2\hat{L}} \|\nabla f(v^k)\|^2,$$

and double \hat{L} if it is not satisfied.

- As with gradient descent, can work much better than knowing L.
- Note that Nesterov's method is often typically non-monotonic.
 - We do not always have $f(w^{k+1}) < f(w^k)$.
 - As with momentum, this is not necessarily a bad thing.

Example: Knowing L vs. Approximation L

As with gradient descent, you can go faster with the approximation. *L̂* = 16 on iteration 1, then 256 for many iterations, 512 for one, and 1024 for rest.

Nesterov's Accelerated Gradient: Setting α and β (Practice)

- Do you need to know μ for strongly-convex problems?
 - On some problems $O(1/k^2)$ Nesterov is slower than gradient descent, since gradient descent adapts to best/local μ value.
- Common strategy is applying ${\cal O}(1/k^2)$ algorithm with restarting:
 - Run the $O(1/k^2)$ algorithm (which increases momentum and does not need μ).
 - Occasionally stop the method and reset the momentum.
- Accelerated rate is achieved if we reset every $O(\sqrt{L/\mu})$ iterations.
- Various practical resetting strategies have been proposed:
 - Use a binary search for a best-performing fixed restart frequency.
 - Methods that check if the restart frequency is too long.
 - Methods that test whether a restart is needed.
 - Simplest method restarts if $f(w^k)$ increases.

Effect of μ Estimate

- Effect of different momentum updates on an accelerated gradient method:
 - q = 1 is gradient descent, q = 0 is $O(1/k^2)$ method, intermediate are SC methods.

Figure 2: Sequence trajectories under Algorithm 1.

https://arxiv.org/pdf/1204.3982.pdf

• Performance degrades away from optimal update q^* (depending on L/μ).

Restarted Accelerated Gradient

• Effect of restarting on an accelerated gradient method:

https://arxiv.org/pdf/1204.3982.pdf

• Restarting often significantly improves performance.

Non-Linear Conjugate Gradient

- There are also various non-linear conjugate gradient methods.
 - These methods use the heavy-ball update with particular choices of β_k .
 - On each step they use a line search along the direction $d_k = g_k + \beta_k d_{k-1}$.
 - On quadratic functions with exact line search, equivalent to conjugate gradient.
 - They work best with a precise line-search along d_k .
- Many variations exist, with common variations being (with $g_k = \nabla f(w^k)$):
 - Fletcher-Reeves: $\beta_k = \langle g_k, g_k \rangle / \langle g_{k-1}, g_{k-1} \rangle$.
 - Polak-Ribiere: $\beta_k = \langle g_k, g_k g_{k-1} \rangle / \langle g_{k-1}, g_{k-1} \rangle$.
 - Hestenes-Steifel: $\beta_k = \langle g_k, g_k g_{k-1} \rangle / \langle g_k g_{k-1}, d_{k-1} \rangle$.
- These methods often use restart mechasnisms.
 - Example: set $\beta_k = 0$ if directional derivative $(d_k^T \nabla f(w^k))$ is not sufficiently negative.
- These methods do not achieve accelerated rate.
- But for many problems they work amazingly well in practice.

Newton Second-Order Method

First-Order Oracle Model

Particular State (2014) 12 Particular State (2014) 2014 (2014)

3 Nesterov Acceleration for Convex Funcitons

Gradient Descent vs. Newton's Method

• Recall the second-order Taylor expansion representation of a function,

$$f(v) = f(w) + \nabla f(w)^{T}(v - w) + \frac{1}{2}(v - w)^{T} \nabla^{2} f(u)(v - w),$$

for some u between w and v.

• We analyze progress of gradient descent by upper-bounding last term,

$$f(v) \le f(w) + \nabla f(w)^T (v - w) + \frac{L}{2} ||v - w||^2,$$

and minimizing right side in terms of v gives gradient descent with $\alpha_k = 1/L$.

• Newton's method is obtained by minimizing a truncated Taylor series,

$$f(v) \approx f(w) + \nabla f(w)^T (v - w) + \frac{1}{2} (v - w)^T \nabla^2 f(w) (v - w),$$

which becomes exact as ||v - w|| shrinks to 0.

• We typically analyze Newton's method based on second-order oracle.

Example: Conjugate Gradient vs. Newton on Quadratic

• Conjugate gradient and Newton on a 2d quadratic function:

Newton's method finds minimizer of quadratics in one iteration.
 The Hessian ∇² f(w) is constant so the approximation is exact.

Example: Gradient Descent vs. Newton on Quadratic

• Our best gradient descent method and Newton on Rosenbrock

• Newton's method finds exact minimizer in 2 iterations.

• Though notice that first iteration increased the function a lot.

