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Motivation: Training == Optimization (Usually)

In machine learning, training is typically written as an optimization problem.

ŵ ∈ argmin
w∈Rd

f(w).

We have a parameter vector w containing d parameters.

We want to minimize a loss function f , measuring how well we fit the data.

We try to minimize f in order to fit the data as well as possible.

Examples:

Linear regression, logistic regression, SVMs, PCA, graphical models, neural nets,. . .

Piazza for class-related discussions:
piazza.com/ubc.ca/summer2022/cpsc5xx

piazza.com/ubc.ca/summer2022/cpsc5xx
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Example: Linear Regression

Example: linear regression with the squared loss,

ŵ ∈ argmin
w∈Rd

1

2

n∑
i=1

(wTxi − yi)2,

where we have n training examples:
Each has a feature vector xi ∈ Rd and label yi ∈ R.

We sometimes write the linear regression objective using matrix notation,

1

2

n∑
i=1

(wTxi − yi)2 = 1

2
‖Xw − y‖2,

where vector y ∈ Rn has the labels yi,
and matrix X ∈ Rn×d has the feature vectors (xi)T as rows.
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Default Tool: Gradient Descent

Challenges:

Often do not have a closed-form solution.
Number of parameters d may be large.
Evaluating objective f may be expensive.

A common approach is gradient descent.

Iterative approach that generates a sequences of guesses w0, w1,. . .
First-order method since it requires first derivatives.
Cheap iterations: only costs O(d) on top of cost of computing gradient.
But, how many iterations do we need?
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Gradient Descent for Finding a Local Minimum

A typical gradient descent algorithm (first proposed by Cauchy in 1847):
Start with some initial guess, w0.

Generate new guess w1 by moving in the negative gradient direction:

w1 = w0 − α0∇f(w0),

where α0 is the step size.

Repeat to successively refine the guess:

wk+1 = wk − αk∇f(wk), for k = 1, 2, 3, . . .

where we might use a different step-size αk on each iteration.
Stop if ‖∇f(wk)‖ ≤ ε.

In practice, you also stop if you detect that you are not making progress.
Might check ‖wk − wk−1‖ or f(wk−1)− f(wk) for lack of progress.
Might also stop if you reach a specified maximum number of iterations.
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Gradient Descent in 2D

(Negative gradient direction should be perpendicular to level curves above.)
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Gradient Descent for Linear Regression

The linear regression objective in matrix notation is

f(w) =
1

2
‖Xw − y‖2.

The gradient vector and Hessian matrix of this objective are

∇f(w) = XT (Xw − y︸ ︷︷ ︸
r

), ∇2f(w) = XTX︸ ︷︷ ︸
d×d

.

Plugging the gradient vector into the gradient descent update gives

wk+1 = wk − αk∇f(wk)
= wk − αkXT r.

Cost of the update is O(nd), with bottleneck being Xw and XT r operations.
If X has only z non-zeroes, cost is reduced to O(z).
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Gradient Descent for Regularized Linear Regression

The L2-regularized linear regression objective in matrix notation is

f(w) =
1

2
‖Xw − y‖2 + λ

2
‖w‖2.

The gradient vector and Hessian matrix of this objective are

∇f(w) = XT (Xw − y︸ ︷︷ ︸
r

) + λw, ∇2f(w) = XTX︸ ︷︷ ︸
d×d

+λI.

Plugging the gradient vector into the gradient descent update gives

wk+1 = wk − αk∇f(wk)
= wk − αk(XT r + λwk).

Cost is the same O(nd) as without regularization.
But we will see that you will need fewer iterations.
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Cost of L2-Regularizd Least Squares

Two strategies from 340 for L2-regularized linear regression:
1 Run t iterations of gradient descent,

wk+1 = wk − αk (X
T (Xwk − y) + λwk)︸ ︷︷ ︸

∇f(wk)

,

which costs O(ndt).
Using t as total number of iterations, and k as iteration number.

2 Closed-form solution by setting gradient equal to zero

w = (XTX + λI)−1(XT y),

which costs O(nd2 + d3).
This is fine for d = 5000, but may be too slow for d = 1, 000, 000.

Gradient descent is faster if t is not too big:
If we only need t < max{d, d2/n} iterations.
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Cost of Logistic Regression

Gradient descent can also be applied to other models like logistic regression,

f(w) =

n∑
i=1

log(1 + exp(−yiwTxi)),

where minimization cannot be formulated as a linear system.

Setting ∇f(w) = 0 gives a system of transcendental equations.

But this objective function is convex and differentiable.

So gradient descent converges to a global optimum.

Alternately, another common approach is Newton’s method.

Requires computing Hessian ∇2f(wk), and known as “IRLS” in statistics.
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Cost of Logistic Regression

Gradient descent costs O(nd) per iteration for logistic regression.

Newton costs O(nd2 + d3) per iteration to compute and invert ∇2f(wk).

Newton typically requires substantially fewer iterations.

But for datasets with very large d, gradient descent might be faster.

If t < max{d, d2/n} then we should use the “slow” algorithm with fast iterations.

So, how many iterations t of gradient descent do we need?



