Convex Functions

Numerical Optimization for Machine Learning Convex Sets and Convex Functions

Mark Schmidt

University of British Columbia

Summer 2022

Machine Learning and Optimization

- In machine learning, training is typically written as an optimization problem:
 - We optimize parameters w of model, given data.
- There are some exceptions:
 - Methods based on counting and distances (KNN, random forests).
 - See CPSC 340.
 - **2** Methods based on averaging and integration (Bayesian learning).
 - Later in course.
 - But even these models have parameters to optimize.
- Important class of optimization problems: convex optimization problems.

Minimizing Maxes of Linear Functions

Convex Optimization

• Consider an optimization problem of the form

 $\min_{w \in \mathcal{C}} f(w).$

where we are minimizing a function f subject to w being in the set C.

- For least squares we have $f(w) = \|Xw-y\|^2$ and $\mathcal{C} \equiv R^d$
- If we had non-negative constraints, we would have $\mathcal{C} \equiv \{w \mid w \ge 0\}$.
 - Notation: when I write $w \ge v$ for a vectors I mean inequality holds element-wise.
 - So $w \ge v$ means $w_i \ge v_i$ for all i and $w \ge 0$ means $w_i \ge 0$ for all i.
- We say that this is a convex optimization problem if:
 - The set C is a convex set.
 - The function f is a convex function.

Minimizing Maxes of Linear Functions

Convex Optimization

• Key property of convex optimization problems:

- All local optima are global optima.
- Convexity is usually a good indicator of tractability:
 - Minimizing convex functions is usually easy.
 - Minimizing non-convex functions is usually hard.
- Off-the-shelf software solves many classes of convex problems (*MathProgBase*).

Convex Sets

Convex Functions

Strict-Convexity and Strong-Convexity

Ainimizing Maxes of Linear Functions

1 Motivation: Convex Optimization

- 3 Convex Functions
- 4 Strict-Convexity and Strong-Convexity
- 5 Minimizing Maxes of Linear Functions

Definition of Convex Sets

• A set \mathcal{C} is convex if the line between any two points stays also in the set.

Definition of Convex Sets

- To formally define convex sets, we use the notion of convex combination:
 - A convex combination of two variables w and v is given by

$$\theta w + (1 - \theta) v$$
 for any $0 \le \theta \le 1$,

which characterizes the points on the line between w and v.

- A set C is convex if convex combinations of points in the set are also in the set:
 - For all $w \in \mathcal{C}$ and $v \in \mathcal{C}$ we have $\theta w + (1 \theta)v \in \mathcal{C}$ for $0 \le \theta \le 1$.

convex comb

• This definition allows us to prove the convexity of many simple sets.

Minimizing Maxes of Linear Functions

Examples of Simple Convex Sets

• Real space \mathbb{R}^d .

- Real space \mathbb{R}^d .
- Positive orthant $\mathbb{R}^d_+ : \{ w \mid w \ge 0 \}.$

- Real space \mathbb{R}^d .
- Positive orthant $\mathbb{R}^d_+ : \{ w \mid w \ge 0 \}.$
- Hyper-plane: $\{w \mid a^{\top}w = b\}.$

- Real space \mathbb{R}^d .
- Positive orthant $\mathbb{R}^d_+ : \{ w \mid w \ge 0 \}.$
- Hyper-plane: $\{w \mid a^{\top}w = b\}.$
- Half-space: $\{w \mid a^{\top}w \leq b\}.$

- Real space \mathbb{R}^d .
- Positive orthant $\mathbb{R}^d_+: \{w \mid w \ge 0\}.$
- Hyper-plane: $\{w \mid a^{\top}w = b\}.$
- Half-space: $\{w \mid a^{\top}w \leq b\}.$
- Norm-ball: $\{w \mid ||w||_p \leq \tau\}.$

- Real space \mathbb{R}^d .
- Positive orthant $\mathbb{R}^d_+: \{w \mid w \ge 0\}.$
- Hyper-plane: $\{w \mid a^{\top}w = b\}.$
- Half-space: $\{w \mid a^{\top}w \leq b\}.$
- Norm-ball: $\{w \mid ||w||_p \leq \tau\}.$

