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Group Sparsity Structured Regularization

Last Time: Proximal-Gradient

We discussed proximal-gradient methods for problems of the form

argmin
w∈Rd

f(w)︸ ︷︷ ︸
smooth

+ r(w)︸︷︷︸
simple

,

where specifically f ∈ C1 and r is convex.

These methods use the iteration

wk+
1
2 = wk − αk∇f(wk) (gradient step)

wk+1 ∈ argmin
v∈Rd

{
1

2
‖v − wk+

1
2 ‖2 + αkr(v)

}
(proximal step)

Examples of simple functions include:
L1-regularization.
Group L1-regularization (today).

Proximal operators for these cases are soft-thresholds: sets variables/groups to 0.
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Motivation for Group Sparsity
Recall that multi-class logistic regression uses

ŷi = argmax
c
{w>c xi},

where we have a parameter vector wc for each class c.
We typically use softmax loss and write our parameters as a matrix,

W =

w1 w2 w3 · · · wk


Suppose we want to use L1-regularization for feature selection,

argmin
W∈Rd×k

f(W )︸ ︷︷ ︸
softmax loss

+ λ

k∑
c=1

‖wc‖1︸ ︷︷ ︸
L1-regularization

.

Unfortunately, setting elements of W to zero may not select features.
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Motivation for Group Sparsity

Suppose L1-regularization gives a sparse W with a non-zero in each row:

W =


−0.83 0 0 0

0 0 0.62 0
0 0 0 −0.06
0 0.72 0 0

 .
Even though it’s very sparse, it uses all features.

Remember that classifier multiplies feature j by each value in row j.
Feature 1 is used in w1.
Feature 2 is used in w3.
Feature 3 is used in w4.
Feature 4 is used in w2.

In order to remove a feature, we need its entire row to be zero.
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Motivation for Group Sparsity

What we want is group sparsity:

W =


−0.77 0.04 −0.03 −0.09

0 0 0 0
0.04 −0.08 0.01 −0.06
0 0 0 0

 .
Each row is a group, and we want groups (rows) of variables that have all zeroes.

If row j is zero, then xj is not used by the model.

Pattern arises in other settings where each row gives parameters for one feature:

Multiple regression, multi-label classification, and multi-task classification.
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Motivation for Group Sparsiy

Categorical features are another setting where group sparsity is needed.

Consider categorical features encoded as binary indicator features (“1 of k”):

A linear model would use

ŷi = w1xvan + w2xbur + w3xsur + w4x≤20 + w5x21−30 + w6x>30.

If we want feature selection of original categorical variables, we have 2 groups:

{w1, w2, w3} correspond to “City” and {w4, w5, w6} correspond to “Age”.
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Group L1-Regularization

Consider a problem with a set of disjoint groups G.

For example, G = {{1, 2}, {3, 4}}.

Minimizing a function f with group L1-regularization:

argmin
w∈Rd

f(w) + λ
∑
g∈G
‖wg‖p,

where g refers to individual group indices and ‖ · ‖p is some norm.

For certain norms, it encourages sparsity in terms of groups g.

Variables x1 and x2 will either be both zero or both non-zero.
Variables x3 and x4 will either be both zero or both non-zero.
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Group L1-Regularization

Why is it called group L1-regularization?

Consider G = {{1, 2}, {3, 4}} and using L2-norm,∑
g∈G
‖wg‖2 =

√
w2
1 + w2

2 +
√
w2
3 + w2

4.

If vector v contains the group norms, it’s the L1-norm of v:

If v ,

[
‖w12‖2
‖w34‖2

]
then

∑
g∈G
‖wg‖2 = ‖w12‖2+‖w34‖2 = v1+v2 = |v1|+|v2| = ‖v‖1.

So group L1-regularization encourages sparsity in the group norms.

When the norm of the group is 0, all group elements are 0.
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Group L1-Regularization: Choice of Norm

The group L1-regularizer is sometimes written as a “mixed” norm,

‖w‖1,p ,
∑
g∈G
‖wg‖p.

The most common choice for the norm is the L2-norm:
If G = {{1, 2}, {3, 4}} we obtain

‖w‖1,2 =
√
w2

1 + w2
2 +

√
w2

3 + w2
4.

Another common choice is the L∞-norm,

‖w‖1,∞ = max{|w1|, |w2|}+max{|w3|, |w4|}.

But note that the L1-norm does not give group sparsity,

‖w‖1,1 = |w1|+ |w2|+ |w3|+ |w4| = ‖w‖1,

as it’s equivalent to non-group L1-regularization.
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Sparsity from the L2-Norm?

Didn’t we say sparsity comes from the L1-norm and not the L2-norm?

Yes, but we were using the squared L2-norm.

Squared vs. non-squared L2-norm in 1D:

Non-squared L2-norm is absolute value.

Non-squared L2-regularizer will set all wj = 0 for some finite λ.

Squaring the L2-norm gives a smooth function but destroys sparsity.



Group Sparsity Structured Regularization

Sparsity from the L2-Norm?

Squared vs. non-squared L2-norm in 2D:

The squared L2-norm is smooth and has no sparsity.

Non-squared L2-norm is non-smooth at the zero vector.