Gradient Descent Guaranteed Progress Practical Step Sizes Gradient Descent Convergence Rate Linear Convergence of Gradient Descent

Lipschitz Conintuity of the Gradient

To understand gradient descent, we will first show a basic property:
If the step-size αk is small enough, then gradient descent decreases f .

We will assume that the gradient of f is Lipschitz continuous.
There exists an L such that for all w and v we have

‖∇f(w)−∇f(v)‖ ≤ L‖w − v‖.

“Gradient cannot change arbitrarily fast”.

This holds for many ML models, like least squares and logistic regression.
But does not hold for others like matrix factorization or neural networks.

Assumption is not necessary to show gradient descent decreases f for small αk.
You only need continuity of the gradient, but that is not enough to prove rates.
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Lipschitz Continuity of the Gradient

For C2 functions, Lipschitz continuity of the gradient is equivalent to

∇2f(w) � LI,

for all w.

Equivalently: “singular values of the Hessian are bounded above by L”.

For least squares, minimum L is the maximum eigenvalue of XTX.

This means we can bound quadratic functions involving the Hessian using

dT∇2f(u)d ≤ dT (LI)d
= LdTd

= L‖d‖2.
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Descent Lemma

For a C2 function, a variation on the multivariate Taylor expansion is that

f(v) = f(w) +∇f(w)T (v − w)︸ ︷︷ ︸
tangent hyper-plane

+
1

2
(v − w)T∇2f(u)(v − w)︸ ︷︷ ︸

quadratic function of v

,

for any w and v (with u being some point between w and v).

Lipschitz continuity implies the green term is at most L‖v − w‖2,

f(v) ≤ f(w) +∇f(w)T (v − w) + L

2
‖v − w‖2,

which is called the descent lemma.

The descent lemma also holds for C1 functions (bonus slide).
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Descent Lemma

The descent lemma gives us a convex quadratic upper bound on f :

f(x)

f(x) + ∇f(x)T(y-x)

f(y)

f(x) + ∇f(x)T(y-x) + (L/2)||y-x||2

This bound is minimized by a gradient descent step from w with αk = 1/L.
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Gradient Descent decreases f for αk = 1/L

So let us consider doing gradient descent with a step-size of αk = 1/L,

wk+1 = wk − 1

L
∇f(wk).

If we substitle wk+1 and wk into the descent lemma we get

f(wk+1) ≤ f(wk) +∇f(wk)T (wk+1 − wk) + L

2
‖wk+1 − wk‖2.

Now if we use that (wk+1 − wk) = − 1
L∇f(w

k) in gradient descent,

f(wk+1) ≤ f(wk)− 1

L
∇f(wk)T∇f(wk) + L

2
‖ 1
L
∇f(wk)‖2

= f(wk)− 1

L
‖∇f(wk)‖2 + 1

2L
‖∇f(wk)‖2

= f(wk)− 1

2L
‖∇f(wk)‖2.
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Implication of Lipschitz Continuity

We have derived a bound on guaranteed progress when using αk = 1/L.

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2.

f(x) Guaranteed
Progress

If gradient is non-zero, αk = 1/L is guaranteed to decrease objective.

Amount we decrease grows with the size of the gradient.
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Example: Fixed-Step Gradient Descent on Rosenbrock Function

Applying gradient descent with αk = 1/L to Rosenbrock function:

Red point is optimal solution, green points are 50 iterations of gradient descent.
Each iteration decreases function, but the steps are small (L > 1300 on [0, 1]2).
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General Step-Size

Now consider doing using generic step-size of αk,

wk+1 = wk − αk∇f(wk).

We can also derive this step as minimizing a quadratic approximation of f ,

wk+1 ∈ argmin
w

{
f(wk) +∇f(wk)T (w − wk) + 1

2αk
‖w − wk‖2

}
,

which is not necessarily an upper bound (since we could have 1/αk � L).

Plugging in a generic step-size into the descent lemma and simplifying gives

f(wk+1) ≤ f(wk)− αk
(
1− αkL

2

)
︸ ︷︷ ︸
> 0 if αk < 2/L

‖∇f(wk)‖2,

which shows that any αk < 2/L is guaranteed to decrease f .
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Do you need to know L?

In practice, you should never use αk = 1/L.
L is usually expensive to compute, and this step-size can be really small.

You only need a step-size this small in the worst case (assuming initial L̂ < L).

A more-practical option is to approximate L:

Start with a small guess for L̂ (like L̂ = 1).
On each iteration, before you take your step, check if the progress bound is satisfied:

f(wk − (1/L̂)∇f(wk)︸ ︷︷ ︸
potential wk+1

) ≤ f(wk)− 1

2L̂
‖∇f(wk)‖2.

Double L̂ if inequality not satisfied, and then test again, until inequality is satisfied.

On the next iteration you initialize with the final L̂ (so L̂ does not decrease).
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Do you need to know L?

“Double L̂ until you guarantee enough progress” still guarantees

f(wk+1) ≤ f(wk)− 1

4L
‖∇f(wk)‖2,

in the worst case.

Because eventually you could double L̂ enough so that L < L̂ < 2/L.

And using α = 1/L̂ will always decrease f at every iteration.
So in the worst case, you guarantee half as much progress as knowing L.

Without needing to solve any eigenvalue problems.

But typically using the estimate L̂ works much better than using L.

