Randomized Coordinate Optimization Stochastic Gradient Descent

First-Order Optimization Algorithms for Machine Learning
Randomized Algorithms

Mark Schmidt

University of British Columbia

Summer 2020



Randomized Coordinate Optimization Stochastic Gradient Descent

Last Time: Coordinate Optimization

@ In coordinate optimization we only update one variable on each iteration.

(wk)7

@ More efficient than gradient descent if the iterations are d-times cheaper.
o True for pairwise separable f like label propagation,

d
Fw) =" fiw) + > fijlwi,wy).

Jj=1 (i,7)€E

under random choice of jj.



Randomized Coordinate Optimization Stochastic Gradient Descent

Analyzing Coordinate Descent
@ To analyze coordinate descent, we can write it as
wh ! = wk — akvjkf(wk)ejk,
where “elementary vector” e; has a zero in every position except j,
e =[0 01 00 0 0]
o We usually assume that each V;f is L-Lipshitz (“coordinate-wise Lipschitz"),
IVif(w+7e;) = Vif(w)] < LAl

which for C? functions is equivalent to |V?jf(w)| < L for all 4.
(diagonals of Hessian are bounded)
@ This is not a stronger assumption:
o If the gradient is L-Lipschitz then it's also coordiante-wise L-Lipschitz.



Randomized Coordinate Optimization Stochastic Gradient Descent

Convergence Rate of Coordinate Optimization
@ Coordinate-wise Lipschitz assumption implies a coordinate-wise descent lemma,

Pt < ) + Vi Fb) kb + L k- b))

for any w1 and w” that only differ in coordinate j.

o With ay, = 1/L (for simplicity), plugging in (w*™! —w*) = —(1/L)e;, V;, f(w")
gives

Ft) < fh) oIV F@h)P,

a progress bound based on only updating coordinate j.

o If we did optimal update (as in label propagation), this bound would still hold.
o Optimal update decreases [ by at least as much as any other update.



Randomized Coordinate Optimization Stochastic Gradient Descent

Convergence Rate of Randomized Coordinate Optimization

@ Our bound for updating coordinate jj is

Pt < fh) — S|V F@h)P,

so progress depends on which 7, that we choose.
@ Let's consider expected progress with random selection of ji,

E[f(w™)] <E [f(wk) — 21L|ijf(wk)|2] (expectation wrt jj, given w")
=E[f(w")] - LH‘E[\ijf(wk)ﬂ (linearity of expectation)
ZP 9|V fwk)? (definition of expectation)

no Jk



Randomized Coordinate Optimization Stochastic Gradient Descent

Convergence Rate of Randomized Coordinate Optimization

@ The bound from the previous slide is

d
Blf (b)) < fuh) = = 3 ple = )|V £ ).

2L
7j=1
1 d
_ k kN2
=/ )2dLj21|va(w )
= F(h) — —— |V (")



Randomized Coordinate Optimization Stochastic Gradient Descent

Convergence Rate of Randomized Coordinate Optimization

@ Our guaranteed progress bound for randomized coordinate optimization,

E[f (W) < f(w") = o= |V f (")

2dL

@ If we use strongly convexity or PL and recurse carefully (see bonus) we get
[k
Elf(w*)] - £ < (1- £) (1) - £,
dL
which means we expect to need O <dl% log(l/e)) iterations.
e For PL functions gradient descent needs O (l% log(l/e)) iterations.

@ So coordinate optimization needs d-times as many iterations?



Randomized Coordinate Optimization Stochastic Gradient Descent

Randomized Coordinate Optimization vs. Gradient Descent

@ If coordinate descent step are d-times cheaper then both algorithms need

0 (Luos/e).

in terms of “gradient descent iteration cost”.

@ So why prefer coordinate optimization?

@ The Lipschitz constants L are different.
o Let L. be the maximum gradient changes if you change one coordinate.
o Let L; be maximum gradient changes if you change all coordinates.
o Gradient descent uses Ly and coordinate optimization uses L..

@ Since L. < Ly, coordinate optimization is faster.
o The gain is because coordinate descent allows bigger step-sizes.
o For [non-]convex functions, similar trade-off: O(Ly/€) vs. O(dL./¢) iterations.
o Compbarison is harder with line—-search /coordinate-optimization auasi-Newton etc



Randomized Coordinate Optimization

Lipschitz Sampling

@ Can we do better than choosing j; uniformly at random?

@ You can go faster if you have an L; for each coordinate:

IV;f(w+vej) = Vjf(w)| < Ljlyl.

o For L2-regularized least squares we would have L; = |z;[|* + \.
@ Using L;, as the step-size and sampling j; proportional to L, gives
W
E[fh)] - £ < (1- &) [F@®) - £,

where L is the average Lipschitz constant (previously we used the maximum Lj).

