Numerical Optimization for Machine Learning
Convex Sets and Convex Functions

Mark Schmidt
University of British Columbia

Summer 2022
Machine Learning and Optimization

- In machine learning, **training is typically written as an optimization problem**:
 - We optimize parameters w of model, given data.

- There are some exceptions:
 1. Methods based on counting and distances (KNN, random forests).
 - See CPSC 340.
 2. Methods based on averaging and integration (Bayesian learning).
 - Later in course.

 But even these models have parameters to optimize.

- Important class of optimization problems: **convex optimization** problems.
Consider an optimization problem of the form

$$\min_{w \in C} f(w).$$

where we are minimizing a function f subject to w being in the set C.

- For least squares we have $f(w) = \|Xw - y\|^2$ and $C \equiv \mathbb{R}^d$.
- If we had non-negative constraints, we would have $C \equiv \{w \mid w \geq 0\}$.
 - Notation: when I write $w \geq v$ for a vectors I mean inequality holds element-wise.
 - So $w \geq v$ means $w_i \geq v_i$ for all i and $w \geq 0$ means $w_i \geq 0$ for all i.

We say that this is a convex optimization problem if:

- The set C is a convex set.
- The function f is a convex function.
Convex Optimization

- Key property of convex optimization problems:
 - All local optima are global optima.

- Convexity is usually a good indicator of tractability:
 - Minimizing convex functions is usually easy.
 - Minimizing non-convex functions is usually hard.

- Off-the-shelf software solves many classes of convex problems (*MathProgBase*).
Outline

1. Motivation: Convex Optimization
2. Convex Sets
3. Convex Functions
4. Strict-Convexity and Strong-Convexity
Definition of Convex Sets

A set C is **convex** if the line between any two points stays also in the set.
Definition of Convex Sets

- To formally define convex sets, we use the notion of **convex combination**: A convex combination of two variables \(w \) and \(v \) is given by
 \[
 \theta w + (1 - \theta)v \quad \text{for any} \quad 0 \leq \theta \leq 1,
 \]
 which characterizes the points on the line between \(w \) and \(v \).

- A **set** \(C \) is **convex** if convex combinations of points in the set are also in the set:
 - For all \(w \in C \) and \(v \in C \) we have \(\theta w + (1 - \theta)v \in C \) for \(0 \leq \theta \leq 1 \).

- This definition allows us to prove the convexity of many simple sets.
Examples of Simple Convex Sets

- Real space \mathbb{R}^d.

For norms we have $p \geq 1$.

Examples of Simple Convex Sets

- Real space \mathbb{R}^d.
- Positive orthant $\mathbb{R}^d_+ : \{w \mid w \geq 0\}$.

Examples of Simple Convex Sets

- Real space \mathbb{R}^d.
- Positive orthant $\mathbb{R}_+^d : \{w \mid w \geq 0\}$.
- Hyper-plane: $\{w \mid a^T w = b\}$.
Examples of Simple Convex Sets

- Real space \mathbb{R}^d.
- Positive orthant $\mathbb{R}^d_+ : \{w \mid w \geq 0\}$.
- Hyper-plane: $\{w \mid a^\top w = b\}$.
- Half-space: $\{w \mid a^\top w \leq b\}$.
Examples of Simple Convex Sets

- Real space \mathbb{R}^d.
- Positive orthant $\mathbb{R}^d_+ : \{ w | w \geq 0 \}$.
- Hyper-plane: $\{ w | a^T w = b \}$.
- Half-space: $\{ w | a^T w \leq b \}$.
- Norm-ball: $\{ w | \|w\|_p \leq \tau \}$.
Examples of Simple Convex Sets

- Real space \mathbb{R}^d.
- Positive orthant $\mathbb{R}^d_+ : \{ w \mid w \geq 0 \}$.
- Hyper-plane: $\{ w \mid a^\top w = b \}$.
- Half-space: $\{ w \mid a^\top w \leq b \}$.
- Norm-ball: $\{ w \mid \| w \|_p \leq \tau \}$.

For norms we have $p \geq 1$.

