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Last Time: Convergence Rate of Gradient Descent

We considered gradient descent, w**! = w* — ap V f(w").

If gradient is Lipschitz continuous and function is bounded below:
o Needs t = O(L/e¢) iterations to find a w with |V f(w)|? <e.

If gradient is Lipschitz continuous and function satisfies PL (or strong-convexity):
o Needs t = O((L/u)log(1/€)) iterations to a find a w with f(w) — f(w*) <e.

@ Above hold for fixed step size of oy = 1/L, and various practical methods.
e Practical methods work better in practice since they often take bigger step sizes.

Today: do algorithms that converge faster exist?
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Oracle Model of Computation

@ To analyze algorithms and what is possible we need two ingredients:
@ Assumptions about the function like Lipschitz, PL, convexity, and so on.
o If the set of functions is unrestricted, we can design impossible-to-optimize functions.
@ Model of computation, restricting what the algorithm can do.
o If the algorithm is unrestricted, then our algorithm could be: return w™.

@ Standard model of computation is the first-order oracle model:

@ At each iteration the algorithm chooses a point w*.
@ The algorithm then receives f(w*) and V f(w*).

@ We analyze how many iterations are needed to make some quantity small.
o Usually [V f(w*)|, f(w") — f*, or w* —w*|.

@ Given assumptions and oracle model, many works:
e Prove upper bounds on iteration complexity of specific algorithms.
e Prove lower bounds on iteration complexity across algorithms.
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Iteration Complexity Lower and Upper Bounds

In first-order oracle model the algorithm itself is often unrestricted,
but it can only learn about the function through evaluations at the chosen w*.

Often prove lower bounds by designing a "“worst function” under the assumptions.
e And show that you can only slowly discover the minimum location from oracle.

@ Common variations on the first-order oracle model:

e Zero-order oracles only return f(w").
o Second-order oracles also return V2 f(w*).

Another variation is requiring the algorithm to be dimension independent:
e The number of oracle calls does not directly depend on the dimension d.
o Our gradient descent bounds were dimension independent.
e It may depend on quantities L, that might grow as d increases.
@ But you can have infinite-dimensional problems where L is finite.
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Outline

© Heavy-Ball and Conjugate Gradient
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Gradient Descent and Quadratics

o Consider a minimizing a strongly-convex quadratic function,
1
flw) = §wTAw + 0w +

where ul < A < LI for positive p and L.
e So the quadratic is strongly-convex with a Lipschitz-continuous gradient.
o Examples: least squares with independent features, L2-regularized least squares.

e With oy = 1/L gradient descent satisfies

. % .
ot =l = (1= 2)" fu® = w].

@ The optimal step size is oy = 2/(L + p) which gives

I — k
ot - 0l = (52 ) I = '

which is faster because (1 — /L) = (L — pu)/L < (L —p)/(L + u).
o And descent lemma with V f(w*) = 0 implies f(w*) — f(w*) < Z|lw* — w*||%.
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Gradient Descent and Quadratics

e Gradient descent with aj, = 1/L (left) and ay = 2/(L + p) (right) on a quadratic:
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@ Both step-sizes satisfy ay < 2/L so decrease function at each step.

o Using ay, = 2/(L + ) takes bigger steps but requires knowing .
e For the above function, 1/L ~ 0.26 and 2/(L + ) =~ 0.5.
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Gradient Descent and Quadratics

e Gradient descent with oy, = 1/L (left) and oy, = 2/(L + 1) (right) on a quadratic:
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e The approximate Lipschitz constant L is 0.5 after the first iteration.

e So it is close to 2/(L + p) without knowing L or p.
e But for other functions this step size may be better or worse.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Gradient Descent and Quadratics

e Gradient descent with o = 2/(L + p) (left) and optimal oy on a quadratic:
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@ For quadratic functions, you can solve for optimal step-size at each step.
o Does not require knowing p: ay = Vf(wF)TV f(w*)/V f(wF)T AV f(w").
e Above, 2/(L + p) = 0.5, optimal step alternated between =~ 0.37 and = 0.76.
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Gradient Descent and Quadratics

@ The “optimal” step size may not make the most progress across iterations:

@ Step sizes left to right: optimal, Malitsky-Mischenko, Polyak, Barzilai-Borwein.

