
First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Numerical Optimization for Machine Learning
Momentum, Acceleration, and Second-Order Methods

Mark Schmidt

University of British Columbia

Summer 2022



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Last Time: Convergence Rate of Gradient Descent

We considered gradient descent, wk+1 = wk − αk∇f(wk).

If gradient is Lipschitz continuous and function is bounded below:

Needs t = O(L/ε) iterations to find a w with ‖∇f(w)‖2 ≤ ε.

If gradient is Lipschitz continuous and function satisfies PL (or strong-convexity):

Needs t = O((L/µ) log(1/ε)) iterations to a find a w with f(w)− f(w∗) ≤ ε.

Above hold for fixed step size of αk = 1/L, and various practical methods.

Practical methods work better in practice since they often take bigger step sizes.

Today: do algorithms that converge faster exist?



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Oracle Model of Computation
To analyze algorithms and what is possible we need two ingredients:

1 Assumptions about the function like Lipschitz, PL, convexity, and so on.
If the set of functions is unrestricted, we can design impossible-to-optimize functions.

2 Model of computation, restricting what the algorithm can do.
If the algorithm is unrestricted, then our algorithm could be: return w∗.

Standard model of computation is the first-order oracle model:
1 At each iteration the algorithm chooses a point wk.
2 The algorithm then receives f(wk) and ∇f(wk).

We analyze how many iterations are needed to make some quantity small.
Usually ‖∇f(wk)‖, f(wk)− f∗, or ‖wk − w∗‖.

Given assumptions and oracle model, many works:
Prove upper bounds on iteration complexity of specific algorithms.
Prove lower bounds on iteration complexity across algorithms.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Iteration Complexity Lower and Upper Bounds

In first-order oracle model the algorithm itself is often unrestricted,
but it can only learn about the function through evaluations at the chosen wk.

Often prove lower bounds by designing a “worst function” under the assumptions.
And show that you can only slowly discover the minimum location from oracle.

Common variations on the first-order oracle model:
Zero-order oracles only return f(wk).
Second-order oracles also return ∇2f(wk).

Another variation is requiring the algorithm to be dimension independent:
The number of oracle calls does not directly depend on the dimension d.

Our gradient descent bounds were dimension independent.

It may depend on quantities L, that might grow as d increases.
But you can have infinite-dimensional problems where L is finite.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Outline

1 First-Order Oracle Model

2 Heavy-Ball and Conjugate Gradient

3 Nesterov Acceleration for Convex Funcitons

4 Newton Second-Order Method



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Gradient Descent and Quadratics
Consider a minimizing a strongly-convex quadratic function,

f(w) =
1

2
wTAw + bTw + c,

where µI � A � LI for positive µ and L.
So the quadratic is strongly-convex with a Lipschitz-continuous gradient.
Examples: least squares with independent features, L2-regularized least squares.

With αk = 1/L gradient descent satisfies

‖wk − w∗‖ =
(

1− µ

L

)k
‖w0 − w∗‖.

The optimal step size is αk = 2/(L+ µ) which gives

‖wk − w∗‖ =

(
L− µ
L+ µ

)k
‖w0 − w∗‖,

which is faster because (1− µ/L) = (L− µ)/L < (L− µ)/(L+ µ).
And descent lemma with ∇f(w∗) = 0 implies f(wk)− f(w∗) ≤ L

2 ‖w
k − w∗‖2.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Gradient Descent and Quadratics

Gradient descent with αk = 1/L (left) and αk = 2/(L+µ) (right) on a quadratic:

Both step-sizes satisfy αk < 2/L so decrease function at each step.

Using αk = 2/(L+ µ) takes bigger steps but requires knowing µ.
For the above function, 1/L ≈ 0.26 and 2/(L+ µ) ≈ 0.5.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Gradient Descent and Quadratics

Gradient descent with αk = 1/L̂ (left) and αk = 2/(L+µ) (right) on a quadratic:

The approximate Lipschitz constant L̂ is 0.5 after the first iteration.

So it is close to 2/(L+ µ) without knowing L or µ.
But for other functions this step size may be better or worse.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Gradient Descent and Quadratics

Gradient descent with αk = 2/(L+ µ) (left) and optimal αk on a quadratic:

For quadratic functions, you can solve for optimal step-size at each step.

Does not require knowing µ: αk = ∇f(wk)T∇f(wk)/∇f(wk)TA∇f(wk).
Above, 2/(L+ µ) ≈ 0.5, optimal step alternated between ≈ 0.37 and ≈ 0.76.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Gradient Descent and Quadratics

The “optimal” step size may not make the most progress across iterations:

Step sizes left to right: optimal, Malitsky-Mischenko, Polyak, Barzilai-Borwein.