You may only need a step as small as 1/L for one direction at one point in space.
Typically L̂� L so you make way more progress.
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Example: Knowing L vs. Aproximating L

Comoparing αk = 1/L (left) and αk = 1/L̂ (right).

Purple points are rejected steps when L̂ was too small.

After second step L̂ = 256 (while L > 1300 is needed guarantee progress anywhere).
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Armijo Backtracking - Textbook Version

The “double L̂” strategy is common for analyzing optimization algorithms.

But fastest codes typically do not use this strategy.

On most iterations, you can make more progress with a bigger step size.
You want to exploit the “local” L value, not be slowed down by the global L.

An approach that usually works better is a backtracking line-search:
Start each iteration with a large step-size α.

So even if we took small steps in the past, be optimistic that we are not in worst case.

Halve α until Armijo condition is satisfied,

f(wk − α∇f(wk)︸ ︷︷ ︸
potential wk+1

) ≤ f(wk)− αγ‖∇f(wk)‖2 for γ ∈ (0, 1/2],

often we choose γ to be very small like γ = 10−4.

We would rather take a small decrease than try many α values.
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Example: Aproximating L vs. Armijo (starting from 1)

Comoparing αk = 1/L̂ (left) and Armijo starting with αk = 1 and using γ = 10−4

(right).

Armijo often allows larger step sizes.

Left eventually used αk = 1/256, right used αk = 1/128 (but more backtracking).
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Backtracking Line-Search and Armijo Condition
Good optimization codes use clever tricks to decide on the first α to try.

For the first step, many codes initialize with something like α0 = 1/‖∇f(w0)‖.
A common choice for subsequent steps is the Barzilai Borwein step-size (next time).
Goal of the above is avoid needing to backtrack on most iterations.

Good optimization codes use interpolation to decide on subsequent α.
Fit polynomial that agrees with observed function and directional derivative values.
Set step size to minimize this polynomial.
Often gives a step size that is accepted, on iterations where we backtrack.

Line-search initialization/interpolation help but need safeguards.
Sanity checks that they return reasonable values (so do not lose convergence).

More fancy line-searches are based on the Wolfe conditions.
Tests whether directional derivative is decreased along gradient direction.
Unlike Armijo, rejects step sizes that are too small.
Good reference on these tricks: Nocedal and Wright’s Numerical Optimization book.
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Example: Armijo (starting from 1) vs. Armijo (starting from BB)

Armijo starting with 1 (left) and starting from Barzilai-Borwein (right)

Barzilai-Borwen lead to a lot less backtracking.

Accepted step sizes starting from BB ranged from ≈ .0001 up to ≈ 1.3.
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Example: Armijo+BB with step size halving vs. quadratic interpolation

Armijo + BB initialization, and αk halving (left) vs. interpolation (right).

Quadratic interpolation gave more clever guesses when backtracking.

findMin: gradient descent, Armijo, Barzilai-Browein, quad interp, safeguards.
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Example: Backtracking with Polynomial Interpolation
Backtracking with cubic-polynomial interpolation after rejecting a step size:

1 Finds cubic polynomial interpolating function agreeing with directional derivatives.
f(wk), f(w+), ∇f(wk)T dk, ∇f(w+)T dk for new iteration w+ = wk + αkd

k.
For gradient descent we have dk = −∇f(wk).

2 Use the minimum of the cubic polynomial as the step size.

Quadratic interpolation: two function values and one directional derivative.
With n function/derivative values you can fit an (n− 1)-dimensional polynomial.
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Example: Armijo+BB+Quadratic Interp vs. Malitsky-Mischenko

Comparing Armijo+BB+Quadratic Interp (left)
to Malitsky-Mischenko’s step size (right):

I used the initialization suggested in the MM paper (α0 = 10−10).

Malitsky-Mischenko does not need backtrack for convex functions.
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Example: Armijo+BB+Quadratic Interp vs. Polyak Step Size

Comparing Armijo+BB+Quadratic Interp (left)
to Polyak’s step size (right):

Polyak’s step size is (f(wk)− f∗)/‖∇f(wk)‖2 (assumes f∗ is known).

Polyak’s step size does not need backtrack for convex functions.
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Last Section: Progress Bound for Gradient Descent

We discussed gradient descent,

wk+1 = wk − αk∇f(wk).

assuming that the gradient was Lipschitz continuous,

‖∇f(w)−∇f(v)‖ ≤ L‖w − v‖,

We showed that setting αk = 1/L gives a progress bound of

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2,

We discussed practical αk values that give similar bounds (replacing 1/2L).

“Try a big step-size, and decrease it if it does decrease function enough.”
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Convergence Rate of Gradient Descent

In 340, we claimed that ∇f(wk) converges to zero as k goes to ∞.

For convex functions, this means it converges to a global optimum.
However, we may not have ∇f(wk) = 0 for any finite k.

Instead, we are usually happy with ‖∇f(wk)‖ ≤ ε for some small ε.

Given an ε, how many iterations does it take for this to happen?

We will first answer this question only assuming that
1 Gradient ∇f is Lipschitz continuous (as before).
2 Step-size αk = 1/L (this is only to make things simpler).
3 Function f cannot go below a certain value f∗ (“bounded below”).