Strict-Convexity and Strong-Convexity

Minimizing Maxes of Linear Functions

- Real space \mathbb{R}^d .
- Positive orthant $\mathbb{R}^d_+ : \{ w \mid w \ge 0 \}.$
- Hyper-plane: $\{w \mid a^{\top}w = b\}.$
- Half-space: $\{w \mid a^{\top}w \leq b\}.$
- Norm-ball: $\{w \mid ||w||_p \leq \tau\}.$
- Norm-cone: $\{(w,\tau) \mid ||w||_p \leq \tau\}.$
 - For norms we have $p \ge 1$.

Showing a Set is Convex from Intersections

• Useful property: the intersection of convex sets is convex.

- We can prove convexity of a set by showing it's an intersection of convex sets.
- Example: "linear programs" have constraints of the form $Aw \leq b$.
 - Each constraint $a_i^{\top} b_i$ defines a half-space, $\{w \mid a^{\top} w \leq b\}$.
 - $\bullet\,$ So the set of w satisfying all constraints is the intersection of half spaces.
 - Half-spaces are convex sets.
 - So the w satisfying $Aw \leq b$ is the intersection of convex sets.

Showing a Set is Convex from a Convex Function

 $\bullet\,$ The set ${\mathcal C}$ is often the intersection of a set of inequalities of the form

 $\{w\mid g(w)\leq\tau\},$

for some function g and some number τ .

- Sets defined like this are convex if g is a convex function (see bonus).
 - This follows from the definition of a convex function (next topic).
- Example:
 - The set of w where $w^2 \leq 10$ forms a convex set by convexity of $w^2.$
 - Specifically, the set is $[-\sqrt{10},\sqrt{10}].$

onvex Sets

Convex Functions

Strict-Convexity and Strong-Convexity

Ainimizing Maxes of Linear Functions

1 Motivation: Convex Optimization

2 Convex Sets

3 Convex Functions

4 Strict-Convexity and Strong-Convexity

5 Minimizing Maxes of Linear Functions

Digression: k-way Convex Combinations and Differentiability Classes

• A convex combination of 2 vectors w_1 and w_2 is given by

$$\theta w_1 + (1 - \theta) w_2$$
, where $0 \le \theta \le 1$.

• A convex combination of k vectors $\{w_1, w_2, \ldots, w_k\}$ is given by

$$\sum_{c=1}^k heta_c w_c$$
 where $\sum_{c=1}^k heta_c = 1, \ heta_c \ge 0.$

- We'll define convex functions for different differentiability classes:
 - C^0 is the set of continuous functions.
 - C^1 is the set of continuous functions with continuous first-derivatives.
 - C^2 is the set of continuous functions with continuous first- and second-derivatives.

Definitions of Convex Functions

- Four equivalent definitions of convex functions (depending on differentiability):
 - **(**) A C^0 function is convex if the area above the function is a convex set.
 - **2** A C^0 function is convex if the function is always below its "chords" between points.
 - **(3)** A C_{-}^{1} function is convex if the function is always above its tangent planes.
 - **(4)** A C^2 function is convex if it is curved upwards everwhere.
 - If the function is univariate this means $f''(w) \ge 0$ for all w.
- Univariate examples where you can show $f''(w) \ge 0$ for all w:
 - Quadratic $aw^2 + bw + c$ with $a \ge 0$.
 - Linear: aw + b.
 - Constant: *b*.
 - Exponential: $\exp(aw)$.
 - Negative logarithm: $-\log(w)$.
 - Negative entropy: $w \log w$, for w > 0.
 - Logistic loss: $\log(1 + \exp(-w))$.

C^0 Definitions of Convex Functions

• A function f is convex iff the area above the function is a convex set.

• Equivalently, the function is always below its "chords" between points.

$$f(\underbrace{\theta w + (1-\theta)v}_{\text{convex comb}}) \leq \underbrace{\theta f(w) + (1-\theta)f(v)}_{\text{``chord''}}, \quad \text{for all } w \in \mathcal{C}, v \in \mathcal{C}, 0 \leq \theta \leq 1.$$

• Implies all local minima of convex functions are global minima.