@ The Barzilai-Borwein step size leads to superlinear convergence for 2d quadatics.

e Basically solves the above problem in 5 steps.
e Convergence rate beyond 2d quadratics case not known
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Heavy-Ball Method

@ The (L — u)/(L + ) rate is tight for gradient descent on SC quadratics

e There exist quadratic where the method converges at exactly this rate.
e Optimal dimension-independent rate for gradient descent.

@ But there exist faster algorithm for SC quadratics in the first-order oracle model.

@ A classic example is Polyak's heavy-ball method [1964],
Wt = wh — ap V f (W) 485 (w® — wh 1),

which adds a momentum term to gradient descent for k > 1.

o Extra term makes us “go further in the previous direction”.
e Has an extra momentum parameter §i € [0,1).
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Heavy-Ball Method Method
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Heavy-Ball Method Method
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Heavy-Ball Method Method
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Heavy-Ball Method Method
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Heavy-Ball Method Method
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Heavy-Ball Method Method
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Heavy-Ball Method Method
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Heavy-Ball Method Method
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Gradient Descent vs. Heavy Ball on Rosenbrock

o Gradient descent (o, = 1/L) vs. heavy ball (ap = 1/L and § = 0.9):
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@ Momentum in heavy-ball can significantly speed up gradient descent.
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Gradient Descent vs. Heavy Ball on Quadratic

e Gradient descent (aj = 1/L) vs. heavy ball (o, = 1/L and S = 0.9):
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@ Heavy-ball method can increase function and “overshoot” the optimum.
e But iterations may be closer to solution on average.
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Fast Convergence of Heavy-Ball Method on Quadratics

@ Consider the heavy-ball method with the choices

2
oz:# 5:M
© VIR k<ﬁ+ﬂ>'

@ Under these choices the heavy-ball method has

k

L —

uw—ww§<&mgf+%)uw—ww
m

where €, — 0.
o Instead of directly bounding ||w* — z*||, proof bounds ||w* — w*||? + ||w*~1 — w*|2.
e This is a special case of the Lyapunov potential function proof technique.
e Show that a function “bigger than what you want” is converging at right rate.

VI
VL+u’

@ The optimal dimension-independent rate in first-oracle model is

e So with this choice the heavy-ball method is close to optimal.
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Heavy Ball on Quadratic

(VL+/m)?’ VEL+i
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@ For this problem, ;. on the left is =~ 0.4.
e Unfortunately, the setting on the right requires knowing .
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Conjugate Gradient: Heavy-Ball with Optimal Parameters

@ For quadratics, we could optimize oy, and ;. on each iteration.
e At each iteration, choose oy and ) that maximally decrease f.
@ “Plane search” ( “subspace optimization”) along two directions instead of “line search”.

@ This “optimal heavy-ball” method is called the conjugate gradient (CG) method:

o, = V) Td*/dE Ady, (step size for gradient direction)

Br = akék—l/ak—l (momentum parameter, Sy = 0)
Wt = wh — @V f (") + Br(w® — W)

Br = V(YT Ady,_y JdE_ | Ady_y

dy = =V f(w") + Brdy_1 (search direction, dy = —V f(w"))
@ Properties:

o Gradients between iterations are orthogonal, V f(w*)TV f(w*=1) = 0.

o Achieves optimal (v'L — /zz)/(vV'L + /i) dimension-independent rate.
o Faster dimension-dependent analysis (via Chebyshev polynomials).

(heavy-ball update)

Newton Second-Order Method
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Heavy Ball vs. Conjugate Gradient on Quadratic
VL

2
@ Heavy ball with <ak = ) ) and conjugate gradient:
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@ Conjugate gradient method minimizes the two-dimensional quadratic in 2 steps.
@ You can show that CG minimizes a d-dimensional quadratic in d steps.
@ Tends not to happen on computers due to floating point issues.
o Note that conjugate gradient does not need to know L or p.
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Outline

© Nesterov Acceleration for Convex Funcitons
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Convex Functions

@ An important generalization of quadratics is convex functions.

e Fitting many models involves minimizing a non-quadratic convex function:
o Robust regression with the Huber loss or L1-loss.
Binary and multi-class logistic regression.
Binary and multi-class support vector machines.
Density estimation with exponential family distributions like Gaussians.
Fitting various types of graphical models.
Adding L2-regularization or L1-regularization to any of the above.
e With L2-regularization, they are all strongly-convex.

