# First-Order Optimization Algorithms for Machine Learning Coordinate Optimization

Mark Schmidt

University of British Columbia

Summer 2020

## Last Time: Structured Regularization

• We discussed total variation regularization,

$$\underset{w}{\operatorname{argmin}} f(w) + \sum_{(i,j)\in E} \lambda_{ij} \|w_i - w_j\|,$$

if we want  $w_i$  values to be similar across nodes in a graph.

• We discussed structured sparsity,

$$\underset{w}{\operatorname{argmin}} f(w) + \sum_{g \in \mathcal{G}} \lambda_g \|w_g\|,$$

where overlapping groups can enforce patterns of sparsity.

- Unfortunately, these regularizers are not "simple".
  - But we can efficiently approximate the proximal operator in all these cases.

### Inexact Proximal-Gradient Methods

- For total-variation and overlapping group-L1, we can use Dykstra's algorithm
  - Iterative method that computes proximal operator for sum of "simple" functions.
- For nuclear-norm regularization, methods approximate top singular vectors.
  - Krylov subspace methods, randomized SVD approximations.
- Inexact proximal-gradient methods:
  - Proximal-gradient methods with an approximation to the proximal operator.
  - If approximation error decreases fast enough, same convergence rate:
    - To get  $O(\rho^t)$  rate, error must be in  $o(\rho^t)$ .
- A related approach is the "proximal average" for sum of "simple":
  - Replace proximal operator of sum with average of proximal operators for each term.

## Alternating Direction Method of Multipliers

- ADMM is also popular for structured sparsity problems
- Alternating direction method of multipliers (ADMM) solves:

$$\min_{Aw+Bv=c} f(w) + r(v).$$

- Alternates between proximal operators with respect to f and r.
  - We usually introduce new variables and constraints to convert to this form.
- ${\ensuremath{\, \bullet }}$  We can apply ADMM to L1-regularization with an easy prox for f using

$$\min_{w} \frac{1}{2} \|Xw - y\|^2 + \lambda \|w\|_1 \quad \Leftrightarrow \quad \min_{v = Xw} \frac{1}{2} \|v - y\|^2 + \lambda \|w\|_1,$$

• For total-variation and structured sparsity we can use

$$\min_{w} f(w) + \|Aw\|_1 \quad \Leftrightarrow \quad \min_{v=Aw} f(w) + \|v\|_1.$$

- If prox can not be computed exactly: linearized ADMM.
  - But ADMM rate depends on tuning parameter(s) and iterations aren't sparse.

## Conditional Gradient Method ("Frank-Wolfe")

• In some cases the projected-gradient step

$$w^{k+1} = \operatorname*{argmin}_{v \in \mathcal{C}} \left\{ f(w^k) + \nabla f(w^k)^\top (v - w^k) + \frac{1}{2\alpha_k} \|v - w^k\|^2 \right\},$$

may be hard to compute.

• Frank-Wolfe step is sometimes cheaper:

$$w^{k+\frac{1}{2}} = \operatorname*{argmin}_{v \in \mathcal{C}} \left\{ f(w^k) + \nabla f(w^k)^\top (v - w^k) \right\},$$

requires bounded  $\mathcal{C}$ , algorithm takes convex combination of  $w^k$  and  $w^{k+\frac{1}{2}}$ .

https://www.youtube.com/watch?v=24e08AX9Eww

- O(1/t) rate for convex objectives, some linear results for strongly-convex.
  - Like Newton, iterations are affine-invariant (don't change with affine transformation).
  - Tends to be slower than projected-gradient in cases where they have similar costs.

#### Mirror Descent

• One generalization of the projected-gradient step

$$w^{k+1} = \operatorname*{argmin}_{v \in \mathcal{C}} \left\{ f(w^k) + \nabla f(w^k)^\top (v - w^k) + \frac{1}{2\alpha_k} \|v - w^k\|^2 \right\},$$

is the mirror descent step:

$$w^{k+1} = \operatorname*{argmin}_{v \in \mathcal{C}} \left\{ f(w^k) + \nabla f(w^k)^\top (v - w^k) + \frac{1}{\alpha_k} D(v, w^k) \right\},$$

where D is a Bregman divergence (generalization of squared Euclidean norm).

- Special cases:
  - Gradient descent:  $D(v, w) = \frac{1}{2} ||v w||^2$ .
  - Newton:  $D(v, w) = \frac{1}{2}(v w)^{\uparrow} \nabla^2 f(w)(v w).$
  - Exponentiated gradient: D(v, w) = KL(v || w).

# $UV^{\top}$ Parameterization for Matrix Problems

• We discussed nuclear norm regularization problems,

```
\underset{W \in \mathbb{R}^{d \times k}}{\operatorname{argmin}} f(W) + \lambda \|W\|_*,
```

which gives a solution with a low rank representation  $W = UV^{\top}$ .