The Barzilai-Borwein step size leads to superlinear convergence for 2d quadatics.

Basically solves the above problem in 5 steps.
Convergence rate beyond 2d quadratics case not known



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Heavy-Ball Method

The (L− µ)/(L+ µ) rate is tight for gradient descent on SC quadratics

There exist quadratic where the method converges at exactly this rate.
Optimal dimension-independent rate for gradient descent.

But there exist faster algorithm for SC quadratics in the first-order oracle model.

A classic example is Polyak’s heavy-ball method [1964],

wk+1 = wk − αk∇f(wk) +βk(w
k − wk−1),

which adds a momentum term to gradient descent for k > 1.

Extra term makes us “go further in the previous direction”.
Has an extra momentum parameter βk ∈ [0, 1).



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Heavy-Ball Method Method



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Heavy-Ball Method Method



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Heavy-Ball Method Method



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Heavy-Ball Method Method



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Heavy-Ball Method Method



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Heavy-Ball Method Method



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Heavy-Ball Method Method



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Heavy-Ball Method Method



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Gradient Descent vs. Heavy Ball on Rosenbrock

Gradient descent (αk = 1/L) vs. heavy ball (αk = 1/L and βk = 0.9):

Momentum in heavy-ball can significantly speed up gradient descent.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Gradient Descent vs. Heavy Ball on Quadratic

Gradient descent (αk = 1/L) vs. heavy ball (αk = 1/L and βk = 0.9):

Heavy-ball method can increase function and “overshoot” the optimum.

But iterations may be closer to solution on average.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Fast Convergence of Heavy-Ball Method on Quadratics
Consider the heavy-ball method with the choices

αk =
4

(
√
L+
√
µ)2

, βk =

(√
L−√µ
√
L+
√
µ

)2

.

Under these choices the heavy-ball method has

‖wk − w∗‖ ≤

(√
L−√µ
√
L+
√
µ

+ εk

)k
‖w0 − w∗‖,

where εk → 0.
Instead of directly bounding ‖wk − x∗‖, proof bounds ‖wk −w∗‖2 + ‖wk−1 −w∗‖2.
This is a special case of the Lyapunov potential function proof technique.

Show that a function “bigger than what you want” is converging at right rate.

The optimal dimension-independent rate in first-oracle model is
√
L−√µ√
L+
√
µ

.

So with this choice the heavy-ball method is close to optimal.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Heavy Ball on Quadratic

Heavy ball (αk = 1/L and βk = 0.9) and

(
αk = 4

(
√
L+
√
µ)2
, βk =

(√
L−√µ√
L+
√
µ

)2
)

.

For this problem, βk on the left is ≈ 0.4.

Unfortunately, the setting on the right requires knowing µ.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Conjugate Gradient: Heavy-Ball with Optimal Parameters
For quadratics, we could optimize αk and βk on each iteration.

At each iteration, choose αk and βk that maximally decrease f .
“Plane search”(“subspace optimization”) along two directions instead of “line search”.

This “optimal heavy-ball” method is called the conjugate gradient (CG) method:

αk = ∇f(wk)Tdk/dTkAdk (step size for gradient direction)

βk = αkβ̂k−1/αk−1 (momentum parameter, β0 = 0)

wk+1 = wk − αk∇f(wk) + βk(w
k − wk−1) (heavy-ball update)

β̂k = ∇f(wk−1)TAdk−1/d
T
k−1Adk−1

dk = −∇f(wk) + β̂kdk−1 (search direction, d0 = −∇f(w0))

Properties:
Gradients between iterations are orthogonal, ∇f(wk)T∇f(wk−1) = 0.
Achieves optimal (

√
L−√µ)/(

√
L+
√
µ) dimension-independent rate.

Faster dimension-dependent analysis (via Chebyshev polynomials).



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Heavy Ball vs. Conjugate Gradient on Quadratic

Heavy ball with

(
αk = 4

(
√
L+
√
µ)2
, βk =

(√
L−√µ√
L+
√
µ

)2
)

and conjugate gradient:

Conjugate gradient method minimizes the two-dimensional quadratic in 2 steps.
You can show that CG minimizes a d-dimensional quadratic in d steps.

Tends not to happen on computers due to floating point issues.