$||w||_p = \left(\sum_{i=1}^{d} |w_i|^p \right)^{1/p}$.
Examples of Simple Convex Sets

- Real space \mathbb{R}^d.
- Positive orthant $\mathbb{R}^d_+ : \{w \mid w \geq 0\}$.
- Hyper-plane: $\{w \mid a^T w = b\}$.
- Half-space: $\{w \mid a^T w \leq b\}$.
- Norm-ball: $\{w \mid \|w\|_p \leq \tau\}$.
- Norm-cone: $\{(w, \tau) \mid \|w\|_p \leq \tau\}$.
 - For norms we have $p \geq 1$.
Showing a Set is Convex from Intersections

- Useful property: the intersection of convex sets is convex.

- We can prove convexity of a set by showing it’s an intersection of convex sets.

- Example: “linear programs” have constraints of the form $Aw \leq b$.
 - Each constraint $a_i^T b_i$ defines a half-space, $\{w \mid a^T w \leq b\}$.
 - So the set of w satisfying all constraints is the intersection of half spaces.
 - Half-spaces are convex sets.
 - So the w satisfying $Aw \leq b$ is the intersection of convex sets.
The set C is often the intersection of a set of inequalities of the form

$$\{w \mid g(w) \leq \tau\},$$

for some function g and some number τ.

Sets defined like this are convex if g is a convex function (see bonus).

This follows from the definition of a convex function (next topic).

Example:

- The set of w where $w^2 \leq 10$ forms a convex set by convexity of w^2.
- Specifically, the set is $[-\sqrt{10}, \sqrt{10}]$.
<table>
<thead>
<tr>
<th></th>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motivation: Convex Optimization</td>
</tr>
<tr>
<td>2</td>
<td>Convex Sets</td>
</tr>
<tr>
<td>3</td>
<td>Convex Functions</td>
</tr>
<tr>
<td>4</td>
<td>Strict-Convexity and Strong-Convexity</td>
</tr>
</tbody>
</table>
A convex combination of 2 vectors w_1 and w_2 is given by

$$\theta w_1 + (1 - \theta)w_2, \quad \text{where} \quad 0 \leq \theta \leq 1.$$

A convex combination of k vectors $\{w_1, w_2, \ldots, w_k\}$ is given by

$$\sum_{c=1}^{k} \theta_c w_c \quad \text{where} \quad \sum_{c=1}^{k} \theta_c = 1, \ \theta_c \geq 0.$$

We'll define convex functions for different differentiability classes:

- C^0 is the set of continuous functions.
- C^1 is the set of continuous functions with continuous first-derivatives.
- C^2 is the set of continuous functions with continuous first- and second-derivatives.
Definitions of Convex Functions

- Four equivalent definitions of **convex functions** (depending on differentiability):
 1. A C^0 function is convex if the area above the function is a convex set.
 2. A C^0 function is convex if the function is always below its “chords” between points.
 3. A C^1 function is convex if the function is always above its tangent planes.
 4. A C^2 function is convex if it is curved upwards everywhere.

 - If the function is univariate this means $f''(w) \geq 0$ for all w.

- Univariate examples where you can show $f''(w) \geq 0$ for all w:
 - Quadratic $aw^2 + bw + c$ with $a \geq 0$.
 - Linear: $aw + b$.
 - Constant: b.
 - Exponential: $\exp(aw)$.
 - Negative logarithm: $-\log(w)$.
 - Negative entropy: $w \log w$, for $w > 0$.
 - Logistic loss: $\log(1 + \exp(-w))$.
Motivation: Convex Optimization

Convex Sets

Convex Functions

Strict-Convexity and Strong-Convexity

\(C^0 \) Definitions of Convex Functions

- A function \(f \) is convex iff the area above the function is a convex set.

\[f(\theta w + (1 - \theta)v) \leq \theta f(w) + (1 - \theta)f(v), \quad \text{for all } w, v \in C, 0 \leq \theta \leq 1. \]

- Equivalently, the function is always below its "chords" between points.

- Implies all local minima of convex functions are global minima.
Convexity of Norms

- The C^0 definition can be used to show that all norms are convex:
 - If $f(w) = \|w\|_p$ for a generic norm, then we have
 \[
 f(\theta w + (1 - \theta)v) = \|\theta w + (1 - \theta)v\|_p \\
 \leq \|\theta w\|_p + \|(1 - \theta)v\|_p \quad \text{(triangle inequality)} \\
 = |\theta| \cdot \|w\|_p + |1 - \theta| \cdot \|v\|_p \quad \text{(absolute homogeneity)} \\
 = \theta \|w\|_p + (1 - \theta)\|v\|_p \\
 = \theta f(w) + (1 - \theta)f(v), \quad \text{(definition of f)}
 \]
 - so f is always below the “chord”.