Convexity of Norms

• The C^0 definition can be used to show that all norms are convex:

• If $f(w) = \|w\|_p$ for a generic norm, then we have

$$\begin{split} f(\theta w + (1 - \theta)v) &= \|\theta w + (1 - \theta)v\|_p \\ &\leq \|\theta w\|_p + \|(1 - \theta)v\|_p \qquad \text{(triangle inequality)} \\ &= |\theta| \cdot \|w\|_p + |1 - \theta| \cdot \|v\|_p \qquad \text{(absolute homogeneity)} \\ &= \theta\|w\|_p + (1 - \theta)\|v\|_p \qquad (0 \leq \theta \leq 1) \\ &= \theta f(w) + (1 - \theta)f(v), \qquad \text{(definition of } f) \end{split}$$

so f is always below the "chord".

• See course webpage notes on norms if the above steps aren't familiar.

- Also note that all squared norms are convex.
 - These are all convex: $|w|, ||w||, ||w||_1, ||w||^2, ||w_1||^2, ||w||_{\infty}, \dots$

Operations that Preserve Convexity

- There are a few operations that preserve convexity.
 - Can show convexity by writing as sequence of convexity-preserving operations.
- If f and g are convex functions, the following preserve convexity:
 Non-negative scaling: h(w) = α f(w), (for α > 0)
 - ② Sum: h(w) = f(w) + g(w).
 - Solution Maximum: $h(w) = \max\{f(w), g(w)\}.$
 - Composition with linear: h(w) = f(Aw),

where A is a matrix (or another "linear operator").

- Note that multiplication and composition do not preserve convexity in general.
 - f(w)g(w) is not a convex function in general, even if f and g are convex.
 - f(g(w)) is not a convex function in general, even if f and g are convex.

Convexity of SVMs

- $\bullet~$ If f and g are convex functions, the following preserve convexity:
 - Non-negative scaling.
 - 2 Sum.
 - 3 Maximum.
 - Omposition with linear.
- We can use these to quickly show that SVMs are convex,

$$f(w) = \sum_{i=1}^{n} \max\{0, 1 - y^{i} w^{\top} x^{i}\} + \frac{\lambda}{2} \|w\|^{2}.$$

- Second term is squared norm multiplied by non-negative $\frac{\lambda}{2}$.
 - Squared norms are convex, and non-negative scaling perserves convexity.
- First term is sum(max(linear)). Linear is convex and sum/max preserve convexity.
- Since both terms are convex, and sums preserve convexity, SVMs are convex.

C^1 Definition of Convex Functions

• Convex functions must be continuous, and have a domain that is a convex set.

- But they may be non-differentiable.
- A differentiable (C^1) function f is convex iff f is always above tangent planes.

 $f(v) \ge f(w) + \nabla f(w)^{\top} (v - w), \quad \forall w \in \mathcal{C}, v \in \mathcal{C}.$

Notice that ∇f(w) = 0 implies f(v) ≥ f(w) for all v.
So ∇f(w) = 0 implies that w is a global minimizer.

C^2 Definition of Convex Functions

• The multivariate C^2 definition is based on the Hessian matrix, $\nabla^2 f(w)$.

• The matrix of second partial derivatives,

$$\nabla^{2}f(w) = \begin{bmatrix} \frac{\partial^{2}}{\partial w_{1}\partial w_{1}}f(w) & \frac{\partial^{2}}{\partial w_{1}\partial w_{2}}f(w) & \cdots & \frac{\partial^{2}}{\partial w_{1}\partial w_{d}}f(w) \\ \frac{\partial^{2}}{\partial w_{2}\partial w_{1}}f(w) & \frac{\partial^{2}}{\partial w_{2}\partial w_{2}}f(w) & \cdots & \frac{\partial^{2}}{\partial w_{2}\partial w_{d}}f(w) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}}{\partial w_{d}\partial w_{1}}f(w) & \frac{\partial^{2}}{\partial w_{d}\partial w_{2}}f(w) & \cdots & \frac{\partial^{2}}{\partial w_{d}\partial w_{d}}f(w) \end{bmatrix}$$

 \bullet In the case of least squares, $\frac{1}{2}\|Xw-y\|^2$, we can write the Hessian for any w as

$$\nabla^2 f(w) = X^\top X,$$

see course webpage notes on the gradients/Hessians of linear/quadratic functions.