Note that conjugate gradient does not need to know L or µ.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Outline

1 First-Order Oracle Model

2 Heavy-Ball and Conjugate Gradient

3 Nesterov Acceleration for Convex Funcitons

4 Newton Second-Order Method



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Convex Functions

An important generalization of quadratics is convex functions.

Fitting many models involves minimizing a non-quadratic convex function:
Robust regression with the Huber loss or L1-loss.
Binary and multi-class logistic regression.
Binary and multi-class support vector machines.
Density estimation with exponential family distributions like Gaussians.
Fitting various types of graphical models.
Adding L2-regularization or L1-regularization to any of the above.

With L2-regularization, they are all strongly-convex.

Convexity implies that all stationary points are global optima.
So differentiable convex functions can be optimized with gradient descent.

We are not going to review properties of convex functions during these lectures.
See the webpage for notes on convex sets and functions.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Converge Rates of First-Order Methods on [Strongly-]Convex Functions
Convergence rates for gradient descent applied to convex functions:

With αk = 1/L, requires O(1/k) iterations for convex.
Using telescoping argument as we did for non-convex functions.

With αk = 1/L, requires O((1− µ/L)2k) for strongly-convex.
We showed a similar rate for the special case of PL functions.

With αk = 2/(L+ µ), requires O(((L− µ)/(L+ µ)))2k) for strongly-convex.

Dimension-independent lower bounds (Lipschitz gradient, first-order oracle):
There exist convex functions requiring Ω(1/k2) iterations to have f(wk)− f∗ ≤ ε.

For any algorithm (so we can expect sublinear rates at best).

For strongly-convex functions we require Ω(((
√
L−√µ)/(

√
L+
√
µ))2k).

The same speed we saw for strongly-convex quadratics.

We call a first-order method accelerated if it either:
Has a O(1/k2) rate for convex functions.
Has a linear rate depending on

√
L and

√
µ for strongly-convex functions.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Heavy Ball and Conjugate Gradient for Convex Functions?
Is heavy-ball method an accelerated method?

No! For some convex functions heavy-ball is not faster than gradient descent.

There are complications in generalizing conjugate gradient for acceleration:
For convex functions, need to optimize over a 3-dimensional subspace instead of 2.

For non-quadratic functions, usually have no fast way to optimize over subspaces.

For strongly-convex functions, also need to periodically restart the method.
You can restart by setting βk = 0, to “clear” the memory.
But unfortunately the restart frequency depends on L/µ.

Problems where we can optimize efficiently over the subspace:
Linear composition problems, f(w) = g(Aw).

Assuming multiplication by A is bottleneck.

Some other functions that can be expressed as multi-linear maps.
Matrix factorization (PCA) with sufficiently low rank.

See the sequential subspace optimization (SESOP) papers and read Betty’s thesis.
In practice, subspace optimization with gradient plus momentum works really well.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Nesterov’s Accelerated Gradient Method

In 1983 Nesterov proposed the first efficient accelerated gradient method:

wk+1 = vk − αk∇f(vk),

vk+1 = wk+1 + βk(w
k+1 − wk),

We can write the heavy-ball method in a similar form:

wk+1 = vk − αk∇f(wk)

vk+1 = wk+1 + βk+1(wk+1 − wk).

Nesterov’s method computes gradient after applying momentum.
If gradient descent is wk+1 = GD(wk), then:

Momentum is wk+1 = GD(wk) + βk(w
k − wk−1).

Nesterov is wk+1 = GD(wk + βk(w
k − wk−1)).



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Writing Nesterov’s Algorithm with 3 Directions

We can alternately write Nesterov’s algorithm as:

wk+1 = wk − αk∇f(wk) + βk(w
k − wk−1)− αkβk(∇f(wk)−∇f(wk−1)),

where we add “momentum of the gradient” to the heavy-ball method.
(I use wk above but this is technically the momentum sequence vk)

From this point of view, Nesterov’s method is taking a step along 3 directions:
Gradient and momentum (like heavy-ball and CG) and old gradient direction.

Using the gradient difference can be viewed as approximating effect of Hessian.

Consider optimizing a one-dimensional convex function:
If sign of gradient stays same, Nesterov’s algorithm speeds up heavy-ball.
If sign of gradient changes (overshoot min), it “slows down” faster.

Many accelerated variations exist, proofs are often not fun or enlightening.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Nesterov’s Accelerated Gradient: Setting α and β (Theory)

Nesterov’s method is typically analyzed with αk = 1/L.

For convex functions, accelerated rate can be achieved with

βk =
k − 1

k + 2
,

a momentum that converges to 1.

