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Machine Learning and Optimization

In machine learning, training is typically written as an optimization problem:

We optimize parameters w of model, given data.

There are some exceptions:
1 Methods based on counting and distances (KNN, random forests).

See CPSC 340.

2 Methods based on averaging and integration (Bayesian learning).

Later in course.

But even these models have parameters to optimize.

Important class of optimization problems: convex optimization problems.
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Convex Optimization

Consider an optimization problem of the form

min
w∈C

f(w).

where we are minimizing a function f subject to w being in the set C.

For least squares we have f(w) = ‖Xw − y‖2 and C ≡ Rd
If we had non-negative constraints, we would have C ≡ {w | w ≥ 0}.

Notation: when I write w ≥ v for a vectors I mean inequality holds element-wise.
So w ≥ v means wi ≥ vi for all i and w ≥ 0 means wi ≥ 0 for all i.

We say that this is a convex optimization problem if:

The set C is a convex set.
The function f is a convex function.
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Convex Optimization

Key property of convex optimization problems:

All local optima are global optima.

Convexity is usually a good indicator of tractability:

Minimizing convex functions is usually easy.
Minimizing non-convex functions is usually hard.

Off-the-shelf software solves many classes of convex problems (MathProgBase).
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Definition of Convex Sets

A set C is convex if the line between any two points stays also in the set.
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Definition of Convex Sets

To formally define convex sets, we use the notion of convex combination:

A convex combination of two variables w and v is given by

θw + (1− θ)v for any 0 ≤ θ ≤ 1,

which characterizes the points on the line between w and v.

A set C is convex if convex combinations of points in the set are also in the set:

For all w ∈ C and v ∈ C we have θw + (1− θ)v︸ ︷︷ ︸
convex comb

∈ C for 0 ≤ θ ≤ 1.

This definition allows us to prove the convexity of many simple sets.
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Examples of Simple Convex Sets

Real space Rd.

Positive orthant Rd+ : {w | w ≥ 0}.
Hyper-plane: {w | a>w = b}.
Half-space: {w | a>w ≤ b}.
Norm-ball: {w | ‖w‖p ≤ τ}.
Norm-cone: {(w, τ) | ‖w‖p ≤ τ}.

For norms we have p ≥ 1.
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Showing a Set is Convex from Intersections

Useful property: the intersection of convex sets is convex.

We can prove convexity of a set by showing it’s an intersection of convex sets.

Example: “linear programs” have constraints of the form Aw ≤ b.
Each constraint a>i bi defines a half-space, {w | a>w ≤ b}.
So the set of w satisfying all constraints is the intersection of half spaces.
Half-spaces are convex sets.
So the w satisfying Aw ≤ b is the intersection of convex sets.
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Showing a Set is Convex from a Convex Function

The set C is often the intersection of a set of inequalities of the form

{w | g(w) ≤ τ},

for some function g and some number τ .

Sets defined like this are convex if g is a convex function (see bonus).

This follows from the definition of a convex function (next topic).

Example:

The set of w where w2 ≤ 10 forms a convex set by convexity of w2.
Specifically, the set is [−

√
10,
√
10].
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Digression: k-way Convex Combinations and Differentiability Classes

A convex combination of 2 vectors w1 and w2 is given by

θw1 + (1− θ)w2, where 0 ≤ θ ≤ 1.

A convex combintion of k vectors {w1, w2, . . . , wk} is given by

k∑
c=1

θcwc where
k∑
c=1

θc = 1, θc ≥ 0.

We’ll define convex functions for different differentiability classes:

C0 is the set of continuous functions.
C1 is the set of continuous functions with continuous first-derivatives.
C2 is the set of continuous functions with continuous first- and second-derivatives.
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Definitions of Convex Functions

Four equivalent definitions of convex functions (depending on differentiability):
1 A C0 function is convex if the area above the function is a convex set.
2 A C0 function is convex if the function is always below its “chords” between points.
3 A C1 function is convex if the function is always above its tangent planes.
4 A C2 function is convex if it is curved upwards everwhere.