- See course webpage notes on norms if the above steps aren’t familiar.

- Also note that all squared norms are convex.
 - These are all convex: $|w|$, $\|w\|$, $\|w\|_1$, $\|w\|^2$, $\|w_1\|^2$, $\|w\|_\infty$, ...
Operations that Preserve Convexity

- There are a few operations that preserve convexity.
 - Can show convexity by writing as sequence of convexity-preserving operations.

If f and g are convex functions, the following preserve convexity:

1. **Non-negative scaling:** $h(w) = \alpha f(w)$, (for $\alpha \geq 0$)
2. **Sum:** $h(w) = f(w) + g(w)$.
3. **Maximum:** $h(w) = \max\{f(w), g(w)\}$.
4. **Composition with linear:** $h(w) = f(Aw)$, where A is a matrix (or another “linear operator”).

Note that multiplication and composition do not preserve convexity in general.

- $f(w)g(w)$ is not a convex function in general, even if f and g are convex.
- $f(g(w))$ is not a convex function in general, even if f and g are convex.
Convexity of SVMs

- If f and g are convex functions, the following preserve convexity:
 1. Non-negative scaling.
 2. Sum.
 4. Composition with linear.

- We can use these to quickly show that SVMs are convex,

$$f(w) = \sum_{i=1}^{n} \max\{0, 1 - y^i w^\top x^i\} + \frac{\lambda}{2} \|w\|^2.$$

- Second term is squared norm multiplied by non-negative $\frac{\lambda}{2}$.
 - Squared norms are convex, and non-negative scaling preserves convexity.
- First term is sum(max(linear)). Linear is convex and sum/max preserve convexity.
- Since both terms are convex, and sums preserve convexity, SVMs are convex.
C^1 Definition of Convex Functions

- Convex functions must be **continuous**, and have a **domain** that is a convex set.
 - But they may be **non-differentiable**.

- A **differentiable** (C^1) function f is **convex** iff f is **always** above tangent planes.

\[
f(v) \geq f(w) + \nabla f(w)^\top (v - w), \quad \forall w \in \mathcal{C}, v \in \mathcal{C}.
\]

- Notice that $\nabla f(w) = 0$ implies $f(v) \geq f(w)$ for all v.
 - So $\nabla f(w) = 0$ implies that w is a global minimizer.
\(C^2 \) Definition of Convex Functions

- The multivariate \(C^2 \) definition is based on the Hessian matrix, \(\nabla^2 f(w) \).
- The matrix of second partial derivatives,

\[
\nabla^2 f(w) = \begin{bmatrix}
\frac{\partial^2}{\partial w_1 \partial w_1} f(w) & \frac{\partial^2}{\partial w_1 \partial w_2} f(w) & \cdots & \frac{\partial^2}{\partial w_1 \partial w_d} f(w) \\
\frac{\partial^2}{\partial w_2 \partial w_1} f(w) & \frac{\partial^2}{\partial w_2 \partial w_2} f(w) & \cdots & \frac{\partial^2}{\partial w_2 \partial w_d} f(w) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2}{\partial w_d \partial w_1} f(w) & \frac{\partial^2}{\partial w_d \partial w_2} f(w) & \cdots & \frac{\partial^2}{\partial w_d \partial w_d} f(w)
\end{bmatrix}
\]

- In the case of least squares, \(\frac{1}{2} \| Xw - y \|^2 \), we can write the Hessian for any \(w \) as

\[
\nabla^2 f(w) = X^\top X,
\]

see course webpage notes on the gradients/Hessians of linear/quadratic functions.
Convexity of Twice-Differentiable Functions

- A C^2 function is convex iff:
 \[
 \nabla^2 f(w) \succeq 0,
 \]
 for all w in the domain ("curved upwards" in every direction).

- This notation $A \succeq 0$ means that A is positive semidefinite.

- Two equivalent definitions of a positive semidefinite matrix A:
 1. All eigenvalues of A are non-negative.
 2. The quadratic $v^\top A v$ is non-negative for all vectors v.
Example: Convexity and Least Squares

- We can use twice-differentiable condition to show convexity of least squares,

\[f(w) = \frac{1}{2} \|Xw - y\|^2. \]

- The Hessian of this objective for any \(w \) is given by

\[\nabla^2 f(w) = X^\top X. \]

- So we want to show that \(X^\top X \succeq 0 \) or equivalently that \(v^\top X^\top X v \geq 0 \) for all \(v \).