@ Convexity implies that all stationary points are global optima.
e So differentiable convex functions can be optimized with gradient descent.

@ We are not going to review properties of convex functions during these lectures.
e See the webpage for notes on convex sets and functions.
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Converge Rates of First-Order Methods on [Strongly-]Convex Functions

@ Convergence rates for gradient descent applied to convex functions:
o With ay, = 1/L, requires O(1/k) iterations for convex.
@ Using telescoping argument as we did for non-convex functions.
o With ay = 1/L, requires O((1 — u/L)?*) for strongly-convex.
@ We showed a similar rate for the special case of PL functions.

o With ay = 2/(L + ), requires O(((L — ) /(L + 1)))?*) for strongly-convex.

e Dimension-independent lower bounds (Lipschitz gradient, first-order oracle):

o There exist convex functions requiring (2(1/k?) iterations to have f(w") — f* <e.
o For any algorithm (so we can expect sublinear rates at best).

o For strongly-convex functions we require Q(((V'L — /i) /(VL + /11))*").

@ The same speed we saw for strongly-convex quadratics.

@ We call a first-order method accelerated if it either:
e Has a O(1/k?) rate for convex functions.
e Has a linear rate depending on v/L and /1 for strongly-convex functions.
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Heavy Ball and Conjugate Gradient for Convex Functions?

@ Is heavy-ball method an accelerated method?
e No! For some convex functions heavy-ball is not faster than gradient descent.

@ There are complications in generalizing conjugate gradient for acceleration:
e For convex functions, need to optimize over a 3-dimensional subspace instead of 2.
e For non-quadratic functions, usually have no fast way to optimize over subspaces.
e For strongly-convex functions, also need to periodically restart the method.
@ You can restart by setting 8r = 0, to “clear” the memory.
o But unfortunately the restart frequency depends on L/ .

@ Problems where we can optimize efficiently over the subspace:
e Linear composition problems, f(w) = g(Aw).
e Assuming multiplication by A is bottleneck.
e Some other functions that can be expressed as multi-linear maps.
o Matrix factorization (PCA) with sufficiently low rank.
o See the sequential subspace optimization (SESOP) papers and read Betty's thesis.
@ In practice, subspace optimization with gradient plus momentum works really well.
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Nesterov's Accelerated Gradient Method

@ In 1983 Nesterov proposed the first efficient accelerated gradient method:

wk+1 _ ’Uk _ Oéka(Uk),

UkJrl _ wk+1 + ,Bk(wk+1 _ wk)’
@ We can write the heavy-ball method in a similar form:

whtl = o — aka(wk’)

e S R N (e

@ Nesterov's method computes gradient after applying momentum.
o If gradient descent is w**! = GD(w*), then:
o Momentum is w** = GD(w") + B (w® — w*™).
o Nesterov is w**! = GD(w” + Bx(w* — w*1)).
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Writing Nesterov's Algorithm with 3 Directions
o We can alternately write Nesterov's algorithm as:
Wt = wk — ap Vf(wF) + Br(wF — w* 1) — apBL(V f(w*) — V f(wF1)),

where we add “momentum of the gradient” to the heavy-ball method.

(I use w* above but this is technically the momentum sequence vk)

@ From this point of view, Nesterov's method is taking a step along 3 directions:
o Gradient and momentum (like heavy-ball and CG) and old gradient direction.
@ Using the gradient difference can be viewed as approximating effect of Hessian.

o Consider optimizing a one-dimensional convex function:
o If sign of gradient stays same, Nesterov's algorithm speeds up heavy-ball.
o If sign of gradient changes (overshoot min), it “slows down" faster.

@ Many accelerated variations exist, proofs are often not fun or enlightening.
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Nesterov's Accelerated Gradient: Setting o and /3 (Theory)
@ Nesterov's method is typically analyzed with o = 1/L.

@ For convex functions, accelerated rate can be achieved with

k—1
Bk = ;
k+2
a momentum that converges to 1.

@ For strongly-convex functions, acceleration can be achieved with constant

_ VL=

Bk—\/z+\/ﬁa

as in the heavy-ball method.
o Notice that you need different parameters for different problems.
@ Using a momentum that converges to 1 for strongly-convex could be very slow.
o Unlike gradient descent which adapts to problem with standard choices.
e Using oy = 1/L maintains rate for convex, strongly-convex, and non-convex.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Nesterov's Accelerated Gradient: Setting o and [ (Practice)

@ We can maintain the accelerated rate without knowing L:

e Start with a small guess L.
o Given the momentum step v*, test the inequality

1

k(2
2£||Vf(v =

f(warl) < f(’l)k) o

and double L if it is not satisfied.
@ As with gradient descent, can work much better than knowing L.