If the function is univariate this means f ′′(w) ≥ 0 for all w.

Univariate examples where you can show f ′′(w) ≥ 0 for all w:

Quadratic aw2 + bw + c with a ≥ 0.
Linear: aw + b.
Constant: b.
Exponential: exp(aw).
Negative logarithm: − log(w).
Negative entropy: w logw, for w > 0.
Logistic loss: log(1 + exp(−w)).
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C0 Definitions of Convex Functions

A function f is convex iff the area above the function is a convex set.

Equivalently, the function is always below its “chords” between points.

f(θw + (1− θ)v︸ ︷︷ ︸
convex comb

) ≤ θf(w) + (1− θ)f(v)︸ ︷︷ ︸
“chord”

, for all w ∈ C, v ∈ C, 0 ≤ θ ≤ 1.

Implies all local minima of convex functions are global minima.
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Convexity of Norms

The C0 definition can be used to show that all norms are convex:

If f(w) = ‖w‖p for a generic norm, then we have

f(θw + (1− θ)v) = ‖θw + (1− θ)v‖p
≤ ‖θw‖p + ‖(1− θ)v‖p (triangle inequality)

= |θ| · ‖w‖p + |1− θ| · ‖v‖p (absolute homogeneity)

= θ‖w‖p + (1− θ)‖v‖p (0 ≤ θ ≤ 1)

= θf(w) + (1− θ)f(v), (definition of f)

so f is always below the “chord”.

See course webpage notes on norms if the above steps aren’t familiar.

Also note that all squared norms are convex.

These are all convex: |w|, ‖w‖, ‖w‖1, ‖w‖2, ‖w1‖2, ‖w‖∞,...
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Operations that Preserve Convexity

There are a few operations that preserve convexity.
Can show convexity by writing as sequence of convexity-preserving operations.

If f and g are convex functions, the following preserve convexity:
1 Non-negative scaling: h(w) = αf(w), (for α ≥ 0)

2 Sum: h(w) = f(w) + g(w).

3 Maximum: h(w) = max{f(w), g(w)}.
4 Composition with linear: h(w) = f(Aw),

where A is a matrix (or another “linear operator”).

Note that multiplication and composition do not preserve convexity in general.
f(w)g(w) is not a convex function in general, even if f and g are convex.
f(g(w)) is not a convex function in general, even if f and g are convex.
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Convexity of SVMs

If f and g are convex functions, the following preserve convexity:
1 Non-negative scaling.
2 Sum.
3 Maximum.
4 Composition with linear.

We can use these to quickly show that SVMs are convex,

f(w) =

n∑
i=1

max{0, 1− yiw>xi}+ λ

2
‖w‖2.

Second term is squared norm multiplied by non-negative λ
2 .

Squared norms are convex, and non-negative scaling perserves convexity.

First term is sum(max(linear)). Linear is convex and sum/max preserve convexity.

Since both terms are convex, and sums preserve convexity, SVMs are convex.
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C1 Definition of Convex Functions
Convex functions must be continuous, and have a domain that is a convex set.

But they may be non-differentiable.

A differentiable (C1) function f is convex iff f is always above tangent planes.

f(v) ≥ f(w) +∇f(w)>(v − w), ∀w ∈ C, v ∈ C.

Notice that ∇f(w) = 0 implies f(v) ≥ f(w) for all v.
So ∇f(w) = 0 implies that w is a global minimizer.
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C2 Definition of Convex Functions

The multivariate C2 definition is based on the Hessian matrix, ∇2f(w).

The matrix of second partial derivatives,

∇2f(w) =


∂2

∂w1∂w1
f(w) ∂2

∂w1∂w2
f(w) · · · ∂2

∂w1∂wd
f(w)

∂2

∂w2∂w1
f(w) ∂2

∂w2∂w2
f(w) · · · ∂2

∂w2∂wd
f(w)

...
...

. . .
...