@ For label propagation, this requires stronger assumptions on the graph structure:
o We need expected number of edges connected to j to be O(|E|/d).
e This might not be true if the high-degree nodes have the highest L; values.



Randomized Coordinate Optimization

Greedy Gauss-Southwell Selection Rule

@ Our bound on the progress if we choose coordinate jj is
1
P < fw®) = 2 1V f (),
and the “best” j; according to the bound is

Ji € argmax{|V; f (w")[},
J

@ This is called greedy selection or the Gauss-Southwell rule.




Randomized Coordinate Optimization

Greedy Gauss-Southwell Selection Rule

@ Our bound on the progress if we choose coordinate jj is
Pt < Fb) — oIV F@h).
and the “best” j; according to the bound is
gk € arg;nax{lvjf(wk)l},
@ This is called greedy selection or the Gauss-Southwell rule.

@ This can be viewed as “steespest descent in the L1-norm”,

L
ke argmin  F(0) + 94 (0~ ub) + Zllo - ¥R}
veERM



Randomized Coordinate Optimization

Greedy Gauss-Southwell Selection Rule

@ Our bound on the progress if we choose coordinate jj is
Pt < fh) — oIV F@h).
and the “best” j; according to the bound is
Jr € arg;nax{lvjf(wk)!},
o This is called greedy selection or the Gauss-Southwell rule.

@ Can we ever find max gradient value d-times cheaper than computing gradient?
e Yes, for pairwise-separable where maximum degree is similar to average degree.
o Includes lattice-structured graphs, complete graphs, and Facebook graph.
e You can efficiently track the gradient values and track the max with a max-heap.



Randomized Coordinate Optimization

Numerical Comparison of Coordinate Selection Rules
Comparison on problems where Gauss-Southwell has similar cost to random:

U5 -regularized sparse least squares

1 s

Objective

10 20 30 40 60 70 80 90 100

50
Epochs

“Cyclic” goes through the j in order: bad worst-case bounds but often works well
There also exist accelerated coordinate descent methods.



Randomized Coordinate Optimization

Coordinate Optimization for Non-Smooth Objectives

@ We can apply coordinate optimization for problems of the form

separable

where the f; can be non-smooth.
e This includes enforcing non-negative constraints, or using L1-regularization.

@ For proximal-PL F', with random coordinate-wise proximal-gradient we have

Bl @) - £ < (1 2)" (1) - 77,

the same convergence linear rate as if the non-smooth f; were not there.
(and faster than the sublinear O(1/k) rate for subgradient methods)
@ There are 4 different “greedy” rules in this setting (GS-s, GS-r, GS-q, GS-1).



Randomized Coordinate Optimization
Coordinate Optimization for “Composition with Linear”
@ We now know that many problems satisfy the “d-times faster” condition.

@ For example, composition of a smooth function with affine map plus separable

d

F(w) = f(Aw) + Y _ f(w;)

=1

for a matrix A, smooth function f, and potentially non-smooth f;.
o Includes L1-regularized least squares, logistic regression, etc.

o Key idea: you can track Aw as you go for a cost O(n) instead of O(nd) (bonus).

@ Recent works: coordinate optimization leads to faster PageRank methods.



Randomized Coordinate Optimization

Block Coordinate Descent

@ Instead of updating 1 variable, block coordinate descent updates a “block”.

@ Examples where you might want to do this:
e Coordinate descent steps converge too slow or don't fully-utilize parallel resources:
o Better to do a Newton step on 50 variables on each iteration?

e In multi-class logistic regression,

=3 [—w;xi +log (Z exp (! ﬂ)] |

=1

the cost of computing/updating 1 partial derivative w? is the same as for w..
@ So you could update an entire vector for cost of updating 1 parameter.
e In group L1-regularization,

F(w) = f(w) + A Jlwg,
9c€g

since the non-smooth part is only “group separable”.
e Coordinate descent will get stuck, block coordinate descent on groups works.



Outline

@ Randomized Coordinate Optimization

© Stochastic Gradient Descent



Randomized Coordinate Optimization Stochastic Gradient Descent

Finite-Sum Optimization Problems

@ Solving our standard regularized optimization problem
n

argminZIossi(w) + r(w),
weR i=1

data fitting term + regularizer
is a special case of solving the generic finite-sum optimization problem
1
argmin ; fi(w),
where fi(w) = loss;(w) + Lr(w).
@ Gradient methods are effective when d is very large.

@ What if number of training examples n is very large?
e E.g., ImageNet has ~ 14 million annotated images.



Randomized Coordinate Optimization Stochastic Gradient Descent

Stochastic vs. Deterministic Gradient Methods
® We consider minimizing f(w) = 2 37" | f;(w).