- This follows by writing the quadratic form as a squared norm,

\[v^\top X^\top X v = (v^\top X^\top) X w = (Xv)^\top (Xv) = \|Xv\|^2 \geq 0, \]

so least squares is convex (and solving \(\nabla f(w) = 0 \) gives global minimum).
Motivation: Convex Optimization

Convex Sets

Convex Functions

Strict-Convexity and Strong-Convexity

Showing that Function is Convex

Most common approaches for showing that a function is convex:

1. Show that f is constructed from operations that preserve convexity.
 - Non-negative scaling, sum, max, composition with linear.

2. Show that $\nabla^2 f(w)$ is positive semi-definite for all w (for C^2 functions),
 \[
 \nabla^2 f(w) \succeq 0 \text{ (zero matrix)}.
 \]

3. Show that f is below chord for any convex combination of points.
 \[
 f(\theta w + (1 - \theta)v \leq \theta f(w) + (1 - \theta)f(v).
 \]
Example: Convexity of Logistic Regression

Consider the binary logistic regression model,

\[f(w) = \sum_{i=1}^{n} \log(1 + \exp(-y^i w^T x^i)). \]

With some tedious manipulations, gradient in matrix notation is

\[\nabla f(w) = X^T r. \]

where the vector \(r \) has elements \(r_i = -y^i h(-y^i w^T x^i) \).

And \(h \) is the sigmoid function, \(h(\alpha) = \frac{1}{1 + \exp(-\alpha)} \).

We know the gradient has this form from the multivariate chain rule (bonus)

Functions for the form \(f = g(Xw) \) always have \(\nabla f(w) = X^T r \).

Where the vector \(r = g'(Xw) \).
Example: Convexity of Logistic Regression

- With some more tedious manipulations we get the Hessian in matrix notation as
 \[\nabla^2 f(w) = X^T DX. \]

 where \(D \) is a diagonal matrix with \(d_{ii} = h(y_i w^T x_i)h(-y_i w^T x_i) \).

 - The \(f = g(Xw) \) structure leads to a \(X^T DX \) Hessian structure.
 - For other problems \(D \) may not be diagonal.

- Since the sigmoid function \(h \) is non-negative, we can compute \(D^{\frac{1}{2}} \), and
 \[v^T X^T DX v = v^T X^T D^{\frac{1}{2}} D^{\frac{1}{2}} X v = (D^{\frac{1}{2}} X v)^T (D^{\frac{1}{2}} X v) = \|X D^{\frac{1}{2}} v\|^2 \geq 0, \]

 so \(X^T DX \) is positive semidefinite and logistic regression is convex.
Outline

1. Motivation: Convex Optimization
2. Convex Sets
3. Convex Functions
4. Strict-Convexity and Strong-Convexity
Positive Semi-Definite, Positive Definite, Generalized Inequality

- The notation $A \succeq 0$ indicates that A is positive semi-definite.
 - The eigenvalues of A are all non-negative.
 - $v^\top Av \geq 0$ for all vectors v.

- The notation $A \succ 0$ indicates that A is positive definite.
 - The eigenvalues of A are all positive.
 - $v^\top Av > 0$ for all vectors $v \neq 0$.
 - This implies that A is invertible (bonus).

- The notation $A \succeq B$ indicates that $A - B$ is positive semi-definite.
 - The eigenvalues of $A - B$ are all non-negative.
 - $v^\top Av \geq v^\top Bv$ for all vectors v.

MEMORIZE!
More Examples of Convex Functions

- Some convex sets based on these definitions (useful for covariances):
 - The set of positive semidefinite matrices, \{W \mid W \succeq 0\}.
 - The set of positive definite matrices, \{W \mid W \succ 0\}.

- Some more exotic examples of convex functions used in ML:
 - \(f(W) = -\log \det W \) for \(W \succ 0 \) (negative log-determinant).
 - \(f(W, v) = v^\top W^{-1}v \) for \(W \succ 0 \).
 - \(f(w) = \log(\sum_{j=1}^{d} \exp(w_j)) \) (log-sum-exp function).
Positive Semi-Definite, Positive Definite, Generalized Inequality

- Note that some pairs of matrices cannot be compared.
- With these matrices:

\[
A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix},
\]

neither \(A \succeq B \) nor \(B \succeq A \) (the “generalized inequality” defines a “partial order”).