∂2

∂wd∂w1
f(w) ∂2

∂wd∂w2
f(w) · · · ∂2

∂wd∂wd
f(w)


In the case of least squares, 1

2‖Xw − y‖
2, we can write the Hessian for any w as

∇2f(w) = X>X,

see course webpage notes on the gradients/Hessians of linear/quadratic functions.
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Convexity of Twice-Differentiable Functions

A C2 function is convex iff:
∇2f(w) � 0,

for all w in the domain (“curved upwards” in every direction).

This notation A � 0 means that A is positive semidefinite.

Two equivalent definitions of a positive semidefinite matrix A:
1 All eigenvalues of A are non-negative.
2 The quadratic v>Av is non-negative for all vectors v.
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Example: Convexity and Least Squares

We can use twice-differentiable condition to show convexity of least squares,

f(w) =
1

2
‖Xw − y‖2.

The Hessian of this objective for any w is given by

∇2f(w) = X>X.

So we want to show that X>X � 0 or equivalently that v>X>Xv ≥ 0 for all v.

This follows by writing the quadratic form as a squared norm,

v>X>Xv = (v>X>)︸ ︷︷ ︸
(Xv)>

Xw = (Xv)>(Xv)︸ ︷︷ ︸
u>u

= ‖Xv‖2︸ ︷︷ ︸
‖u‖2

≥ 0,

so least squares is convex (and solving ∇f(w) = 0 gives global minimum).
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Showing that Function is Convex

Most common approaches for showing that a function is convex:
1 Show that f is constructed from operations that preserve convexity.

Non-negative scaling, sum, max, composition with linear.

2 Show that ∇2f(w) is positive semi-definite for all w (for C2 functions),

∇2f(w) � 0 (zero matrix).

3 Show that f is below chord for any convex combination of points.

f(θw + (1− θ)v ≤ θf(w) + (1− θ)f(v).
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Example: Convexity of Logistic Regression

Consider the binary logistic regression model,

f(w) =

n∑
i=1

log(1 + exp(−yiwTxi)).

With some tedious manipulations, gradient in matrix notation is

∇f(w) = XT r.

where the vector r has elements ri = −yih(−yiwTxi).
And h is the sigmoid function, h(α) = 1

1+exp(−α) .

We know the gradient has this form from the multivariate chain rule (bonus)

Functions for the form f = g(Xw) always have ∇f(w) = XT r.

Where the vector r = g′(Xw).
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Example: Convexity of Logistic Regression

With some more tedious manipulations we get the Hessian in matrix notation as

∇2f(w) = XTDX.

where D is a diagonal matrix with dii = h(yiw
Txi)h(−yiwTxi).

The f = g(Xw) structure leads to a XTDX Hessian structure.
For other problems D may not be diagonal.

Since the sigmoid function h is non-negative, we can compute D
1
2 , and

vTXTDXv = vTXTD
1
2D

1
2Xv = (D

1
2Xv)T (D

1
2Xv) = ‖XD

1
2 v‖2 ≥ 0,

so XTDX is positive semidefinite and logistic regression is convex.
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Positive Semi-Definite, Positive Definite, Generalized Inequality

The notation A � 0 indicates that A is positive semi-definite.

The eigenvalues of A are all non-negative.
v>Av ≥ 0 for all vectors v.

The notation A � 0 indicates that A is positive definite.

The eigenvalues of A are all positive.
v>Av > 0 for all vectors v 6= 0.
This implies that A is invertible (bonus).

The notation A � B indicates that A−B is positive semi-definite.

The eigenvalues of A−B are all non-negative.
v>Av ≥ v>Bv for all vectors v.

MEMORIZE!
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More Examples of Convex Functions

Some convex sets based on these definitions (useful for covariances):

The set of positive semidefinite matrices, {W |W � 0}.
The set of positive definite matrices, {W |W � 0}.