For strongly-convex functions, acceleration can be achieved with constant

βk =

√
L−√µ
√
L+
√
µ
,

as in the heavy-ball method.
Notice that you need different parameters for different problems.

Using a momentum that converges to 1 for strongly-convex could be very slow.

Unlike gradient descent which adapts to problem with standard choices.
Using αk = 1/L maintains rate for convex, strongly-convex, and non-convex.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Nesterov’s Accelerated Gradient: Setting α and β (Practice)

We can maintain the accelerated rate without knowing L:

Start with a small guess L̂.
Given the momentum step vk, test the inequality

f(wk+1) ≤ f(vk)− 1

2L̂
‖∇f(vk)‖2,

and double L̂ if it is not satisfied.

As with gradient descent, can work much better than knowing L.

Note that Nesterov’s method is often typically non-monotonic.

We do not always have f(wk+1) < f(wk).
As with momentum, this is not necessarily a bad thing.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Example: Knowing L vs. Approximation L

O(1/k2) Nesterov with αk = 1/L vs. αk = 1/L̂:

As with gradient descent, you can go faster with the approximation.

L̂ = 16 on iteration 1, then 256 for many iterations, 512 for one, and 1024 for rest.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Nesterov’s Accelerated Gradient: Setting α and β (Practice)

Do you need to know µ for strongly-convex problems?

On some problems O(1/k2) Nesterov is slower than gradient descent,
since gradient descent adapts to best/local µ value.

Common strategy is applying O(1/k2) algorithm with restarting:

Run the O(1/k2) algorithm (which increases momentum and does not need µ).
Occasionally stop the method and reset the momentum.

Accelerated rate is achieved if we reset every O(
√
L/µ) iterations.

Various practical resetting strategies have been proposed:

Use a binary search for a best-performing fixed restart frequency.
Methods that check if the restart frequency is too long.
Methods that test whether a restart is needed.

Simplest method restarts if f(wk) increases.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Effect of µ Estimate

Effect of different momentum updates on an accelerated gradient method:
q = 1 is gradient descent, q = 0 is O(1/k2) method, intermediate are SC methods.

https://arxiv.org/pdf/1204.3982.pdf

Performance degrades away from optimal update q∗ (depending on L/µ).



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Restarted Accelerated Gradient

Effect of restarting on an accelerated gradient method:

https://arxiv.org/pdf/1204.3982.pdf

Restarting often significantly improves performance.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Non-Linear Conjugate Gradient
There are also various non-linear conjugate gradient methods.

These methods use the heavy-ball update with particular choices of βk.
On each step they use a line search along the direction dk = gk + βkdk−1.
On quadratic functions with exact line search, equivalent to conjugate gradient.
They work best with a precise line-search along dk.

Many variations exist, with common variations being (with gk = ∇f(wk)):
Fletcher-Reeves: βk = 〈gk, gk〉/〈gk−1, gk−1〉.
Polak-Ribiere: βk = 〈gk, gk − gk−1〉/〈gk−1, gk−1〉.
Hestenes-Steifel: βk = 〈gk, gk − gk−1〉/〈gk − gk−1, dk−1〉.

These methods often use restart mechasnisms.
Example: set βk = 0 if directional derivative (dTk∇f(wk)) is not sufficiently negative.

These methods do not achieve accelerated rate.

But for many problems they work amazingly well in practice.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Outline

1 First-Order Oracle Model

2 Heavy-Ball and Conjugate Gradient

3 Nesterov Acceleration for Convex Funcitons

4 Newton Second-Order Method



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Gradient Descent vs. Newton’s Method

Recall the second-order Taylor expansion representation of a function,

f(v) = f(w) +∇f(w)T (v − w) +
1

2
(v − w)T∇2f(u)(v − w),

for some u between w and v.

We analyze progress of gradient descent by upper-bounding last term,

f(v) ≤ f(w) +∇f(w)T (v − w) +
L

2
‖v − w‖2,

and minimizing right side in terms of v gives gradient descent with αk = 1/L.

Newton’s method is obtained by minimizing a truncated Taylor series,

f(v) ≈ f(w) +∇f(w)T (v − w) +
1

2
(v − w)T∇2f(w)(v − w),

which becomes exact as ‖v − w‖ shrinks to 0.
We typically analyze Newton’s method based on second-order oracle.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Example: Conjugate Gradient vs. Newton on Quadratic

Conjugate gradient and Newton on a 2d quadratic function:

Newton’s method finds minimizer of quadratics in one iteration.