Implementation of Newton's Method (Strongly-Convex)

- If f is strongly-convex then $\nabla^2 f(w^k)$ is invertible and positive-definite.
- $\bullet\,$ In this situation the minimizer in terms of v of

$$f(w^{k}) + \nabla f(w^{k})^{T}(v-w) + \frac{1}{2}(v-w^{k})^{T} \nabla^{2} f(w^{k})(v-w^{k}),$$

is given by

$$w^{k+1} = w^k - [\nabla^2 f(w^k)]^{-1} \nabla f(w^k),$$

which is the Newton update.

- We do not compute the inverse Hessian, but use a Cholesky factorization.
 - Fast Gaussian elimination method for solving positive-definite linear systems.

Newton Second-Order Method

Newton Second-Order Method

Quadratic Convergence of Newton's Method

• Conisder a function with a Lipschitz-continuous Hessian,

$$\|\nabla^2 f(w) - \nabla^2 f(v)\| \le M \|w - v\|,$$

for some M and using the operator matrix norm (max singular value).

• If f is also μ -strongly convex then Newton's method has

$$||w^{k+1} - w^*|| \le \frac{M}{2\mu} ||w^k - w^*||^2.$$

- If ||w^k w^{*}|| becomes sufficiently small, this implies quadratic convergence.
 A form of superlinear convergence.
- Problem: there is no guarantee that Newton's method converges.
 So ||w^k w^{*}|| may never become sufficiently small.

Damped Newton for Global Convergence

• Most common way to make Newton converge is to add a step size:

$$w^{k+1} = w^k - \alpha_k [\nabla^2 f(w^k)]^{-1} \nabla f(w^k),$$

sometimes called a damped Newton step.

 $\bullet\,$ If gradient is Lipschitz and f is strongly-convex, then we obtain

$$f(w^{k+1}) \le f(w^k) - \frac{\mu}{2L^2} \|\nabla f(w^k)\|^2,$$

by using damped Newton in the descent lemma with $\alpha_k = \mu/L$.

- Notice that is a worse progress bound than with gradient descent.
- $\bullet\,$ We lose a factor of μ/L from using Newton instead of gradient direction.
- This leads to a global convergence rate of

$$f(w^{k+1}) - f^* \le \left(1 - \frac{\mu^2}{L^2}\right)^k [f(w^0) - f^*],$$

depending on the squared condition number L/μ (opposite of acceleration).

Damped Newton with Armijo: Linear then Quadratic Rate

• We do not want to use $\alpha_k = \mu/L$, instead we might use the Armijo condition,

$$f(w^{k+1}) \le f(w^k) - \gamma \alpha_k \langle \nabla f(w^k), d_k \rangle,$$

where for the damped Newton the direction is $d_k = [\nabla^2 f(w^k)]^{-1} \nabla f(w^k)$.

- This is a generalization of the earlier Armijo condition for a generic direction d_k .
- You can show $\alpha_k = 1$ satisfies the Armijo condition when close to solution.
 - So if we try $\alpha_k = 1$ first, we eventually have quadratic convergence.
- We can do a two-phase analysis of damped Newton for strongly convex f:
 - Far from solution, Lipschitz gradient guarantees slow linear rate.
 - Worse than gradient descent.
 - Close to solution, Lipschitz Hessian guarantees fast superlinear rate.

• Assuming we eventually start trying $\alpha_k = 1$ first.

Example: Newton vs. Damped Newton

• Newton vs. damped Newton (with Armijo starting from $\alpha_k = 1$) on Rosenbrock:

• A step size of $\alpha_k = 1$ was used on most iterations.

• But damped Newton takes around 16 iterations to reach machine precision.

Hessian Modification

- The Newton step "inverts" the Hessian, $abla^2 f(w^k)$.
- This causes problems if f is not strongly convex:
 - The Hessian matrix may be singular (no inverse exists).
 - The Newton direction may not be a descent direction.
 - The directional derivative might be 0 or positive, causing Armijo to fail.
- Common fix is to replace $\nabla^2 f(w^k)$ with a positive-definite approximation,

$$w^{k+1} = w^k - \alpha_k [H^k]^{-1} \nabla f(w^k).$$

- For example, set $H^k = \nabla^2 f(w^k) + \lambda^k I$.
 - Where λ^k is set so that eigenvalues of H^k are at least some positive $\epsilon.$
- More sophisticated approaches try to minimally modify Cholesky of $\nabla^2 f(w)$.
 - Works better than the λ^k approach, but still not ideal for non-convex.