Convexity of Twice-Differentiable Functions

• A C^2 function is convex iff:

 $\nabla^2 f(w) \succeq 0,$

for all w in the domain ("curved upwards" in every direction).

- This notation $A \succeq 0$ means that A is positive semidefinite.
- Two equivalent definitions of a positive semidefinite matrix A:

 - 2 The quadratic $v^{\top}Av$ is non-negative for all vectors v.

Example: Convexity and Least Squares

• We can use twice-differentiable condition to show convexity of least squares,

$$f(w) = \frac{1}{2} \|Xw - y\|^2.$$

 $\bullet\,$ The Hessian of this objective for any w is given by

$$\nabla^2 f(w) = X^\top X.$$

- So we want to show that $X^{\top}X \succeq 0$ or equivalently that $v^{\top}X^{\top}Xv \ge 0$ for all v.
- This follows by writing the quadratic form as a squared norm,

$$v^{\top}X^{\top}Xv = \underbrace{(v^{\top}X^{\top})}_{(Xv)^{\top}}Xw = \underbrace{(Xv)^{\top}(Xv)}_{u^{\top}u} = \underbrace{\|Xv\|^2}_{\|u\|^2} \ge 0,$$

so least squares is convex (and solving $\nabla f(w) = 0$ gives global minimum).

Showing that Function is Convex

- Most common approaches for showing that a function is convex:
 - **()** Show that f is constructed from operations that preserve convexity.
 - Non-negative scaling, sum, max, composition with linear.
 - 2 Show that $\nabla^2 f(w)$ is positive semi-definite for all w (for C^2 functions),

 $abla^2 f(w) \succeq 0$ (zero matrix).

③ Show that f is below chord for any convex combination of points.

 $f(\theta w + (1 - \theta)v \le \theta f(w) + (1 - \theta)f(v).$

Example: Convexity of Logistic Regression

• Consider the binary logistic regression model,

$$f(w) = \sum_{i=1}^{n} \log(1 + \exp(-y^{i} w^{T} x^{i})).$$

• With some tedious manipulations, gradient in matrix notation is

$$\nabla f(w) = X^T r.$$

where the vector r has elements $r_i=-y^ih(-y^iw^Tx^i).$ • And h is the sigmoid function, $h(\alpha)=\frac{1}{1+\exp(-\alpha)}.$

- We know the gradient has this form from the multivariate chain rule (bonus)
 Functions for the form f = g(Xw) always have ∇f(w) = X^Tr.
 - Where the vector r = g'(Xw).

Example: Convexity of Logistic Regression

• With some more tedious manipulations we get the Hessian in matrix notation as

$$\nabla^2 f(w) = X^T D X.$$

where D is a diagonal matrix with $d_{ii} = h(y_i w^T x^i) h(-y^i w^T x^i)$.

- The f = g(Xw) structure leads to a $X^T D X$ Hessian structure.
- For other problems D may not be diagonal.
- Since the sigmoid function h is non-negative, we can compute $D^{\frac{1}{2}}$, and

$$v^{T}X^{T}DXv = v^{T}X^{T}D^{\frac{1}{2}}D^{\frac{1}{2}}Xv = (D^{\frac{1}{2}}Xv)^{T}(D^{\frac{1}{2}}Xv) = \|XD^{\frac{1}{2}}v\|^{2} \ge 0,$$

so $X^T D X$ is positive semidefinite and logistic regression is convex.