- It’s often useful to compare to the identity matrix \(I \), which has eigenvalues 1.
 - And a matrix of the form \(\mu I \) for a scalar \(\mu \) has all eigenvalues equal to \(\mu \).

- Writing \(LI \succeq A \succeq \mu I \) means “eigenvalues of \(A \) are between \(\mu \) and \(L \)”.
Convexity, Strict Convexity, and Strong Convexity

- We say that a C^2 function is **convex** if for all w,

 $$\nabla^2 f(w) \succeq 0,$$

 and this implies any stationary point ($\nabla f(w) = 0$) is a global minimum.

- We say that a C^2 function is **strictly convex** if for all w,

 $$\nabla^2 f(w) \succ 0,$$

 and this implies there is at most one stationary point (and $\nabla^2 f(w)$ is invertible).

- We say that a C^2 function is **strongly convex** if, for some $\mu > 0$, for all w,

 $$\nabla^2 f(w) \succeq \mu I,$$

 and this implies there exists a minimum (if domain C is closed).

 - Strong convexity affects speed of gradient descent, and how much data you need.
These definitions simplify for univariate functions:

- Convex: $f''(w) \geq 0$.
- Strictly convex: $f''(w) > 0$.
- Strongly convex: $f''(w) \geq \mu$ for $\mu > 0$.

Examples:

- Convex: $f(w) = w$.
 - Since $f''(w) = 0$.
- Strictly convex: $f(w) = \exp(w)$.
 - Since $f''(w) = \exp(w) > 0$.
- Strongly convex: $f(w) = \frac{1}{2}w^2$.
 - Since $f''(w) = 1$ so it is strongly convex with $\mu = 1$.
Strict Convexity of L2-Regularized Least Squares

- In L2-regularized least squares, the Hessian matrix is the constant matrix

\[\nabla^2 f(w) = (X^\top X + \lambda I). \]

- We can show that this is positive-definite, so the problem is strictly convex,

\[v^\top \nabla^2 f(w)v = v^\top (X^\top X + \lambda I)v = \underbrace{\|Xv\|^2}_{\geq 0} + \underbrace{\lambda \|v\|^2}_{> 0} > 0, \]

where we used that \(\lambda > 0 \) and \(\|v\| > 0 \) for \(v \neq 0 \).

- This implies that the matrix \((X^\top X + \lambda I) \) is invertible, and solution is unique.
 - Similar argument shows it’s strongly-convex with \(\mu = \lambda \).
 - Value \(\mu \) can be larger if columns of \(X \) are independent (no collinearity).
 - In this case, \(\|Xv\| \neq 0 \) for \(v \neq 0 \) so even least squares is strongly-convex.
Strong-Convexity Discussion

- We can also define strict and strong convexity for C^1 and C^0 functions (bonus).
 - And note that (strong convexity) implies (strict convexity) implies (convexity).

- For example, we say that a C^0 function f is strongly convex if the function
 \[f(w) - \frac{\mu}{2} \|w\|^2, \]
 is a convex function for some $\mu > 0$.
 - “If you ‘un-regularize’ by μ then it’s still convex.”

- If we have a convex loss f, adding L2-regularization makes it strongly-convex,
 \[f(w) + \frac{\lambda}{2} \|w\|^2, \]
 with μ being at least λ.
 - So L2-regularization guarantees a solution exists, and that it is unique.
Motivation: Convex Optimization

Convex Sets

Convex Functions

Strict-Convexity and Strong-Convexity

Summary

- **Convex optimization** problems are a class that we can usually efficiently solve.
- **Showing functions and sets are convex.**
 - Either from definitions or convexity-preserving operations.
- C^2 definition of convex functions that the Hessian is positive semidefinite.

$$\nabla^2 f(w) \succeq 0.$$

- **Strict and strong convexity** guarantee uniqueness and existence of solutions.
 - Adding L2-regularization to a convex function gives you these.
Showing that Hyper-Planes are Convex

- Hyper-plane: \(C = \{ w \mid a^\top w = b \} \).
 - If \(w \in C \) and \(v \in C \), then we have \(a^\top w = b \) and \(a^\top v = b \).
 - To show \(C \) is convex, we can show that \(a^\top u = b \) for \(u \) between \(w \) and \(v \).