Most ML objectives f are bounded below (like the squared error being at least 0).

We’re not assuming convexity (but only showing convergence to a stationary point).
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Convergence Rate of Gradient Descent

Key ideas:
1 We start at some f(w0), and at each step we decrease f by at least 1

2L‖∇f(w
k)‖2.

2 But we cannot decrease f(wk) below f∗.
3 So ‖∇f(wk)‖2 must be going to zero “fast enough”.

Let’s start with our guaranteed progress bound,

f(wk) ≤ f(wk−1)− 1

2L
‖∇f(wk−1)‖2.

Since we want to bound ‖∇f(wk)‖, let’s rearrange as

‖∇f(wk−1)‖2 ≤ 2L(f(wk−1)− f(wk)).
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Convergence Rate of Gradient Descent

So for each iteration k, we have

‖∇f(wk−1)‖2 ≤ 2L[f(wk−1)− f(wk)].

Consider the smallest squared gradient norm we see before iteration t,

min
j∈{0,...,t−1}

{
‖∇f(wj)‖2

}
.

This minimum is less than the average squared gradient norm,

min
j∈{0,...,t−1}

{
‖∇f(wj)‖2

}
≤ 1

t

t∑
k=1

‖∇f(wk−1)‖2

≤ 2L

t

t∑
k=1

[f(wk−1)− f(wk)],

and each term in average is bounded by the inequality at the top of the slide.
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Convergence Rate of Gradient Descent
The inequality from the previous slide is

min
j∈{0,...,t−1}

{
‖∇f(wj)‖2

}
≤ 2L

t

t∑
k=1

[f(wk−1)− f(wk)].

On the right, we have a telescoping sum:

t∑
k=1

[f(wk−1)− f(wk)] = f(w0)− f(w1) + f(w1)︸ ︷︷ ︸
0

− f(w2) + f(w2)︸ ︷︷ ︸
0

− · · · − f(wt)

= f(w0)− f(wt).
And using that f(wt) ≥ f∗ we get

min
k∈{0,1,...,t−1}

{
‖∇f(wk)‖2

}
≤ 2L[f(w0)− f∗]

t
= O(1/t),

so if we run for t iterations, we’ll find at least one k︸ ︷︷ ︸
the minimum

with ‖∇f(wk)‖2 = O(1/t).
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Discussion of O(1/t) Result

We showed that after t iterations, there is always a k such that

‖∇f(wk)‖2 ≤ 2L[f(w0)− f∗]
t

.

It isn’t necessarily the last iteration t that achieves this.

Though iteration t does have the lowest value of f(wk).

This is a non-asymptotic result:

It is valid for any t ≥ 1, there is no “limit as t→∞” as in classic results.
But if t goes to ∞, argument can be modified to show that ∇f(wt) goes to zero.

More precisely, it is common to show that lim inft→∞ ‖∇f(wt)‖ = 0.

This does not imply that gradient descent finds global minimum.

We could be minimizing an NP-hard function with bad local optima.
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Convergence Rate of Gradient Descent

Our “error on iteration t” bound:

min
k∈{0,1,...,t−1}

{
‖∇f(wk)‖2

}
≤ 2L[f(w0)− f∗]

t
.

We want to know when the norm is below ε, which is guaranteed if:

2L[f(w0)− f∗]
t

≤ ε.

Solving for t gives that this is guaranteed for every t where

t ≥ 2L[f(w0)− f∗]
ε

,

so gradient descent requires t = O(1/ε) iterations to achieve ‖∇f(wk)‖2 ≤ ε.
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Iteration Complexity

We have shown that having

t ≥ 2L[f(w0)− f∗]
ε

= O(1/ε),

is sufficient to guarantee we have a k with ‖∇f(wk)‖2 ≤ ε.

We say that t = O(1/ε) is the iteration complexity of the algorithm.

“Iteration complexity” is “how many you need”.
Practical step-size strategies like Armijo backtracking also require O(1/ε).

Just changes constants inside O() notation.

For real ML problems iteration complexities are often very loose.

In practice gradient descent converges much faster.
There is a practical and theoretical component to developing optimization methods.
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Cost of Iterative Algorithms

Cost of many optimization algorithm is a product of:

Cost of each iteration.
Iteration Complexity (number of iterations).

For least squares:

Cost of each iteration of gradient descent is O(nd).
The iteration complexity we derived is O(1/ε).

So the total cost according to the result we derived is O(nd(1/ε)).

For a fixed accuracy ε:
There is dimension d beyond which gradient descent is faster than normal equations.

This is assuming that L and f(w0)− f∗ are not growing with the dimensionality.
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O(1/ε) vs. O(log(1/ε))

Think of log(1/ε) as “number of digits of accuracy” you want.

We want iteration complexity to grow slowly with 1/ε.

Is O(1/ε) a good iteration complexity?

Not really, if you need 10 iterations for a “digit” of accuracy then:

You might need 100 for 2 digits.
You might need 1000 for 3 digits.
You might need 10000 for 4 digits.

We would normally call this exponential time.
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Rates of Convergence

A way to measure rate of convergence is by limit of the ratio of successive errors,

lim
k→∞

f(wk+1)− f(w∗)
f(wk)− f(w∗)

= ρ.