- But standard algorithms are too costly in many applications.
  - We often can't store W.
- Many recent approaches directly minimize under  $UV^{\top}$  parameterization,

$$\underset{U \in \mathbb{R}^{d \times R}, V \in \mathbb{R}^{k \times R}}{\operatorname{argmin}} f(UV^{\top}) + \lambda_U \|U\|_F^2 + \lambda_V \|V\|_F^2,$$

and just regularize U and V (here we're using the Frobenius matrix norm).

# $UV^{\top}$ Parameterization for Matrix Problems

• We used this approach in 340 for latent-factor models,

$$f(W,Z) = \frac{1}{2} \|ZW - X\|_F^2 + \frac{\lambda_1}{2} \|Z\|_F^2 + \frac{\lambda_2}{2} \|W\|_F^2.$$

- We can sometimes prove these non-convex re-formulation give a global solution.
  Includes PCA.
- In other cases, people are working hard on finding assumptions where this is true.
  - These assumptions are typically unrealistically strong.
  - But it works well enough in practice that practitioners don't seem to care.

#### Label Propagation

## End of Part 1: Key Ideas

• Typical ML problems are written as optimization problem

$$\mathop{\mathrm{argmin}}_{w\in\mathbb{R}^d}F(w)=\frac{1}{n}\sum_{i=1}^nf_i(w)+\lambda r(w).$$

#### • Gradient descent:

- Applies when F is differentiable, yields iteration cost that is linear in d.
- Needs  $O(1/\epsilon)$  iterations in general, only  $O(\log(1/\epsilon))$  for PL functions.
- Faster versions like Nesterov's and Newton-like methods exist.
- Proximal gradient:
  - Applies when  $f_i$  is differentiable and r is "simple" (like L1-regularization).
  - $\bullet\,$  Similar convergence properties to gradient descent, even for non-smooth r.

• Faster than subgradient method for such problems.

- Special case is projected gradient, which allows "simple" constraints.
- Can be used for "structured" regularization, like group L1-regularization.

Label Propagation

Coordinate Optimization

## Outline

#### 1 Label Propagation

2 Coordinate Optimization

## Transductive Learning

• Our usual supervised learning framework:

$$X = \begin{bmatrix} 0 & 0.7 & 0 & 0.3 & 0 & 0 \\ 0.3 & 0.7 & 0 & 0.6 & 0 & 0.01 \\ 0 & 0 & 0 & 0.8 & 0 & 0 \\ 0.3 & 0.7 & 1.2 & 0 & 0.10 & 0.01 \end{bmatrix}, \quad y = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}.$$

• In transductive learning, we also have unlabeled examples,

$$\bar{X} = \begin{bmatrix} 0.3 & 0 & 1.2 & 0.3 & 0.10 & 0.01 \\ 0.6 & 0.7 & 0 & 0.3 & 0 & 0.01 \\ 0 & 0.7 & 0 & 0.6 & 0 & 0 \\ 0.3 & 0.7 & 0 & 0 & 0.20 & 0.01 \end{bmatrix},$$

and our goal is only to label these particular examples.

• We don't worry about performance on other potential test examples.

#### Label Propagation

## Transductive Learning

- Transductive learning framework:
  - $\textcircled{0} We have n labeled examples <math>(x^i, y^i).$
  - **2** We have t unlabeled examples  $\bar{x}^i$  that we want to label.
- This arises a lot:
  - Usually getting unlabeled data is easy but getting labeled data is hard (t >> n).
  - Typically situation: small number of labeled and huge number of unlabeled.
- Sometimes classifying the data is an intermediate step:
  - Goal is to ulimately use labeled examples to do something else.
  - "I can label a small number of examples, if it helps labeling them all".
- Sometimes it's not possible to obtain labels for any  $x^i$ .
  - Predicting gene functions is limited by what we can measure.

## Transductive Learning vs. (Semi-)Supervised Learning

- Transductive learning is a special case semi-supervised learning (SSL).
  - Learning with labeled and unlabeled examples.
- But transductive SSL has an unusual measure of performance:
  - We don't worry about "test error" (performance on all possible examples).
  - We only care about error for our "test" examples  $\bar{x}^i$ .
- Any supervised or semi-supervised method can be used for transduction.
  - Fit model, then apply it to unlabeled examples.
- But in transductive learning, we don't need a model that can predict on new x̃<sup>i</sup>.
  Some methods don't fit a generic model for mapping from x<sup>i</sup> to y<sup>i</sup>.