The Hessian ∇2f(w) is constant so the approximation is exact.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Example: Gradient Descent vs. Newton on Quadratic

Our best gradient descent method and Newton on Rosenbrock

Newton’s method finds exact minimizer in 2 iterations.

Though notice that first iteration increased the function a lot.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Implementation of Newton’s Method (Strongly-Convex)

If f is strongly-convex then ∇2f(wk) is invertible and positive-definite.

In this situation the minimizer in terms of v of

f(wk) +∇f(wk)T (v − w) +
1

2
(v − wk)T∇2f(wk)(v − wk),

is given by
wk+1 = wk − [∇2f(wk)]−1∇f(wk),

which is the Newton update.

We do not compute the inverse Hessian, but use a Cholesky factorization.

Fast Gaussian elimination method for solving positive-definite linear systems.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Newton’s Method

f(x)



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Newton’s Method

f(x)

x



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Newton’s Method

f(x)

x - !f’(x)

x



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Newton’s Method

Q(x)
f(x)

x

x - !f’(x)



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Newton’s Method

f(x)

xk - !H-1f’(x)

x

x - !f’(x)
Q(x)



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Quadratic Convergence of Newton’s Method

Conisder a function with a Lipschitz-continuous Hessian,

‖∇2f(w)−∇2f(v)‖ ≤M‖w − v‖,

for some M and using the operator matrix norm (max singular value).

If f is also µ-strongly convex then Newton’s method has

‖wk+1 − w∗‖ ≤ M

2µ
‖wk − w∗‖2.

If ‖wk − w∗‖ becomes sufficiently small, this implies quadratic convergence.
A form of superlinear convergence.

Problem: there is no guarantee that Newton’s method converges.
So ‖wk − w∗‖ may never become sufficiently small.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Damped Newton for Global Convergence

Most common way to make Newton converge is to add a step size:

wk+1 = wk − αk[∇2f(wk)]−1∇f(wk),

sometimes called a damped Newton step.

If gradient is Lipschitz and f is strongly-convex, then we obtain

f(wk+1) ≤ f(wk)− µ

2L2
‖∇f(wk)‖2,

by using damped Newton in the descent lemma with αk = µ/L.
Notice that is a worse progress bound than with gradient descent.
We lose a factor of µ/L from using Newton instead of gradient direction.

This leads to a global convergence rate of

f(wk+1)− f∗ ≤
(

1− µ2

L2

)k
[f(w0)− f∗],

depending on the squared condition number L/µ (opposite of acceleration).



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Damped Newton with Armijo: Linear then Quadratic Rate

We do not want to use αk = µ/L, instead we might use the Armijo condition,

f(wk+1) ≤ f(wk)− γαk〈∇f(wk), dk〉,

where for the damped Newton the direction is dk = [∇2f(wk)]−1∇f(wk).
This is a generalization of the earlier Armijo condition for a generic direction dk.

You can show αk = 1 satisfies the Armijo condition when close to solution.
So if we try αk = 1 first, we eventually have quadratic convergence.

We can do a two-phase analysis of damped Newton for strongly convex f :
Far from solution, Lipschitz gradient guarantees slow linear rate.

Worse than gradient descent.

Close to solution, Lipschitz Hessian guarantees fast superlinear rate.

Assuming we eventually start trying αk = 1 first.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Example: Newton vs. Damped Newton

Newton vs. damped Newton (with Armijo starting from αk = 1) on Rosenbrock:

A step size of αk = 1 was used on most iterations.

But damped Newton takes around 16 iterations to reach machine precision.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Hessian Modification

The Newton step “inverts” the Hessian, ∇2f(wk).

This causes problems if f is not strongly convex:
The Hessian matrix may be singular (no inverse exists).
The Newton direction may not be a descent direction.

The directional derivative might be 0 or positive, causing Armijo to fail.

Common fix is to replace ∇2f(wk) with a positive-definite approximation,

wk+1 = wk − αk[Hk]−1∇f(wk).

For example, set Hk = ∇2f(wk) + λkI.
Where λk is set so that eigenvalues of Hk are at least some positive ε.

More sophisticated approaches try to minimally modify Cholesky of ∇2f(w).
Works better than the λk approach, but still not ideal for non-convex.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Trust-Region Methods

For a constant αk and positive-definite approximation Hk, damped Newton is

wk+1 ∈ argmin
w∈Rd

{
f(wk) +∇f(wk)T (w − wk) +

1

2αk
(w − wk)THk(w − wk)

}
,

For a constant ∆k trust region methods instead try to compute

wk+1 ∈ argmin
w | ‖w−wk‖≤∆k

{
f(wk) +∇f(wk)T (w − wk) +

1

2
(w − wk)T∇2f(wk)(w − wk)

}
.