@ Note that Nesterov's method is often typically non-monotonic.

o We do not always have f(w**1) < f(w*).
o As with momentum, this is not necessarily a bad thing.
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Example: Knowing L vs. Approximation L

o O(1/k?) Nesterov with oy, = 1/L vs. oy, = 1/L:
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@ As with gradient descent, you can go faster with the approximation.
o L = 16 on iteration 1, then 256 for many iterations, 512 for one, and 1024 for rest.
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Nesterov's Accelerated Gradient: Setting o and 3 (Practice)

@ Do you need to know i for strongly-convex problems?

o On some problems O(1/k?) Nesterov is slower than gradient descent,
since gradient descent adapts to best/local p value.

e Common strategy is applying O(1/k?) algorithm with restarting:
o Run the O(1/k?) algorithm (which increases momentum and does not need ).
e Occasionally stop the method and reset the momentum.

@ Accelerated rate is achieved if we reset every O(y/L/p1) iterations.

@ Various practical resetting strategies have been proposed:

o Use a binary search for a best-performing fixed restart frequency.
e Methods that check if the restart frequency is too long.
o Methods that test whether a restart is needed.

o Simplest method restarts if f(w") increases.
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Effect of u Estimate

o Effect of different momentum updates on an accelerated gradient method:
o g =1 is gradient descent, ¢ = 0 is O(1/k?) method, intermediate are SC methods.
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Figure 2: Sequence trajectories under Algorithm 1.
Figure 1: Convergence of Algorithm 1 with different estimates of ¢. g a ) g

https:/ /arxiv.org/pdf/1204.3982.pdf

@ Performance degrades away from optimal update ¢* (depending on L/u).
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Restarted Accelerated Gradient

o Effect of restarting on an accelerated gradient method:

Figure 4: Sequence trajectories under scheme I and with adaptive restart 0 200 400 600 800 1000

https://arxiv.org/pdf/1204.3982.pdf

@ Restarting often significantly improves performance.
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Non-Linear Conjugate Gradient

There are also various non-linear conjugate gradient methods.

These methods use the heavy-ball update with particular choices of (y.

On each step they use a line search along the direction dy = g + Brdr—_1.

On quadratic functions with exact line search, equivalent to conjugate gradient.
They work best with a precise line-search along dy..

Many variations exist, with common variations being (with gx = V f(w*)):
o Fletcher-Reeves: S = (gi, gk)/(gr—1, Gk—1)-
o Polak-Ribiere: Bx = (gr, gk — gr—1)/{gr—1,9r—1)-
o Hestenes-Steifel: Br = (gk, 9k — 9r—1)/{k — Gr—1, dk—1)-

These methods often use restart mechasnisms.
o Example: set B = 0 if directional derivative (d1'V f(w")) is not sufficiently negative.

These methods do not achieve accelerated rate.
But for many problems they work amazingly well in practice.
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Outline

@ Newton Second-Order Method



Newton Second-Order Method

Gradient Descent vs. Newton's Method
@ Recall the second-order Taylor expansion representation of a function,
1
F(©) = f(w) + Vi)' (v —w) + 5 (v = w)' Vf(u)(v - w),

for some u between w and v.
@ We analyze progress of gradient descent by upper-bounding last term,

F(0) < Fw) + V@) (@ —w) + 2o~ w]

and minimizing right side in terms of v gives gradient descent with oy, = 1/L.

@ Newton's method is obtained by minimizing a truncated Taylor series,

F(0) & £w) + V@) (0 = w) + 50 = w) 2 f (w)(w - w),

which becomes exact as ||[v — w|| shrinks to 0.
o We typically analyze Newton's method based on second-order oracle.
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Example: Conjugate Gradient vs. Newton on Quadratic

o Conjugate gradient and Newton on a 2d quadratic function:
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@ Newton's method finds minimizer of quadratics in one iteration.
o The Hessian V2 f(w) is constant so the approximation is exact.
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Example: Gradient Descent vs. Newton on Quadratic

@ Our best gradient descent method and Newton on Rosenbrock
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@ Newton's method finds exact minimizer in 2 iterations.
e Though notice that first iteration increased the function a lot.
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Implementation of Newton's Method (Strongly-Convex)
o If f is strongly-convex then V2f(w") is invertible and positive-definite.
@ In this situation the minimizer in terms of v of
F(k) + VI@H (0 = ) + 5 (0 = )TV (h) o - ),

is given by
Wttt = wh — [V2f ()] TV f ("),
which is the Newton update.