## Transductive Learning

- Why should unlabeled data tell us anything about labels?
  - $\bullet\,$  Usually, we assume that similar features  $\rightarrow$  similar labels.



## Transductive Learning

- Why should unlabeled data tell us anything about labels?
  - $\bullet\,$  Usually, we assume that similar features  $\rightarrow$  similar labels.



## Digression: Transductive vs. Inductive SSL

- In transductive learning we don't need to be able to predict on new examples.
  - In inductive semi-supervised learning goal is to predict well on new examples.



## Label Propagation (Graph-Based SSL)

- A weird idea: treat the  $\bar{y}^i$  as variables that we can optimize.
  - Now optimize the  $\bar{y}^i$  to encourage that "similar features have similar labels".
- Label propagation ("graph-based SSL") method:
  - Define weights  $w_{ij}$  saying how similar labeled example i is to unlabled example j.
    - Usually  $w_{ij}$  will be large if  $x^i$  and  $\bar{x}^j$  are similar.
  - Define weights  $\bar{w}_{ij}$  saying how similar unlabeled example i is to unlabeled example j.
  - Find labels  $\bar{y}^i$  minimizing a measure of total variation on the label space:

$$\underset{\bar{y}\in\mathbb{R}^{t}}{\operatorname{argmin}}\sum_{i=1}^{n}\sum_{j=1}^{t}w_{ij}(y^{i}-\bar{y}^{j})^{2}+\frac{1}{2}\sum_{i=1}^{t}\sum_{j=1}^{t}\bar{w}_{ij}(\bar{y}^{i}-\bar{y}^{j})^{2}.$$

- First term: unlabeled example should get similar labels to "close" labeled examples.
  - "If  $x^i$  and  $\bar{x}^j$  are similar, then  $\bar{y}^j$  should be similar to  $y^i$ ."
- Second term: similar unlabeled examples should have similar labels.
  - "Label information 'propagates' through the graph of  $\bar{y}^i$  values".

# Label Propagation (Graph-Based SSL)

- Label propagation is often surprisingly effective (even with few labeled examples).
- A common choice of the weights (many variations exist):
  - Find the k-nearest neighbours of each example (among labeled and unlabeled).
  - Set  $w_{ij}$  and  $\bar{w}_{ij}$  to 0 if nodes i and j aren't neighbours.
  - Otherwise, set these to some measure of similarity between features.



## Label Propagation for YouTube Tagging and Bioinformatics

- Label propagation doesn't necessarily need features.
  - Consider assigning "tags" to YouTube vidoes (e.g., "cat").



www.youtube.com

- Construct a graph based on sequence of videos that people watch.
  - Give high weight if video 'A' is often followed/preceded by video 'B'.
- Use label propagation to tag all videos.
- Becoming popular in bioinformatics:
  - Label a subset of genes using manual experiments.
  - Find out which genes interact using cheaper manual experiments.
  - Predict function/location/etc. of genes using label propagation.

#### Label Propagation

## Label Propagation Variations

- Many variations on label propagation exist:
  - Different ways to choose the graph/weights.
  - Multi-class versions,

$$\underset{\bar{Y}\in\mathbb{R}^{t\times k}}{\operatorname{argmin}}\sum_{i=1}^{n}\sum_{j=1}^{t}w_{ij}\|y^{i}-\bar{y}^{j}\|^{2}+\frac{1}{2}\sum_{i=1}^{t}\sum_{j=1}^{t}\bar{w}_{ij}\|\bar{y}^{i}-\bar{y}^{j}\|^{2}.$$

• Other measures of similarity/distance,

$$\underset{\bar{y} \in \mathbb{R}^{t}}{\operatorname{argmin}} \sum_{i=1}^{n} \sum_{j=1}^{t} f_{ij}(y^{i}, \bar{y}^{j}) + \frac{1}{2} \sum_{i=1}^{t} \sum_{j=1}^{t} f_{ij}(\bar{y}^{i}, \bar{y}^{j}).$$

- Variants where the given labels  $y^i$  are also variables (as they might be wrong).
  - Weight gives how much you trust original label.
- Variants where the unlabeled  $\bar{y}^i$  are regularized towards a default value.
  - Can reflect that example is really far from any labeled examples.

Label Propagation

Coordinate Optimization

## Outline

#### Label Propagation

2 Coordinate Optimization

## Beyond Gradient Descent

- For high-dimensional problems we often prefer gradient descent over Newton.
  - Gradient descent requires far more iterations.
  - But iteration cost is only linear in d.
- For very large datasets, even gradient descent iterations can be too slow.
  - If iteration cost is O(nd), we may only be able to do a small number of iterations.
- Two common strategies for yielding even cheaper iterations:
  - Coordinate optimization (today).
  - Stochastic gradient (next time).