Convex Sets

Convex Functions

Strict-Convexity and Strong-Convexity

Vinimizing Maxes of Linear Functions

1 Motivation: Convex Optimization

- 2 Convex Sets
- 3 Convex Functions
- 4 Strict-Convexity and Strong-Convexity
 - 5 Minimizing Maxes of Linear Functions

Positive Semi-Definite, Positive Definite, Generalized Inequality

- The notation $A \succeq 0$ indicates that A is positive semi-definite.
 - $\bullet\,$ The eigenvalues of A are all non-negative.
 - $v^{\top}Av \ge 0$ for all vectors v.
- The notation $A \succ 0$ indicates that A is positive definite.
 - The eigenvalues of \boldsymbol{A} are all positive.
 - $v^{\top}Av > 0$ for all vectors $v \neq 0$.
 - This implies that A is invertible (bonus).
- The notation $A \succeq B$ indicates that A B is positive semi-definite.
 - The eigenvalues of A B are all non-negative.
 - $v^{\top}Av \ge v^{\top}Bv$ for all vectors v.

MEMORIZE!

Minimizing Maxes of Linear Functions

More Examples of Convex Functions

• Some convex sets based on these definitions (useful for covariances):

- The set of positive semidefinite matrices, $\{W \mid W \succeq 0\}$.
- The set of positive definite matrices, $\{W \mid W \succ 0\}$.
- Some more exotic examples of convex functions used in ML:
 - $f(W) = -\log \det W$ for $W \succ 0$ (negative log-determinant).
 - $f(W, v) = v^\top W^{-1} v$ for $W \succ 0$.
 - $f(w) = \log(\sum_{j=1}^{d} \exp(w_j))$ (log-sum-exp function).

Positive Semi-Definite, Positive Definite, Generalized Inequality

• Note that some pairs of matrices cannot be compared.

-

• With these matrices:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix}$,

neither $A \succeq B$ nor $B \succeq A$ (the "generalized inequality" defines a "partial order").

- It's often useful to compare to the identity matrix I, which has eigenvalues 1.
 - And a matrix of the form μI for a scalar μ has all eigenvalues equal to $\mu.$
- Writing $LI \succeq A \succeq \mu I$ means "eigenvalues of A are between μ and L".

Convexity, Strict Convexity, and Strong Convexity

• We say that a ${\cal C}^2$ function is convex if for all w,

$$\nabla^2 f(w) \succeq 0,$$

and this implies any stationary point ($\nabla f(w) = 0$) is a global minimum.

۲

• We say that a C^2 function is strictly convex if for all w,

$$\nabla^2 f(w) \succ 0,$$

and this implies there is at most one stationary point (and $\nabla^2 f(w)$ is invertible). • We say that a C^2 function is strongly convex if, for some $\mu > 0$, for all w,

$$\nabla^2 f(w) \succeq \mu I,$$

and this implies there exists a minimum (if domain C is closed).

• Strong convexity affects speed of gradient descent, and how much data you need.

Convexity, Strict Convexity, and Strong Convexity

- These definitions simplify for univariate functions:
 - Convex: $f''(w) \ge 0$.
 - Strictly convex: f''(w) > 0.
 - Strongly convex: $f''(w) \ge \mu$ for $\mu > 0$.
- Examples:
 - Convex: f(w) = w.
 - Since f''(w) = 0.
 - Strictly convex: $f(w) = \exp(w)$.
 - Since $f''(w) = \exp(w) > 0$.
 - Strongly convex: $f(w) = \frac{1}{2}w^2$.
 - Since f''(w) = 1 so it is strongly convex with $\mu = 1$.

Strict Convexity of L2-Regularized Least Squares

• In L2-regularized least squares, the Hessian matrix is the constant matrix

$$\nabla^2 f(w) = (X^\top X + \lambda I).$$

• We can show that this is positive-definite, so the problem is strictly convex,

$$v^{\top} \nabla^2 f(w) v = v^{\top} (X^{\top} X + \lambda I) v = \underbrace{\|Xv\|^2}_{\ge 0} + \underbrace{\lambda \|v\|^2}_{> 0} > 0,$$

where we used that $\lambda > 0$ and ||v|| > 0 for $v \neq 0$.