Different ρ values of give us different rates of convergence:
1 If ρ = 1 we call it a sublinear rate.
2 If ρ ∈ (0, 1) we call it a linear rate.
3 If ρ = 0 we call it a superlinear rate.

Having f(wt)− f(w∗) = O(1/t) gives sublinear convergence rate:

“The longer you run the algorithm, the less progress it makes”.
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Sub/Superlinear Convergence vs. Sub/Superlinear Cost

As a computer scientist, what would we ideally want?

Sublinear rate is bad, we don’t want O(1/t) (“exponential” time: O(1/ε) iterations).
Linear rate is ok, we’re ok with O(ρt) (“polynomial” time: O(log(1/ε)) iterations).

Superlinear rate is great, amazing to have O(ρ2
t

) (“constant”: O(log(log(1/ε)))).

Notice that terminology is backwards compared to computational cost:

Superlinear cost is bad, we don’t want O(d3).
Linear cost is ok, having O(d) is ok.
Sublinear cost is great, having O(log(d)) is great.

Ideal algorithm: superlinear convergence and sublinear iteration cost.
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Polyak- Lojasiewicz (PL) Inequality

For least squares, we have linear cost but we only showed sublinear rate.

For many “nice” functions f , gradient descent actually has a linear rate.

For example, for functions satisfying the Polyak- Lojasiewicz (PL) inequality,

1

2
‖∇f(w)‖2 ≥ µ(f(w)− f∗),

for all w and some µ > 0, and f∗ is the infimum of the function.
“As the function f(w) increases above f∗, the gradient ∇f(w) grows quadratically”.
This property holds for least squares (bonus slide).
PL also implies that gradient descent finds global optima.

PL implies invexity.
For C1, invexity is equivalent to “all stationary points are global optima”.
Convex functions a special case of invex functions.
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Linear Convergence under the PL Inequality

Recall our guaranteed progress bound

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2.

Under the PL inequality we have −‖∇f(wk)‖2 ≤ −2µ(f(wk)− f∗), so

f(wk+1) ≤ f(wk)− µ

L
(f(wk)− f∗).

Let’s subtract f∗ from both sides,

f(wk+1)−f∗ ≤ f(wk)−f∗ − µ

L
(f(wk)− f∗),

and factorizing the right side gives

f(wk+1)− f∗ ≤
(
1− µ

L

)
(f(wk)− f∗).
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Linear Convergence under the PL Inequality

Applying this recursively:

f(wk)− f∗≤
(
1− µ

L

)
[f(wk−1)− f(w∗)]

≤
(
1− µ

L

) [(
1− µ

L

)
[f(wk−2)− f∗]

]
=
(
1− µ

L

)2
[f(wk−2)− f∗]

≤
(
1− µ

L

)3
[f(wk−3)− f∗]

≤
(
1− µ

L

)k
[f(w0)− f∗]

We’ll always have 0 < µ ≤ L so we have (1− µ/L) < 1.

So PL implies a linear convergence rate: f(wk)− f∗ = O(ρk) for ρ < 1.
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Linear Convergence under the PL Inequality

We’ve shown that

f(wk)− f∗ ≤
(
1− µ

L

)k
[f(w0)− f∗]

By using the inequality that

(1− γ) ≤ exp(−γ),

we have that
f(wk)− f∗ ≤ exp

(
−k µ

L

)
[f(w0)− f∗],

which is why linear convergence is sometimes called “exponential convergence”.

We’ll have f(wt)− f∗ ≤ ε for any t where

t ≥ L

µ
log((f(w0)− f∗)/ε) = O(log(1/ε)).
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Discussion of Linear Convergence under the PL Inequality

PL is satisfied for many standard convex models like least squares (bonus).

So cost of least squares is O(nd log(1/ε)).

PL is also satisfied for some non-convex functions like w2 + 3 sin2(w).

x

f(x) 

PL satisfied for PCA on a certain “Riemann manifold”.
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Discussion of Linear Convergence under the PL Inequality

But PL is not satisfied for many models, like neural networks.

The PL constant µ might be terrible.

For least squares µ is the smallest non-zero eigenvalue of the Hessian

.

It may be hard to show that a function satisfies PL.

But an important special case of PL functions is strongly-convex functions.

Which have many nice properties.



Gradient Descent Guaranteed Progress Practical Step Sizes Gradient Descent Convergence Rate Linear Convergence of Gradient Descent

Strong Convexity

We say that a function f is strongly convex if the function

f(w)− µ

2
‖w‖2,

is a convex function for some µ > 0.
“If you ‘un-regularize’ by µ then it’s still convex.”

For C2 functions this is equivalent to assuming that

∇2f(w) � µI,

that the eigenvalues of the Hessian are at least µ everywhere.

Some nice properties of strongly-convex functions (see bonus):
A unique global minimizing point w∗ exists.
C1 strongly-convex functions satisfy the PL inequality.
If g(w) = f(Aw) for strongly-convex f and matrix A, then g is PL (least squares).



Gradient Descent Guaranteed Progress Practical Step Sizes Gradient Descent Convergence Rate Linear Convergence of Gradient Descent

Strong Convexity Implies PL Inequality

As before, from Taylor’s theorem we have for C2 functions that

f(v) = f(w) +∇f(w)>(v − w) + 1

2
(v − w)>∇2f(u)(v − w).