@ We do not compute the inverse Hessian, but use a Cholesky factorization.
e Fast Gaussian elimination method for solving positive-definite linear systems.
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Newton's Method
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Newton's Method
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Newton's Method
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Newton's Method




First-Order Oracle Model

Heavy-Ball and Conjugate Gradient

Nesterov Acceleration for Convex Funcitons

Newton's Method
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Newton Second-Order Method
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Quadratic Convergence of Newton's Method

@ Conisder a function with a Lipschitz-continuous Hessian,
2 2
IVZf(w) = V()] < Mjw = o],
for some M and using the operator matrix norm (max singular value).
o If f is also u-strongly convex then Newton's method has

b | < ok —
I

o If ||w* — w*|| becomes sufficiently small, this implies quadratic convergence.
e A form of superlinear convergence.

@ Problem: there is no guarantee that Newton's method converges.
o So ||w* — w*|| may never become sufficiently small.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Damped Newton for Global Convergence
@ Most common way to make Newton converge is to add a step size:
wk+1 _ wk’ _ ()ék[VQf(wk)]_1Vf(wk),

sometimes called a damped Newton step.
o If gradient is Lipschitz and f is strongly-convex, then we obtain
1
Fr) < b = 19 s
by using damped Newton in the descent lemma with oy = 11/ L.

o Notice that is a worse progress bound than with gradient descent.
o We lose a factor of /L from using Newton instead of gradient direction.

@ This leads to a global convergence rate of
i\
Ftt - < (1= 1) ) - 1

depending on the squared condition number L/u (opposite of acceleration).
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Damped Newton with Armijo: Linear then Quadratic Rate

e We do not want to use aj = p/L, instead we might use the Armijo condition,

FF) < f(wh) = yo (V f (w"), d),

where for the damped Newton the direction is dj, = [V2f(w*)] "'V f(w").
e This is a generalization of the earlier Armijo condition for a generic direction d.

@ You can show «; = 1 satisfies the Armijo condition when close to solution.
e So if we try oy = 1 first, we eventually have quadratic convergence.

@ We can do a two-phase analysis of damped Newton for strongly convex f:
e Far from solution, Lipschitz gradient guarantees slow linear rate.
@ Worse than gradient descent.
o Close to solution, Lipschitz Hessian guarantees fast superlinear rate.
@ Assuming we eventually start trying ax = 1 first.
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Example: Newton vs. Damped Newton

@ Newton vs. damped Newton (with Armijo starting from «j, = 1) on Rosenbrock:

100 {100

1.00 ° 1.00

0.75 :*75 0.75 | 75

0.50 gfsu 0.50 5750

0.25 g,zs 0.25 g,zs

0.00 | © | | { ° Ei o 0.00 | E
0.00 0.25 0.50 0.75 1.00 0.00 0.25

@ A step size of o, = 1 was used on most iterations.
e But damped Newton takes around 16 iterations to reach machine precision.
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Hessian Modification

The Newton step “inverts” the Hessian, V2 f(w").

This causes problems if f is not strongly convex:

e The Hessian matrix may be singular (no inverse exists).
e The Newton direction may not be a descent direction.

@ The directional derivative might be 0 or positive, causing Armijo to fail.
Common fix is to replace V2 f(w*) with a positive-definite approximation,

wk+1 — wk _ ak[Hk;]—lvf(wk)‘

For example, set H* = V2 f(w*) + \FI.
o Where \* is set so that eigenvalues of H* are at least some positive €.

More sophisticated approaches try to minimally modify Cholesky of V2 f(w).
o Works better than the \* approach, but still not ideal for non-convex.
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Trust-Region Methods
@ For a constant oy, and positive-definite approximation H*, damped Newton is

wh L € argmin {f(wk) + V(T (w — wk) + i(w —whTH*(w — wk)} ,
wER4 20y,

@ For a constant Ay trust region methods instead try to compute

w"™ e argmin {f(wk) + V(T (w — wF) + %(w — wP) V2 f (w®) (w — wk)}

w | lw—wk[[ <A

@ The number A} is called the trust region radius.

o Intuitively, it is how far we “trust” the truncated Taylor series.
e Radius is grown/shrunk by comparing expected progress to actual progress.

o For example, you shrink it you are making less progress than expected.