@ Deterministic gradient method [Cauchy, 1847]:
a n
k
wh T = wh — ap V f(wh) = w — o E V fi(w®).

e lteration cost is linear in n.
e Convergence with constant «y, or line-search.



Randomized Coordinate Optimization Stochastic Gradient Descent

Stochastic vs. Deterministic Gradient Methods

@ Stochastic gradient method [Robbins & Monro, 1951]:
o Random selection of 45 from {1,2,...,n}.

whtt = wh — Vi (w").

o With p(ix = i) = 1/n, the stochastic gradient is an unbiased estimate of gradient,

E[Vf,, (w szk—szz Z Vfilw) = - 30 Viilw) = Vf(w),
=1

e lteration cost is mdependent of n.
e Convergence requires ay, — 0.



Randomized Coordinate Optimization Stochastic Gradient Descent

Stochastic vs. Deterministic Gradient Methods
Stochastic iterations are n times faster, but how many iterations are needed?

e If Vf is Lipschitz continuous then we have:

Assumption ‘ Deterministic ‘ Stochastic
Convex O(1/+/¢) O(1/€?)
Strongly O(log(1/€)) O(1/e)

@ Stochastic has low iteration cost but slow convergence rate.

e Sublinear rate even in strongly-convex case.
e Bounds are unimprovable with “unbiased gradient approximation” oracle.

o Oracle returns a gy, satisfying E[gx] = V f(w").

@ Momentum and Newton-like methods do not improve rates in stochastic case.
o Can only improve constant factors (¢'s bottleneck is variance, not condition number).



Randomized Coordinate Optimization Stochastic Gradient Descent

Stochastic vs. Deterministic Convergence Rates

Plot of convergence rates in strongly-convex case:

\

—

stochastic

deterministic

log(excess cost)

Y

time

Stochastic will be superior for low-accuracy/time situations.



Stochastic Gradient Descent

Summary

Convergence rate of d coordinate descent iterations is faster than gradient descent.

Better coordinate selection with Lipschitz sampling or Gauss-Southwell.
f(Az) + 32, fj(w;) structure also allows coordinate optimization.

e Even for non-smooth f;, and in some cases we may want to update “blocks”.
Stochastic gradient method: n-times cheaper than gradient descent.

e But much slower convergence rate for smooth functions.

Next time: SGD theory and practice.



Stochastic Gradient Descent

Applying Expected Bound Recursively (Coordinate Optimization)

@ Our guaranteed progress bound for randomized coordinate optimization,

E[f ()] < ) - 5= IVAwh).

o If we subtract f* and use strong-convexity or PL (as before),

E[f(*)] - £* < (1= £ [f@h) - £,

@ By recursing we get linear convergence rate,

E[E[f (™)) = f* <E[(1- 22) [f(w") ~ £]]  (expectation wrt ji1)

E[f(w*+1)] — f(w*) < (1 - d%) [E[f(w")] — f*]  (iterated expectations)
< (1- 2 1wt - £

@ You keep alternating between taking an expectation back in time and recursing.



Gauss-Southwell Convergence Rate
@ The progress bound under the greedy Gauss-Southwell rule is
1
Fl*h) < flwh) - illvf(wk)llio,

and this leads to a faster rate of

Fh) - £ < (1Y ) - 71,

where 11 is the PL constant in the oco-norm

ulf(w) — £ < Sl F@)

@ This is faster because % < p1 < p (by norm equivalences).

Stochastic Gradient Descent

o If you know the L; values, a faster rule is “Gauss-Southwell-Lipschitz” .



Stochastic Gradient Descent

Gauss-Southwell-Lipschitz

@ Our bound on the progress with an L; for each coordinate is

F) < Fh) = g1V,

@ The best coordinate to update according to this bound is

\v k|2
Jr € argmax 7| Jf(w )
j L

which is called the Gauss-Southwell-Lipschitz rule.
e "If gradients are similar, pick the one that changes more slowly”.

Gauss-Southwell

@ This is the optimal update for quadratic functions.



Stochastic Gradient Descent

Problems Suitable for Coordinate Optimization

We now know that many problems satisfy the “d-times faster” condition.

For example, consider composition of a smooth function with affine map,
F(w) = f(Aw),

for a matrix A and a smooth function g with cost of O(n).
(includes least squares and logistic regression)

Using f’ as the gradient of f, the partial derivatives have the form
V,;F(z) = a]-Tf’(Aw).
If we have Aw, this costs O(n) instead of O(nd) for the full gradient.

(Assuming f’ costs O(n))
We can track the product Aw* as we go with O(n) cost,

k+1 k k
Aw Tt = A(W® + kej) = Aw® i Aej,,
old value O(n)



	Randomized Coordinate Optimization
	Stochastic Gradient Descent