The number ∆k is called the trust region radius.

Intuitively, it is how far we “trust” the truncated Taylor series.
Radius is grown/shrunk by comparing expected progress to actual progress.

For example, you shrink it you are making less progress than expected.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Trust Region on Quadratic

Newton with trust region on quadratic starting from ∆k = 1.

Does not converge in one step because trust region was too small.

Converges in one step once trust region contains Newton step.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Example: Line Search vs. Trust Region

Armijo line-search (starting from αk = 1) vs. trust region (starting from ∆k = 1):

δk shrinks to 1/8 on first iteration, doubles on next two, then stays at 1/4.

On this problem both methods take a similar number of iterations.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Cubic Regularization of Newton’s Method

Gradient descent (αk = 1/L) uses upper-bound on second-order term,

f(w) ≤ f(wk) +∇f(wk)T (w − wk) +
L

2
‖w − wk‖2.

Cubic regularization of Newton’s method upper bounds third-order term,

f(w) ≤ f(wk) +∇f(wk)T (wk − w) +
1

2
(w − wk)∇2f(wk)(w − wk) +

M

6
‖w − wk‖3,

where M is the Lipschitz constant of the Hessian.

Minimizing this upper bound leads to guaranteed progress.
Similar to gradient descent with αk = 1/L.
Bound is tighter for small ‖w − wk‖, looser for large ‖w − wk‖.

Can/should use backtracking to replace M by an approximation M̂ .
There exist accelerated variants that achieve faster rates.

Accelerated method has error of O(1/k3) for convex functions.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Trust-Region and Cubic Regularization for Non-Convex

Trust-region and cubic regularization may be better for non-convex problems.
These methods may move along directions of negative curvature.

These are directions that speed up progress.
Leads to “escaping” saddle points rather than converging to them.

Trust-region and cubic regularization methods are more difficult to implement.

Computing the update is more complicated than solving a linear system.
But practical methods exist to compute steps guaranteeing sufficient progress.

Many have similar cost to solving a linear system.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Summary

First-order oracle model of computation.

How many queries to an oracle returning function and gradient value?

Momentum and heavy-ball method.

Optimal convergence rate for optimizing strongly-convex quadratics.

Accelerated gradient method.

Near-optimal convergence rates for optimizing convex and strongly-convex functions.
Resetting strategies to avoid needing to know µ.

Newton’s method

Second-order method with local quadratic convergence.
Global convergence with line-search, trust-region, or cubic regularization.

Next time: decreasing iteration cost instead of iteration complexity (SGD).



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Conjugate Gradient Derivation and Implementation
We said that conjugate gradient is an optimal heavy-ball method.
But it is usually derived/analyzed as optimizing a growing set of subspaces.

In particular, you can show it optimizes over span of all previous gradients.
CG is usually written/implemented/motivated in a different way:

Phrased as solving linear system (Aw = −b) for a positive-definite matrix A.
Using gk = Awk + b and d0 = −g0, the iteration can be written:

αk = − gTk dk
dTkAdk

wk+1 = wk + αkdk

βk =
gTk+1Adk

dTkAdk

dk+1 = −gk+1 + βkdk

Note that βk above is not the βk used in heavy-ball way of writing.
Momentum direction dk is multiplied by both αk and βk−1.



First-Order Oracle Model Heavy-Ball and Conjugate Gradient Nesterov Acceleration for Convex Funcitons Newton Second-Order Method

Affine Invariance and Self-Concordance

Newton’s method is an affine invariant method:

Consider applying Newton to f(w) and g = f(Aw) for an invertible matrix A.
The method generates the same sequence of iterations, up to transformation by A.

Despite affine invariance, iteration complexity depends on L, µ, and M .

These are changed by the above re-parameterization.
We could theoretically search for the A giving the “best” L, µ, and M .

We have affine-invariant analyses for self-concordant functions.

Self-concordance bounds third derivative in terms of second derivative.
Iteration complexity of damped Newton that only depends on Armijo parameters.

No dependence on condition number.
We pick the Armijo parameters (can be the same across problems).


	First-Order Oracle Model
	Heavy-Ball and Conjugate Gradient
	Nesterov Acceleration for Convex Funcitons
	Newton Second-Order Method