Trust Region on Quadratic

@ Newton with trust region on quadratic starting from A = 1.
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@ Does not converge in one step because trust region was too small.
o Converges in one step once trust region contains Newton step.
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Example: Line Search vs. Trust Region

@ Armijo line-search (starting from «y = 1) vs. trust region (starting from A; = 1):

1.00 F100 100 o ° 100

075 —7s s s

0.50 gfsu 0.50 gfso

0.25 g—zs 0.25 g—zs

0.00 { E,c 000 e o ° e | { E
0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00

@ Jj, shrinks to 1/8 on first iteration, doubles on next two, then stays at 1/4.
e On this problem both methods take a similar number of iterations.
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Cubic Regularization of Newton's Method

Gradient descent (ax = 1/L) uses upper-bound on second-order term,
L
fw) < f@®) + V f(wh) (w - w*) + 5 llw = wh|?.
Cubic regularization of Newton's method upper bounds third-order term,
fw) < f(w®) + V f*)T (w* —w) + %(w — w*) V2 f(wh) (w — ) + %Hw —wF|?,
where M is the Lipschitz constant of the Hessian.
Minimizing this upper bound leads to guaranteed progress.

o Similar to gradient descent with oy, = 1/L.

o Bound is tighter for small ||w — wF||, looser for large ||w — w*||.

Can/should use backtracking to replace M by an approximation M.
There exist accelerated variants that achieve faster rates.
o Accelerated method has error of O(1/k?) for convex functions.
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Trust-Region and Cubic Regularization for Non-Convex

@ Trust-region and cubic regularization may be better for non-convex problems.
e These methods may move along directions of negative curvature.

o These are directions that speed up progress.
o Leads to “escaping” saddle points rather than converging to them.

@ Trust-region and cubic regularization methods are more difficult to implement.

o Computing the update is more complicated than solving a linear system.
e But practical methods exist to compute steps guaranteeing sufficient progress.

e Many have similar cost to solving a linear system.
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Summary

First-order oracle model of computation.

e How many queries to an oracle returning function and gradient value?
Momentum and heavy-ball method.

e Optimal convergence rate for optimizing strongly-convex quadratics.
Accelerated gradient method.

o Near-optimal convergence rates for optimizing convex and strongly-convex functions.
o Resetting strategies to avoid needing to know .

Newton's method

e Second-order method with local quadratic convergence.
o Global convergence with line-search, trust-region, or cubic regularization.

Next time: decreasing iteration cost instead of iteration complexity (SGD).
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Conjugate Gradient Derivation and Implementation

@ We said that conjugate gradient is an optimal heavy-ball method.

@ But it is usually derived/analyzed as optimizing a growing set of subspaces.
e In particular, you can show it optimizes over span of all previous gradients.

e CG is usually written/implemented /motivated in a different way:
o Phrased as solving linear system (Aw = —b) for a positive-definite matrix A.
o Using g, = Aw"* 4+ b and dy = —go, the iteration can be written:

Gy
k=TT Ad
k k
wh ™ = wP + aydy,
/Bk _ ggﬁ'lAdk
d{Adk

dr+1 = —Ggr+1 + Brdy

o Note that 8 above is not the (3 used in heavy-ball way of writing.
o Momentum direction dj is multiplied by both ax and Br—_1.
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Affine Invariance and Self-Concordance

@ Newton's method is an affine invariant method:

o Consider applying Newton to f(w) and g = f(Aw) for an invertible matrix A.
o The method generates the same sequence of iterations, up to transformation by A.

@ Despite affine invariance, iteration complexity depends on L, u, and M.

o These are changed by the above re-parameterization.
e We could theoretically search for the A giving the “best” L, u, and M.

@ We have affine-invariant analyses for self-concordant functions.
e Self-concordance bounds third derivative in terms of second derivative.
e lIteration complexity of damped Newton that only depends on Armijo parameters.

@ No dependence on condition number.
e We pick the Armijo parameters (can be the same across problems).
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