- This implies that the matrix $(X^{\top}X + \lambda I)$ is invertible, and solution is unique.
 - Similar argument shows it's strongly-convex with $\mu = \lambda$.
 - Value μ can be larger if columns of X are independent (no collinearity).
 - In this case, $||Xv|| \neq 0$ for $v \neq 0$ so even least squares is strongly-convex.

Strong-Convexity Discussion

• We can also define strict and strong convexity for C^1 and C^0 functions (bonus).

- And note that (strong convexity) implies (strict convexity) implies (convexity).
- $\bullet\,$ For example, we say that a C^0 function f is strongly convex if the function

 $f(w) - \frac{\mu}{2} \|w\|^2,$

- is a convex function for some $\mu > 0$.
 - "If you 'un-regularize' by μ then it's still convex."
- If we have a convex loss f, adding L2-regularization makes it strongly-convex,

$$f(w) + \frac{\lambda}{2} \|w\|^2,$$

with μ being at least λ .

• So L2-regularization guarantees a solution exists, and that it is unique.

onvex Sets (

Convex Functions

Strict-Convexity and Strong-Convexity

Minimizing Maxes of Linear Functions

1 Motivation: Convex Optimization

- 2 Convex Sets
- 3 Convex Functions
- 4 Strict-Convexity and Strong-Convexity
- 5 Minimizing Maxes of Linear Functions

Least Squares and Linear Equalities

• In 340 we showed that solving least squares optimization problem,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \|Xw - y\|^2.$$

is equivalent to solving the normal equations,

$$(X^{\top}X)w = X^{\top}y.$$

- This is a special case of solving a set of linear equalities, Aw = b.
 - Set of equalities of the form $a_i^{\top} w = b_i$ for vectors a_i and scalaras b_i .
- There exists reliable "off the shelf" software for solving linear equalities.

Linear Inequalities and Linear Programs

• We can also solve linear inequalities $Aw \leq b$ (instead of Aw = b).

- A set of inequalities of the form $a_i^T w \leq b_i$ for vectors a_i and scalars b_i .
- More generally, there are "off the shelf" codes for solving linear programs:

$$\underset{w}{\operatorname{argmin}} w^{\top} c, \quad \text{among the } w \text{ satisfying } Aw \leq b,$$

which minimize a linear cost function and linear constraints.

- Another common problem class with "off the shelf" tools is quadratic programs.
 - Minimize a quadratic cost function with linear constraints.
 - For example, non-negative least squares minimizies $||Xw y||^2$ subject to $w \ge 0$.

Robust Regression as Linear Program

• Consider regression with the absolute error as the loss,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^n |w^\top x^i - y^i|.$$

- In CPSC 340 we argued that this is more robust to outliers than least squares.
- This problem can be turned into a linear program.
 - You can then solve it with "off the shelf" linear programming software.
- Our first step is re-writing absolute value using $|\alpha| = \max\{\alpha, -\alpha\}$,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^n \max\{w^\top x^i - y^i, y^i - w^\top x^i\}.$$

Robust Regression as a Linear Program

• So we've show that L1-regression is equivalent to

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^n \max\{w^\top x^i - y^i, y^i - w^\top x^i\}.$$

• Second step: introduce n variables r_i that upper bound the max functions,

$$\underset{w \in \mathbb{R}^{d}, r \in \mathbb{R}^{n}}{\operatorname{argmin}} \sum_{i=1}^{n} r_{i}, \quad \text{with} \quad r_{i} \geq \max\{w^{\top}x^{i} - y^{i}, y^{i} - w^{\top}x^{i}\}, \forall i.$$

- This is a linear objective in terms of the parameters w and r.
- Problems are equivalent: solutions must have $r_i = |w^{\top}x^i y^i|$.
 - If r_i < |w[⊤]xⁱ yⁱ|, then one of the constraints are not satisfied (not a solution).
 If r_i > |w[⊤]xⁱ yⁱ|, then we could decrease r_i and get lower cost (not a solution).