Some more exotic examples of convex functions used in ML:

f(W ) = − log detW for W � 0 (negative log-determinant).
f(W, v) = v>W−1v for W � 0.

f(w) = log(
∑d
j=1 exp(wj)) (log-sum-exp function).
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Positive Semi-Definite, Positive Definite, Generalized Inequality

Note that some pairs of matrices cannot be compared.

With these matrices:

A =

[
1 0
0 1

]
and B =

[
−2 0
0 2

]
,

neither A � B nor B � A (the “generalized inequality” defines a “partial order”).

It’s often useful to compare to the identity matrix I, which has eigenvalues 1.

And a matrix of the form µI for a scalar µ has all eigenvalues equal to µ.

Writing LI � A � µI means “eigenvalues of A are between µ and L”.
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Convexity, Strict Convexity, and Strong Convexity

We say that a C2 function is convex if for all w,

∇2f(w) � 0,

and this implies any stationary point (∇f(w) = 0) is a global minimum.

We say that a C2 function is strictly convex if for all w,

∇2f(w) � 0,

and this implies there is at most one stationary point (and ∇2f(w) is invertible).

We say that a C2 function is strongly convex if, for some µ > 0, for all w,

∇2f(w) � µI,

and this implies there exists a minimum (if domain C is closed).
Strong convexity affects speed of gradient descent, and how much data you need.



Motivation: Convex Optimization Convex Sets Convex Functions Strict-Convexity and Strong-Convexity Minimizing Maxes of Linear Functions

Convexity, Strict Convexity, and Strong Convexity

These definitions simplify for univariate functions:

Convex: f ′′(w) ≥ 0.
Strictly convex: f ′′(w) > 0.
Strongly convex: f ′′(w) ≥ µ for µ > 0.

Examples:
Convex: f(w) = w.

Since f ′′(w) = 0.

Strictly convex: f(w) = exp(w).

Since f ′′(w) = exp(w) > 0.

Strongly convex: f(w) = 1
2w

2.

Since f ′′(w) = 1 so it is strongly convex with µ = 1.
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Strict Convexity of L2-Regularized Least Squares

In L2-regularized least squares, the Hessian matrix is the constant matrix

∇2f(w) = (X>X + λI).

We can show that this is positive-definite, so the problem is strictly convex,

v>∇2f(w)v = v>(X>X + λI)v = ‖Xv‖2︸ ︷︷ ︸
≥0

+λ‖v‖2︸ ︷︷ ︸
>0

> 0,

where we used that λ > 0 and ‖v‖ > 0 for v 6= 0.

This implies that the matrix (X>X + λI) is invertible, and solution is unique.

Similar argument shows it’s strongly-convex with µ = λ.
Value µ can be larger if columns of X are independent (no collinearity).

In this case, ‖Xv‖ 6= 0 for v 6= 0 so even least squares is strongly-convex.
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Strong-Convexity Discussion
We can also define strict and strong convexity for C1 and C0 functions (bonus).

And note that (strong convexity) implies (strict convexity) implies (convexity).

For example, we say that a C0 function f is strongly convex if the function

f(w)− µ

2
‖w‖2,

is a convex function for some µ > 0.
“If you ‘un-regularize’ by µ then it’s still convex.”

If we have a convex loss f , adding L2-regularization makes it strongly-convex,

f(w) +
λ

2
‖w‖2,

with µ being at least λ.
So L2-regularization guarantees a solution exists, and that it is unique.
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Least Squares and Linear Equalities

In 340 we showed that solving least squares optimization problem,

argmin
w∈Rd

‖Xw − y‖2.

is equivalent to solving the normal equations,

(X>X)w = X>y.

This is a special case of solving a set of linear equalities, Aw = b.

Set of equalities of the form a>i w = bi for vectors ai and scalaras bi.

There exists reliable “off the shelf” software for solving linear equalities.
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Linear Inequalities and Linear Programs

We can also solve linear inequalities Aw ≤ b (instead of Aw = b).

A set of inequalities of the form aTi w ≤ bi for vectors ai and scalars bi.