By strong-convexity, d>∇2f(u)d ≥ µ‖d‖2 for any d and u.

f(v) ≥ f(w) +∇f(w)>(v − w) + µ

2
‖v − w‖2

Treating right side as function of v, we get a quadratic lower bound on f .

f(x)

f(x) + ∇f(x)T(y-x)

f(x) + ∇f(x)T(y-x) + (μ/2)||y-x||2
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Strong Convexity Implies PL Inequality

As before, from Taylor’s theorem we have for C2 functions that

f(v) = f(w) +∇f(w)>(v − w) + 1

2
(v − w)>∇2f(u)(v − w).

By strong-convexity, d>∇2f(u)d ≥ µ‖d‖2 for any d and u.

f(v) ≥ f(w) +∇f(w)>(v − w) + µ

2
‖v − w‖2.

Treating right side as function of v, we get a quadratic lower bound on f .

Minimize both sides in terms of v gives

f∗ ≥ f(w)− 1

2µ
‖∇f(w)‖2,

which is the PL inequality (bonus slides show for C1 functions).
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Combining Lipschitz Continuity and Strong Convexity

Lipschitz continuity of gradient gives guaranteed progress.

Strong convexity of functions gives maximum sub-optimality.

f(x) Guaranteed
Progress

Maximum
Suboptimality

Progress on each iteration will be at least a fixed fraction of the sub-optimality.
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Effect of Regularization on Convergence Rate

We said that f is strongly convex if the function

f(w)− µ

2
‖w‖2,

is a convex function for some µ > 0.
For a C2 univariate function, equivalent to f ′′(w) ≥ µ.

If we have a convex loss f , adding L2-regularization makes it strongly-convex,

f(w) +
λ

2
‖w‖2,

with µ being at least λ.

So adding L2-regularization can improve rate from sublinear to linear.
Go from exponential O(1/ε) to polynomial O(log(1/ε)) iterations.
And guarantees a unique minimizer.

May not solve unregularized problem.
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Effect of Regularization on Convergence Rate

Our convergence rate under PL was

f(wk)− f∗ ≤
(
1− µ

L

)k
︸ ︷︷ ︸

ρk

[f(w0)− f∗].

For L2-regularized least squares we have

L

µ
=

max{eig(X>X)}+ λ

min{eig(X>X)}+ λ
.

So as λ gets larger ρ gets closer to 0 and we converge faster.

The number L
µ is called the condition number of f .

For least squares, it’s the “matrix condition number” of ∇2f(w).
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Summary

Gradient descent: “repeatedly take small step towards negative gradient”.

Guaranteed progress bound if gradient is Lipschitz, based on norm of gradient.

Practical step size strategies based on the progress bound.
Error on iteration t of O(1/t) for functions that are bounded below.

Implies that we need t = O(1/ε) iterations to have ‖∇f(xk)‖2 ≤ ε.
Sublinear/linear/superlinear convergence measure speed of convergence.
Polyak- Lojasiewicz inequality leads to linear convergence of gradient descent.

Only needs O(log(1/ε)) iterations to get within ε of global optimum.

Strongly-convex differentiable functions satisfy PL-inequality.
Adding L2-regularization makes gradient descent go faster.

Post-lecture slides: Cover various related issues.
Checking derivative code, why use gradient direction, descent lemma for C1.

Next time: methods that converge faster than gradient descent.
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Checking Derivative Code

Gradient descent codes require you to write objective/gradient code.
This tends to be error-prone, although automatic differentiation codes are helping.

Make sure to check your derivative code:
Numerical approximation to partial derivative i:

∇if(x) ≈
f(x+ δei)− f(x)

δ
,

where δ is small ei has a 1 at position i and zero elsewhere.
Or more accurately using centered differences.

For large-scale problems you can check a random direction d:

∇f(x)T d ≈ f(x+ δd)− f(x)
δ

If the left side coming from your code is very different from the right side,
there is likely a bug.
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Why the gradient descent iteration?

For a C2 function, a variation on the multivariate Taylor expansion is that

f(v) = f(w) +∇f(w)T (v − w) + 1

2
(v − w)T∇2f(u)(v − w),

for any w and v (with u being some convex combination of w and v).

If w and v are very close to each other, then we have

f(v) = f(w) +∇f(w)T (v − w) +O(‖v − w‖2),

and the last term becomes negligible.

Ignoring the last term, for a fixed ‖v − w‖ I can minimize f(v) by choosing
(v − w) ∝ −∇f(w).

So if we’re moving a small amount the optimal choice is gradient descent.
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Descent Lemma for C1 Functions
Let ∇f be L-Lipschitz continuous, and define g(α) = f(x+ αz) for a scalar α.

f(y) = f(x) +

∫ 1

0
∇f(x+ α(y − x))T (y − x)dα (fund. thm. calc.)