\[
 a^\top u = a^\top (\theta w + (1 - \theta) v) \\
= \theta (a^\top w) + (1 - \theta) (a^\top v) \\
= \theta b + (1 - \theta) b = b.
\]

- Alternately, if you knew that linear functions \(a^\top w \) are convex, then \(C \) is the intersection of \(\{ w \mid a^\top w \leq b \} \) and \(\{ w \mid a^\top w \geq b \} \).
Convex Sets from Functions

• For sets of the form

\[C = \{ w \mid g(w) \leq \tau \}, \]

If \(g \) is a convex function, then \(C \) is a convex set:

\[g(\theta w + (1 - \theta)v) \leq \theta g(w) + (1 - \theta)g(v) \leq \theta \tau + (1 - \theta)\tau = \tau, \]

which means convex combinations are in the set.
Motivation: Convex Optimization

Convex Sets

Convex Functions

Strict-Convexity and Strong-Convexity

Multivariate Chain Rule

If \(g : \mathbb{R}^d \mapsto \mathbb{R}^n \) and \(f : \mathbb{R}^n \mapsto \mathbb{R} \), then \(h(x) = f(g(x)) \) has gradient

\[
\nabla h(x) = \nabla g(x)^T \nabla f(g(x)),
\]

where \(\nabla g(x) \) is the Jacobian.

- We use Jacobian instead of gradient since \(g \) could be multi-output.

If \(g \) is an affine map \(x \mapsto Ax + b \) so that \(h(x) = f(Ax + b) \) then we obtain

\[
\nabla h(x) = A^T \nabla f(Ax + b).
\]

Further, for the Hessian we have

\[
\nabla^2 h(x) = A^T \nabla^2 f(Ax + b) A.
\]
Positive-Definite Matrices are Invertible

- If $A \succ 0$, then all the eigenvalues of A are positive.
- If each eigenvalue is positive, the product of the eigenvalues is positive.
- The product of the eigenvalues is equal to the determinant.
- Thus, the determinant is positive.
- The determinant not being 0 implies the matrix is invertible.
Strong Convexity of L2-Regularized Least Squares

- In L2-regularized least squares, the Hessian matrix is
 \[\nabla^2 f(w) = (X^T X + \lambda I). \]
 \[v^T \nabla^2 f(w)v = v^T (X^T X + \lambda I)v = \|Xv\|^2 + v^T (\lambda I)v \geq v^T (\lambda I)v, \]
 so we’ve shown that \(\nabla^2 f(w) \succeq \lambda I \), which implies strong-convexity with \(\mu = \lambda \).

- This implies that a solution exists, and that the solution is unique.

- Note that we have strong convexity with \(\mu > \lambda \) if \(X^T X \) is positive definite.
 - Which happens iff the features are independent (not collinear).
Strictly-Convex Functions

- A function is **strictly-convex** if the convexity definitions hold strictly (for $w \neq v$):

 \[
 f(\theta w + (1 - \theta)v) < \theta f(w) + (1 - \theta)f(v), \quad 0 < \theta < 1 \quad (C^0)
 \]

 \[
 f(v) > f(w) + \nabla f(w)^\top (v - w) \quad (C^1)
 \]

- Function is always strictly below any chord, strictly above any tangent.

- We might expect that strictly-convex C^2 have $\nabla^2 f(w) \succ 0$.
 - But this is not necessarily true.
 - Counter-example is $f(w) = w^4$ which is strictly convex but has $f'(0) = 0$.

- A strictly-convex function can have at most one global minimum:
 - If w and v were both global minima, convex combinations would be below global minimum.
A C^0 Definition of Strict and Strong Convexity

- There are many equivalent definitions of the convexities, here is one set for C^0 functions:
 - Convex (usual definition):
 \[f(\theta w + (1 - \theta)v) \leq \theta f(w) + (1 - \theta)f(v). \]
 - Strictly convex (strict version, excluding $\theta = 0$ or $\theta = 1$):
 \[f(\theta w + (1 - \theta)v) < \theta f(w) + (1 - \theta)f(v). \]
 - Strong convexity (need an “extra” bit of decrease as you move away from endpoints):
 \[f(\theta w + (1 - \theta)v) \leq \theta f(w) + (1 - \theta)f(v) - \frac{\theta(1 - \theta)\mu}{2}||w - v||^2. \]