#### Coordinate Optimization

• Each iteration of coordinate optimization only updates on variable:



• For example, on iteration k we select a variable  $j_k$  and set

$$w_{j_k}^{k+1} = w_{j_k}^k - \alpha_k \nabla_{j_k} f(w^k),$$

a gradient descent step on coordinate  $j_k$  (other  $w_j$  stay the same). • This variation is called coordinate descent (many variations exist).

## Why use Coordinate Descent?

- Theoretically, coordinate descent is a provably bad algorithm:
  - The convergence rate is slower than gradient descent.
  - The iteration cost can be similar to gradient descent.
    - Computing 1 partial derivative may have same cost as computing gradient.
- But it is widely-used in practice:
  - Nothing works better for certain problems.
  - Certain fields think it is the "ultimate" algorithm.
- Renewed theoretical interest began with a paper by Nesterov in 2010:
  - Showed global convergence rate for randomized coordinate selection.
  - $\bullet$  Coordinate descent is faster than gradient descent if iterations are d times cheaper.

 $f_i(w_i)$ 

## Problems Suitable for Coordinate Optimization

- For what functions is coordinate descent d times faster than gradient descent?
- The simplest example is separable functions,

$$f(w) = \sum_{j=1}^d f_j(w_j),$$

- Here f is the sum of an  $f_j$  applied to each  $w_j$ , like  $f(w) = \frac{\lambda}{2} ||w||^2 = \sum_{j=1}^d \frac{\lambda w_j^2}{\omega_j}$ .
- Cost of gradient descent vs. coordinate descent:
  - Gradient descent costs O(d) to compute each  $f'(w_i^k)$ .
  - Coordinate descent costs O(1) to compute the one  $f'_{j_k}(w^k_{j_k})$ .
- In fact, for separable functions you should only use coordinate optimization.
  - The variables  $w_j$  have "separate" effects, so can be minimized independently.

## Problems Suitable for Coordinate Optimization

• A more interesting example is pairwise-separable functions,

$$f(w) = \sum_{i=1}^{d} \sum_{j=1}^{d} f_{ij}(w_i, w_j),$$

which depend on a function of each pair of variables.

- An example is label propagation.
  - Also includes any quadratic function.
- Cost of gradient descent vs. coordinate descent:
  - Gradient descent costs  $O(d^2)$  to compute each  $f'_{ij}$ .
  - Coordinate descent costs O(d) to compute d values of  $f'_{ij}$ .

## Problems Suitable for Coordinate Optimization

• Our label propagation example looked a bit more like this:

$$f(w) = \sum_{j=1}^{d} f_j(w_j) + \sum_{(i,j) \in E} f_{ij}(w_i, w_j),$$

where E is a set of (i, j) pairs ("edges" in a graph).

- Adding a separable function doesn't change costs.
  - We could just combine the  $f_j$  with one  $f_{ij}$ .
- Restricting (i, j) to E makes gradient descent cheaper:
  - Now costs O(|E|) to compute gradient.
  - Coordinate descent could also cost O(|E|) if degree of  $j_k$  is O(|E|).
- Coordinate descent is still d times faster in expectation if you randomly pick  $j_k$ .
  - Each  $f'_{ij}$  is needed with probability 2/d.
  - So expected cost of O(|E|/d) to compute one partial derivative.

• For the binary label propagation objective,

$$\underset{\bar{y} \in \mathbb{R}^{t}}{\operatorname{argmin}} \sum_{i=1}^{n} \sum_{j=1}^{t} w_{ij} (y^{i} - \bar{y}^{j})^{2} + \frac{1}{2} \sum_{i=1}^{t} \sum_{j=1}^{t} \bar{w}_{ij} (\bar{y}^{i} - \bar{y}^{j})^{2},$$

we can exactly optimize one coordinate given the others.

• Taking the derivative and setting it to 0 gives:

$$\bar{y}^{i} = \frac{\sum_{j=1}^{n} w_{ij} y^{j} + \sum_{j \neq i} \bar{w}_{ij} \bar{y}^{j}}{\sum_{j=1}^{n} w_{ij} + \sum_{j \neq i} \bar{w}_{ij}},$$

where I'm assuming  $\bar{w}_{ij} = \bar{w}_{ji}$  (otherwise, you replace both by their average).

• So coordinate optimization takes weighted average of neighbours.













## Summary

- Inexact proximal-gradient can be used for structured sparsity.
- Transductive learning:
  - Given labeled and unlabeled examples, label the unlabeled examples.
- Label propagation:
  - Transductive learning method minimizing variation in the label space.
- Coordinate optimization: updating one variable at a time.
  - Efficient if updates are *d*-times cheaper than gradient descent.
- Next time: the most important algorithm in machine learning.