(± const.) = f(x) +∇f(x)T (y − x) +
∫ 1

0
(∇f(x+ α(y − x))−∇f(x))T (y − x)dα

(CS ineq.) ≤ f(x) +∇f(x)T (y − x) +
∫ 1

0
‖∇f(x+ α(y − x))−∇f(x)‖‖y − x‖dα

(Lipschitz) ≤ f(x) +∇f(x)T (y − x) +
∫ 1

0
L‖x+ α(y − x)− x‖‖y − x‖dα

(homog.) = f(x) +∇f(x)T (y − x) +
∫ 1

0
Lα‖y − x‖2dα

(

∫ 1

0
α =

1

2
) = f(x) +∇f(x)T (y − x) + L

2
‖y − x‖2.
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Equivalent Conditions to Lipschitz Continuity of Gradient

We said that Lipschitz continuity of the gradient

‖∇f(w)−∇f(v)‖ ≤ L‖w − v‖,

is equivalent for C2 functions to having

∇2f(w) � LI.

There are a lot of other equivalent definitions, see here:

http://xingyuzhou.org/blog/notes/Lipschitz-gradient.

An optimization cheat sheet covering [strong-]convexity too is here:

https:

//fa.bianp.net/blog/2017/optimization-inequalities-cheatsheet/.

http://xingyuzhou.org/blog/notes/Lipschitz-gradient
https://fa.bianp.net/blog/2017/optimization-inequalities-cheatsheet/
https://fa.bianp.net/blog/2017/optimization-inequalities-cheatsheet/


Gradient Descent Guaranteed Progress Practical Step Sizes Gradient Descent Convergence Rate Linear Convergence of Gradient Descent

Functions that don’t have Lipschitz-continuous Gradient

A simple example of a function which does not have a Lipschitz-continuous gradient is f(x) = x3: f ′′(x) = 6x which is not bounded as
we vary x.

Regarding ML applications: any non-smooth function would not have a Lipschitz-continuous gradient, such as the L1-regularizer
g(x) = λ‖x‖1 or neural networks with ReLU activations. We will discuss non-smooth functions later. For non-smooth functions a common
assumption is that that the function (not the gradient) is Lipschitz-continuous.

Another common type of functions arising in ML that are not Lipschitz-continuous are entropy-like functions. For example,f(x) = x log x
for x > 0 is smooth (differentiable) on its domain, but it has f ′′(x) = 1/x which is not bounded as x approaches 0.

However, note that f(x) = x3 and f(x) = x log x (for x > 0) have a Lipschitz-continuous gradient over any compact set. So if your
iterations stay in a closed and bounded set, then they effectively have a Lipschitz-continuous gradient.

The way this arises in practice is that if you decrase f(wk) on each iteration, then the gradient descent iterations wk stay in the sub-level

set {w | f(w) ≤ f(w0)}. You can often show that this set is compact (especially with regularizers that cause the function to grow to∞

as ‖w‖ → ∞).
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Lipschitz-Continuos Function vs. Lipschitz-Continuous Gradient

Function f is Lipschitz-cont. if |f(w)− f(v)| ≤ L‖w − v‖ for some L.

Gradient ∇f is Lipschitz-cont. if ‖∇f(w)−∇f(v)‖ ≤ L‖w − v‖ for some L.

Some people say that f is “Lipschitz-smooth” here. I avoid to prevent confusing.

Don’t get these confused, and neither implies the other:

f(w) = ‖w‖1 is Lipschitz-cont. but does not have a Lipschitz-cont. gradient.
f(w) = 1

2‖Xw − y‖
2 is not Lipshitz-cont. but does have a Lipschitz-cont. gradient.

f(w) =
∑n

i=1 log(1 + exp(−yiw>xi)) is Lipschitz-cont. with ∇f Lipschitz-cont.
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Why is µ ≤ L?

The descent lemma for functions with L-Lipschitz ∇f is that

f(v) ≤ f(w) +∇f(w)>(v − w) + L

2
‖v − w‖2.

Minimizing both sides in terms of v (by taking the gradient and setting to 0 and
observing that it’s convex) gives

f∗ ≤ f(w)− 1

2L
‖∇f(w)‖2.

So with PL and Lipschitz we have

1

2µ
‖∇f(w)‖2 ≥ f(w)− f∗ ≥ 1

2L
‖∇f(w)‖2,

which implies µ ≤ L.
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C1 Strongly-Convex Functions satisfy PL

If g(x) = f(x)− µ
2‖x‖

2 is convex then from C1 definition of convexity

g(y) ≥ g(x) +∇g(x)>(y − x)

or that

f(y)− µ

2
‖y‖2 ≥ f(x)− µ

2
‖x‖2 + (∇f(x)− µx)>(y − x),

which gives

f(y) ≥ f(x) +∇f(x)>(y − x) + µ

2
‖y‖2 − µx>y + µ

2
‖x‖2

= f(x) +∇f(x)>(y − x) + µ

2
‖y − x‖2, (complete square)

the inequality we used to show C2 strongly-convex function f satisfies PL.
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Linear Convergence without Strong-Convexity
The least squares problem is convex but not strongly convex.

We could add a regularizer to make it strongly-convex.
But if we really want the MLE, are we stuck with sub-linear rates?

Many conditions give linear rates that are weaker than strong-convexity:
1963: Polyak- Lojasiewicz (PL).
1993: Error bounds.
2000: Quadratic growth.
2013-2015: essential strong-convexity, weak strong convexity, restricted secant
inequality, restricted strong convexity, optimal strong convexity, semi-strong
convexity.