Robust Regression as a Linear Program

• So we've show that L1-regression is equivalent to

$$\underset{w \in \mathbb{R}^{d}, r \in \mathbb{R}^{n}}{\operatorname{argmin}} \sum_{i=1}^{n} r_{i}, \quad \text{with} \quad r_{i} \geq \max\{w^{\top}x^{i} - y^{i}, y^{i} - w^{\top}x^{i}\}, \forall i,$$

which has a linear cost function but non-linear constraints.

• Third step: split max constraints into individual linear constraints,

$$\underset{w \in \mathbb{R}^{d}, r \in \mathbb{R}^{n}}{\operatorname{argmin}} \sum_{i=1}^{n} r_{i}, \quad \text{with} \quad r_{i} \geq w^{\top} x^{i} - y^{i}, \; r_{i} \geq y^{i} - w^{\top} x^{i}, \forall i.$$

• Being greater than the max is equivalent to being greater than each.

Minimizing Absolute Values and Maxes

• We've shown that L1-norm regression can be written as a linear program,

$$\underset{w \in \mathbb{R}^{d}, \ r \in \mathbb{R}^{n}}{\operatorname{argmin}} \sum_{i=1}^{n} r_{i}, \quad \text{with} \quad r_{i} \geq w^{\top} x^{i} - y^{i}, \ r_{i} \geq y^{i} - w^{\top} x^{i}, \forall i,$$

- For medium-sized problems, we can solve this with Julia's *linprog*.
 - Linear programs are solvable in polynomial time.
- A general approach for minimizing absolute values and/or maximums:
 - Replace absolute values with maximums.
 - **2** Replace maximums with new variables, constrain these to bound maixmums.
 - **③** Transform to linear constraints by splitting the maximum constraints.

Example: Support Vector Machine as a Quadratic Program

• The SVM optimization problem is

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^n \max\{0, 1 - y^i w^\top x^i\} + \frac{\lambda}{2} \|w\|^2,$$

• Introduce new variables to upper-bound the maxes,

$$\underset{w \in \mathbb{R}^{d}, r \in \mathbb{R}^{n}}{\operatorname{argmin}} \sum_{i=1}^{n} r_{i} + \frac{\lambda}{2} \|w\|^{2}, \quad \text{with} \quad r_{i} \geq \max\{0, 1 - y^{i}w^{\top}x^{i}\}, \forall i.$$

• Split the maxes into separate constraints,

$$\underset{w \in \mathbb{R}^{d}, r \in \mathbb{R}^{n}}{\operatorname{argmin}} \sum_{i=1}^{n} r_{i} + \frac{\lambda}{2} \|w\|^{2}, \quad \text{with} \quad r_{i} \geq 0, \; r_{i} \geq 1 - y^{i} w^{\top} x^{i},$$

which is a quadratic program (quadratic objective with linear constraints).

General Lp-norm Losses

• Consider minimizing the regression loss

$$f(w) = \|Xw - y\|_p,$$

with a general Lp-norm, $\|r\|_p = (\sum_{i=1}^n |r_i|^p)^{rac{1}{p}}$.

- With p = 2, we can minimize the function as a linear system.
 - Raise to the power of 2 and set gradient to zero.
- With p = 1, we can minimize the function using linear programming.
- With $p = \infty$, we can also use linear programming (using same trick).
- For 1
 By raising it to the power p (next topic).
- If we use p < 1 (which is not a norm), minimizing f is NP-hard.

- Convex optimization problems are a class that we can usually efficiently solve.
- Showing functions and sets are convex.
 - Either from definitions or convexity-preserving operations.
- C^2 definition of convex functions that the Hessian is positive semidefinite.

 $\nabla^2 f(w) \succeq 0.$

- Strict and strong convexity guarantee uniqueness and existence of solutions.
 - Adding L2-regularization to a convex function gives you these.
- Converting non-smooth problems involving max to constrained smooth problems.