More generally, there are “off the shelf” codes for solving linear programs:

argmin
w

w>c, among the w satisfying Aw ≤ b,

which minimize a linear cost function and linear constraints.

Another common problem class with “off the shelf” tools is quadratic programs.

Minimize a quadratic cost function with linear constraints.
For example, non-negative least squares minimizies ‖Xw − y‖2 subject to w ≥ 0.
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Robust Regression as Linear Program

Consider regression with the absolute error as the loss,

argmin
w∈Rd

n∑
i=1

|w>xi − yi|.

In CPSC 340 we argued that this is more robust to outliers than least squares.

This problem can be turned into a linear program.
You can then solve it with “off the shelf” linear programming software.

Our first step is re-writing absolute value using |α| = max{α,−α},

argmin
w∈Rd

n∑
i=1

max{w>xi − yi, yi − w>xi}.
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Robust Regression as a Linear Program

So we’ve show that L1-regression is equivalent to

argmin
w∈Rd

n∑
i=1

max{w>xi − yi, yi − w>xi}.

Second step: introduce n variables ri that upper bound the max functions,

argmin
w∈Rd,r∈Rn

n∑
i=1

ri, with ri ≥ max{w>xi − yi, yi − w>xi},∀i.

This is a linear objective in terms of the parameters w and r.

Problems are equivalent: solutions must have ri = |w>xi − yi|.
If ri < |w>xi − yi|, then one of the constraints are not satisfied (not a solution).
If ri > |w>xi − yi|, then we could decrease ri and get lower cost (not a solution).
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Robust Regression as a Linear Program

So we’ve show that L1-regression is equivalent to

argmin
w∈Rd,r∈Rn

n∑
i=1

ri, with ri ≥ max{w>xi − yi, yi − w>xi},∀i,

which has a linear cost function but non-linear constraints.

Third step: split max constraints into individual linear constraints,

argmin
w∈Rd, r∈Rn

n∑
i=1

ri, with ri ≥ w>xi − yi, ri ≥ yi − w>xi, ∀i.

Being greater than the max is equivalent to being greater than each.
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Minimizing Absolute Values and Maxes

We’ve shown that L1-norm regression can be written as a linear program,

argmin
w∈Rd, r∈Rn

n∑
i=1

ri, with ri ≥ w>xi − yi, ri ≥ yi − w>xi, ∀i,

For medium-sized problems, we can solve this with Julia’s linprog.

Linear programs are solvable in polynomial time.

A general approach for minimizing absolute values and/or maximums:
1 Replace absolute values with maximums.
2 Replace maximums with new variables, constrain these to bound maixmums.
3 Transform to linear constraints by splitting the maximum constraints.
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Example: Support Vector Machine as a Quadratic Program

The SVM optimization problem is

argmin
w∈Rd

n∑
i=1

max{0, 1− yiw>xi}+ λ

2
‖w‖2,

Introduce new variables to upper-bound the maxes,

argmin
w∈Rd,r∈Rn

n∑
i=1

ri +
λ

2
‖w‖2, with ri ≥ max{0, 1− yiw>xi}, ∀i.

Split the maxes into separate constraints,

argmin
w∈Rd,r∈Rn

n∑
i=1

ri +
λ

2
‖w‖2, with ri ≥ 0, ri ≥ 1− yiw>xi,

which is a quadratic program (quadratic objective with linear constraints).
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General Lp-norm Losses

Consider minimizing the regression loss

f(w) = ‖Xw − y‖p,

with a general Lp-norm, ‖r‖p = (
∑n

i=1 |ri|p)
1
p .

With p = 2, we can minimize the function as a linear system.

Raise to the power of 2 and set gradient to zero.

With p = 1, we can minimize the function using linear programming.

With p =∞, we can also use linear programming (using same trick).

For 1 < p <∞, we can turn this into a convex optimization problem.

By raising it to the power p (next topic).

If we use p < 1 (which is not a norm), minimizing f is NP-hard.
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Summary

Convex optimization problems are a class that we can usually efficiently solve.

Showing functions and sets are convex.