Least squares satisfies all of the above.

Do we need to study any of the newer ones?
No! All of the above imply PL except for QG.
But with only QG gradient descent may not find optimal solution.
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PL Inequality for Least Squares

Least squares can be written as f(x) = g(Ax) for a σ-strongly-convex g and matrix A, we’ll show that the PL inequality is satisfied for
this type of function.

The function is minimized at some f(y∗) with y∗ = Ax for some x, let’s use X∗ = {x|Ax = y∗} as the set of minimizers. We’ll use
xp as the “projection” (defined next lecture) of x onto X∗.

f
∗

= f(xp) ≥ f(x) + 〈∇f(x), xp − x〉 +
σ

2
||A(xp − x)||2

≥ f(x) + 〈∇f(x), xp − x〉 +
σθ(A)

2
||xp − x||2

≥ f(x) + min
y

[
〈∇f(x), y − x〉 +

σθ(A)

2
||y − x||2

]
= f(x)−

1

2θ(A)σ
||∇f(x)||2.

The first line uses strong-convexity of g, the second line uses the “Hoffman bound” which relies on X∗ being a polyhedral set defined in this

particular way to give a constant θ(A) depending on A that holds for all x (in this case it’s the smallest non-zero singular value of A), and

the third line uses that xp is a particular y in the min.
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Linear Convergence for “Locally-Nice” Functions

For linear convergence it’s sufficient to have

L[f(xt+1)− f(xt)] ≥ 1

2
‖∇f(xt)‖2 ≥ µ[f(xt)− f∗],

for all xt for some L and µ with L ≥ µ > 0.
(technically, we could even get rid of the connection to the gradient)

Notice that this only needs to hold for all xt, not for all possible x.

We could get linear rate for “nasty” function if the iterations stay in a “nice” region.
We can get lucky and converge faster than the global L/µ would suggest.

Arguments like this give linear rates for some non-convex problems like PCA.
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Convergence of Function Values vs. Iterates
Instead of f(wk)−f(w∗), sometimes we are interested in ‖wk − w∗‖2.

Distance from wk to the nearest global minimum w∗ (assuming one exists).
Under Lipschitz continuity, iterate convergence implies function convergence at
same speed.

From descent lemma and ∇f(w∗) = 0 we have

f(wk)− f(w∗) ≤ L

2
‖wk − w∗‖2.

Under strong convexity, function convergence implies iterate convergence at same
speed.

Using the C1 characterization of strong convexity and ∇f(w∗) = 0 we get

f(wk)− f(w∗) ≥ µ

2
‖wk − w∗‖2.

Using the (Lipschitz-gradient)+(strongly-convex) convergence of function values
gives

‖wk − w∗‖2 ≤ µ

2
f(wk)− f(w∗) ≤ µ

2
(1− µ/L)k[f(w0)− f(w∗)].
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Convergence of Function Values vs. Iterates

Instead of going through function values, you can directly analyze convergence
rate of iterates.

For (Lipschitz-gradient)+(strongly-convex) with a step-size of 1/L you can show:

‖wk+1 − w∗‖ ≤
(
1− µ

L

)
‖wk − w∗‖.

If you use a step-size of 2/(µ+ L) this improves to

‖wk+1 − w∗‖ ≤
(
L− µ
L+ µ

)
‖wk − w∗‖.

We could convert this back to function values to get a faster rate,

f(wk)− f(w∗) ≤ L

2
‖wk − w∗‖2 ≤ L

2

(
L− µ
L+ µ

)2k

‖wk − w∗‖2.
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Logistic Regression Gradient and Hessian

With some tedious manipulations, gradient for logistic regression is

∇f(w) = XT r.

where vector r has ri = −yih(−yiwTxi) and h is the sigmoid function.

We know the gradient has this form from the multivariate chain rule.
Functions for the form f(Xw) always have ∇f(w) = XT r (see bonus slide).

With some more tedious manipulations we get

∇2f(w) = XTDX.

where D is a diagonal matrix with dii = h(yiw
Txi)h(−yiwTxi).

The f(Xw) structure leads to a XTDX Hessian structure.
For other problems D may not be diagonal.
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Convexity of Logistic Regression

Logistic regression Hessian is

∇2f(w) = XTDX.

where D is a diagonal matrix with dii = h(yiw
Txi)h(−yiwTxi).

Since the sigmoid function is non-negative, we can compute D
1
2 , and

vTXTDXv = vTXTD
1
2D

1
2Xv = (D

1
2Xv)T (D

1
2Xv) = ‖XD

1
2 v‖2 ≥ 0,

so XTDX is positive semidefinite and logistic regression is convex.

It becomes strictly convex if you add L2-regularization, making solution unique.
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Lipschitz Continuity of Logistic Regression Gradient

Logistic regression Hessian is

∇2f(w) =

n∑
i=1

h(yiw
Txi)h(−yiwTxi)︸ ︷︷ ︸

dii

xi(xi)T

� 0.25

n∑
i=1

xi(xi)T

= 0.25XTX.

In the second line we use that h(α) ∈ (0, 1) and h(−α) = 1− α.

This means that dii ≤ 0.25.

So for logistic regression, we can take L = 1
4 max{eig(XTX)}.
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