Showing that Hyper-Planes are Convex

- Hyper-plane: $\mathcal{C} = \{ w \mid a^{\top}w = b \}.$
 - If $w \in \mathcal{C}$ and $v \in \mathcal{C}$, then we have $a^{\top}w = b$ and $a^{\top}v = b$.
 - To show C is convex, we can show that $a^{\top}u = b$ for u between w and v.

$$a^{\top}u = a^{\top}(\theta w + (1 - \theta)v)$$
$$= \theta(a^{\top}w) + (1 - \theta)(a^{\top}v)$$
$$= \theta b + (1 - \theta)b = b.$$

• Alternately, if you knew that linear functions $a^{\top}w$ are convex, then C is the intersection of $\{w \mid a^{\top}w \leq b\}$ and $\{w \mid a^{\top}w \geq b\}$.

Minimizing Maxes of Linear Functions

Convex Sets from Functions

• For sets of the form

 $\mathcal{C} = \{ w \mid g(w) \le \tau \},\$

If g is a convex function, then C is a convex set:

which means convex combinations are in the set.

Multivariate Chain Rule

• If $g:\mathbb{R}^d\mapsto\mathbb{R}^n$ and $f:\mathbb{R}^n\mapsto\mathbb{R},$ then h(x)=f(g(x)) has gradient

$$\nabla h(x) = \nabla g(x)^T \nabla f(g(x)),$$

where $\nabla g(x)$ is the Jacobian.

• We use Jacobian instead of gradient since g could be multi-output.

• If g is an affine map $x \mapsto Ax + b$ so that h(x) = f(Ax + b) then we obtain

$$\nabla h(x) = A^T \nabla f(Ax + b).$$

• Further, for the Hessian we have

$$\nabla^2 h(x) = A^T \nabla^2 f(Ax + b) A.$$

Minimizing Maxes of Linear Functions

Positive-Definite Matrices are Invertible

- If $A \succ 0$, then all the eigenvalues of A are positive.
- If each eigenvalue is positive, the product of the eigenvalues is positive.
- The product of the eigenvalues is equal to the determinant.
- Thus, the determinant is positive.
- The determinant not being 0 implies the matrix is invertible.

Strong Convexity of L2-Regularized Least Squares

• In L2-regularized least squares, the Hessian matrix is

$$\nabla^2 f(w) = (X^\top X + \lambda I).$$
$$v^\top \nabla^2 f(w)v = v^\top (X^\top X + \lambda I)v = \underbrace{\|Xv\|^2}_{\geq 0} + v^\top (\lambda I)v \geq v^\top (\lambda I)v,$$

so we've shown that $\nabla^2 f(w) \succeq \lambda I$, which implies strong-convexity with $\mu = \lambda$.

- This implies that a solution exists, and that the solution is unique.
- Note that we have strong convexity with μ > λ if X^TX is positive definite.
 Which happens iff the features are independent (not collinear).

Strictly-Convex Functions

• A function is strictly-convex if the convexity definitions hold strictly (for $w \neq v$):

$$f(\theta w + (1 - \theta)v) < \theta f(w) + (1 - \theta)f(v), \quad 0 < \theta < 1$$

$$f(v) > f(w) + \nabla f(w)^{\top}(v - w)$$
(C¹)

- Function is always strictly below any chord, strictly above any tangent.
- We might expect that strictly-convex C^2 have $\nabla^2 f(w) \succ 0$.
 - But this is not necessarily true.
 - Counter-example is $f(w) = w^4$ which is strictly convex but has f'(0) = 0.
- A strictly-convex function can have at most one global minimum:
 - $\bullet~$ If w and v were both global minima, convex combinations would be below global minimum.

A C^0 Definition of Strict and Strong Convexity

- There are many equivalent definitions of the convexities, here is one set for ${\cal C}^0$ functions:
 - Convex (usual definition):

$$f(\theta w + (1 - \theta)v) \le \theta f(w) + (1 - \theta)f(v).$$

• Strictly convex (strict version, exclusindg $\theta = 0$ or $\theta = 1$):

$$f(\theta w + (1 - \theta)v) < \theta f(w) + (1 - \theta)f(v).$$

• Strong convexity (need an "extra" bit of decrease as you move away from endpoints):

$$f(\theta w + (1 - \theta)v) \le \theta f(w) + (1 - \theta)f(v) - \frac{\theta(1 - \theta)\mu}{2} ||w - v||^2.$$