Trust-Region Methods

• For a constant α_k and positive-definite approximation H^k , damped Newton is

$$w^{k+1} \in \operatorname*{argmin}_{w \in \mathbb{R}^d} \left\{ f(w^k) + \nabla f(w^k)^T (w - w^k) + \frac{1}{2\alpha_k} (w - w^k)^T H^k (w - w^k) \right\},$$

• For a constant Δ_k trust region methods instead try to compute

$$w^{k+1} \in \underset{w \mid \|w - w^k\| \le \Delta_k}{\operatorname{argmin}} \left\{ f(w^k) + \nabla f(w^k)^T (w - w^k) + \frac{1}{2} (w - w^k)^T \nabla^2 f(w^k) (w - w^k) \right\}$$

- The number Δ_k is called the trust region radius.
 - Intuitively, it is how far we "trust" the truncated Taylor series.
 - Radius is grown/shrunk by comparing expected progress to actual progress.
 - For example, you shrink it you are making less progress than expected.

Trust Region on Quadratic

• Newton with trust region on quadratic starting from $\Delta_k = 1$.

- Does not converge in one step because trust region was too small.
 - Converges in one step once trust region contains Newton step.

Example: Line Search vs. Trust Region

• Armijo line-search (starting from $\alpha_k = 1$) vs. trust region (starting from $\Delta_k = 1$):

δ_k shrinks to 1/8 on first iteration, doubles on next two, then stays at 1/4.
On this problem both methods take a similar number of iterations.

Cubic Regularization of Newton's Method

• Gradient descent ($\alpha_k = 1/L$) uses upper-bound on second-order term,

$$f(w) \le f(w^k) + \nabla f(w^k)^T (w - w^k) + \frac{L}{2} ||w - w^k||^2.$$

• Cubic regularization of Newton's method upper bounds third-order term,

$$f(w) \leq f(w^k) + \nabla f(w^k)^T (w^k - w) + \frac{1}{2} (w - w^k) \nabla^2 f(w^k) (w - w^k) + \frac{M}{6} ||w - w^k||^3,$$

where ${\cal M}$ is the Lipschitz constant of the Hessian.

- Minimizing this upper bound leads to guaranteed progress.
 - Similar to gradient descent with $\alpha_k = 1/L$.
 - Bound is tighter for small $||w w^k||$, looser for large $||w w^k||$.
- Can/should use backtracking to replace M by an approximation \hat{M} .
- There exist accelerated variants that achieve faster rates.
 - Accelerated method has error of ${\cal O}(1/k^3)$ for convex functions.

Trust-Region and Cubic Regularization for Non-Convex

- Trust-region and cubic regularization may be better for non-convex problems.
 - These methods may move along directions of negative curvature.
 - These are directions that speed up progress.
 - Leads to "escaping" saddle points rather than converging to them.
- Trust-region and cubic regularization methods are more difficult to implement.
 - Computing the update is more complicated than solving a linear system.
 - But practical methods exist to compute steps guaranteeing sufficient progress.
 - Many have similar cost to solving a linear system.

Summary

- First-order oracle model of computation.
 - How many queries to an oracle returning function and gradient value?
- Momentum and heavy-ball method.
 - Optimal convergence rate for optimizing strongly-convex quadratics.
- Accelerated gradient method.
 - Near-optimal convergence rates for optimizing convex and strongly-convex functions.
 - Resetting strategies to avoid needing to know $\mu.$
- Newton's method
 - Second-order method with local quadratic convergence.
 - Global convergence with line-search, trust-region, or cubic regularization.
- Next time: decreasing iteration cost instead of iteration complexity (SGD).

Conjugate Gradient Derivation and Implementation

- We said that conjugate gradient is an optimal heavy-ball method.
- But it is usually derived/analyzed as optimizing a growing set of subspaces.
 - In particular, you can show it optimizes over span of all previous gradients.
- CG is usually written/implemented/motivated in a different way:
 - Phrased as solving linear system (Aw = -b) for a positive-definite matrix A.
 - Using $g_k = Aw^k + b$ and $d_0 = -g_0$, the iteration can be written:

$$\alpha_k = -\frac{g_k^T d_k}{d_k^T A d_k}$$
$$w^{k+1} = w^k + \alpha_k d_k$$
$$\beta_k = \frac{g_{k+1}^T A d_k}{d_k^T A d_k}$$
$$d_{k+1} = -g_{k+1} + \beta_k d_k$$

- $\bullet~$ Note that β_k above is not the β_k used in heavy-ball way of writing.
 - Momentum direction d_k is multiplied by both α_k and β_{k-1} .

Affine Invariance and Self-Concordance

- Newton's method is an affine invariant method:
 - Consider applying Newton to f(w) and g = f(Aw) for an invertible matrix A.
 - The method generates the same sequence of iterations, up to transformation by A.
- Despite affine invariance, iteration complexity depends on L, μ , and M.
 - These are changed by the above re-parameterization.
 - We could theoretically search for the A giving the "best" L, $\mu,$ and M.
- We have affine-invariant analyses for self-concordant functions.
 - Self-concordance bounds third derivative in terms of second derivative.
 - Iteration complexity of damped Newton that only depends on Armijo parameters.
 - No dependence on condition number.
 - We pick the Armijo parameters (can be the same across problems).