Either from definitions or convexity-preserving operations.

C2 definition of convex functions that the Hessian is positive semidefinite.

∇2f(w) � 0.

Strict and strong convexity guarantee uniqueness and existence of solutions.

Adding L2-regularization to a convex function gives you these.

Converting non-smooth problems involving max to constrained smooth problems.
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Showing that Hyper-Planes are Convex

Hyper-plane: C = {w | a>w = b}.
If w ∈ C and v ∈ C, then we have a>w = b and a>v = b.
To show C is convex, we can show that a>u = b for u between w and v.

a>u = a>(θw + (1− θ)v)
= θ(a>w) + (1− θ)(a>v)
= θb+ (1− θ)b = b.

Alternately, if you knew that linear functions a>w are convex, then C is the
intersection of {w | a>w ≤ b} and {w | a>w ≥ b}.
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Convex Sets from Functions

For sets of the form
C = {w | g(w) ≤ τ},

If g is a convex function, then C is a convex set:

g(θw + (1− θ)v︸ ︷︷ ︸
convex comb

) ≤ θg(w) + (1− θ)g(v)︸ ︷︷ ︸
by convexity

≤ θτ + (1− θ)τ︸ ︷︷ ︸
definition of g

= τ,

which means convex combinations are in the set.
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Multivariate Chain Rule

If g : Rd 7→ Rn and f : Rn 7→ R, then h(x) = f(g(x)) has gradient

∇h(x) = ∇g(x)T∇f(g(x)),

where ∇g(x) is the Jacobian.

We use Jacobian instead of gradient since g could be multi-output.

If g is an affine map x 7→ Ax+ b so that h(x) = f(Ax+ b) then we obtain

∇h(x) = AT∇f(Ax+ b).

Further, for the Hessian we have

∇2h(x) = AT∇2f(Ax+ b)A.
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Positive-Definite Matrices are Invertible

If A � 0, then all the eigenvalues of A are positive.

If each eigenvalue is positive, the product of the eigenvalues is positive.

The product of the eigenvalues is equal to the determinant.

Thus, the determinant is positive.

The determinant not being 0 implies the matrix is invertible.
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Strong Convexity of L2-Regularized Least Squares

In L2-regularized least squares, the Hessian matrix is

∇2f(w) = (X>X + λI).

v>∇2f(w)v = v>(X>X + λI)v = ‖Xv‖2︸ ︷︷ ︸
≥0

+v>(λI)v ≥ v>(λI)v,

so we’ve shown that ∇2f(w) � λI, which implies strong-convexity with µ = λ.

This implies that a solution exists, and that the solution is unique.

Note that we have strong convexity with µ > λ if X>X is positive definite.

Which happens iff the features are independent (not collinear).
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Strictly-Convex Functions

A function is strictly-convex if the convexity definitions hold strictly (for w 6= v):

f(θw + (1− θ)v) < θf(w) + (1− θ)f(v), 0 < θ < 1 (C0)

f(v) > f(w) +∇f(w)>(v − w) (C1)

Function is always strictly below any chord, strictly above any tangent.

We might expect that strictly-convex C2 have ∇2f(w) � 0.

But this is not necessarily true.
Counter-example is f(w) = w4 which is strictly convex but has f ′(0) = 0.

A strictly-convex function can have at most one global minimum:

If w and v were both global minima, convex combinations would be below global
minimum.
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A C0 Definition of Strict and Strong Convexity

There are many equivalent definitions of the convexities, here is one set for C0

functions:

Convex (usual definition):

f(θw + (1− θ)v) ≤ θf(w) + (1− θ)f(v).

Strictly convex (strict version, exclusindg θ = 0 or θ = 1):

f(θw + (1− θ)v) < θf(w) + (1− θ)f(v).

Strong convexity (need an “extra” bit of decrease as you move away from endpoints):

f(θw + (1− θ)v) ≤ θf(w) + (1− θ)f(v)− θ(1− θ)µ
2

‖w − v‖2.
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