It doesn’t encourage us to set any wj = 0 as long as one wj′ 6= 0.
But if λ is large enough it encourages all wj to be set to 0.
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L2 and L1 Regularization Paths
The regularization path is the set of w values as λ varies,

wλ = argmin
w∈Rd

f(w) + λr(w),

Squared L2-regularization path vs. L1-regularization path:

With r(w) = ‖w‖2, each wj gets close to 0 but is never exactly 0.
With r(w) = ‖w‖1, each wj gets set to exactly zero for a finite λ.
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L22 and L2 Regularization Paths
The regularization path is the set of w values as λ varies,

wλ = argmin
w∈Rd

f(w) + λr(w),

Squared L2-regularization path vs. non-squared path:

With r(w) = ‖w‖2, each wj gets close to 0 but is never exactly 0.
With r(w) = ‖w‖2, all wj get set to exactly zero for same finite λ.
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Group L1-Regularization Paths

The regularization path for group L1-regularizaiton for different p values:

With p = 1 there is no grouping effect.

With p = 2 the groups become zero at the same time.
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Group L1-Regularization Paths
The regularization path for group L1-regularizaiton for different p values:

With p = 1 there is no grouping effect.
With p = 2 the groups become zero at the same time.
With p =∞ the groups converge to same magnitude which then goes to 0.
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Sub-differential of Group L1-Regularization

For our group L1-regularization objective with the 2-norm,

F (w) = f(w) + λ
∑
g∈G
‖wg‖2,

the indices g in the sub-differential are given by

∂gF (w) ≡ ∇gf(w) + λ∂‖wg‖2.

In order to have 0 ∈ ∂F (w), we thus need for each group that

0 ∈ ∇gf(w) + λ∂‖wg‖2,

and subtracting ∇gf(w) from both sides gives

−∇gf(w) ∈ λ∂‖wg‖2.
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Sub-differential of Group L1-Regularization

So at minimizer w∗ we must have for all groups that

−∇gf(w∗) ∈ λ∂‖w∗g‖2.

The sub-differential of the scaled L2-norm is given by the “signum” function,

∂‖w‖2 =

{{
w
‖w‖2

}
w 6= 0

{v | ‖v‖2 ≤ 1} w = 0.

So at a solution w∗ we have for each group that{
−∇gf(w∗) = λ

w∗g
‖w∗g‖2

wg 6= 0,

‖∇gf(w∗)‖ ≤ λ w∗g = 0.

For sufficiently-large λ we’ll set the group to zero.
With squared group norms we would need ∇gf(w

∗) = 0 with w∗g = 0 (unlikely).
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Proximal-Gradient for Group L1-Regularization
The proximal operator for group L1-regularization,

argmin
v∈Rd

1

2
‖v − w‖2 + αkλ

∑
g∈G
‖v‖2

 ,

applies a soft-threshold group-wise,

wg ←
wg
‖wg‖2

max{0, ‖wg‖2 − αkλ}.

So we can solve group L1-regularization problems as fast as smooth problems.
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Proximal-Gradient for Group L1-Regularization
The proximal operator for group L1-regularization,

argmin
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2
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 ,

applies a soft-threshold group-wise,

wg ←
wg
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Outline

1 Group Sparsity

2 Structured Regularization
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Structured Regularization

There are many other patterns that regularization can encourage.

We’ll call this structured regularization.

The three most common cases:

Total-variation regularization encourages slow/sparse changes in w.
Nuclear-norm regularization encourages sparsity in rank of matrices.
Structured sparsity encourages sparsity in variable patterns.
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Total-Variation Regularization
1D total-variation regularization (“fused LASSO”) takes the form

argmin
w∈Rd

f(w) + λ

d−1∑
j=1

|wj − wj+1|.

Encourages consecutive parameters to have same value.
Often used for time-series or sequence data.

http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html

Here we’re trying to estimate de-noised wi of yi at each time xi.

http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html
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Total-Variation Regularization
More generally, we could penalizes differences on general graph between variables.

An example is social regularization in recommeder systems:
Penalizing the difference between your parameters and your friends’ parameters.

argmin
W∈Rd×k

f(W ) + λ
∑

(i,j)∈Friends

‖wi − wj‖2.

Typically use L2-regularization (we aren’t aiming for identical parameters).

http://asawicki.info/news_1453_social_graph_-_application_on_facebook.html

http://asawicki.info/news_1453_social_graph_-_application_on_facebook.html
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Total-Variation Regularization
Consider applying latent factor models (from 340) on image patches.

Similar to learning first layer of convolutional neural networks.

Latent-factors discovered on patches with/without TV regularization.
Encouraging neighbours in a spatial grid to have similar filters.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

Similar to “cortical columns” theory of visual cortex.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
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Total-Variation Regularization

Another application is inceptionism.

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Find image x that causes strongest activation of class c in neural network.

argmin
x

f(v>c h(W
(m)h(W (m−1) · · ·h(W (1)x) + λ

∑
(xi,xj)∈neigh.

(xi − xj)2,

Total variation based on neighbours in image (needed to get interpretable images).

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
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Nuclear Norm Regularization
With matrix parameters an alternative is nuclear norm regularization,

argmin
W∈Rd×k

f(W ) + λ‖W‖∗,

where ‖W‖∗ is the sum of singular values.

“L1-regularization of the singular values”.
Encourages parameter matrix to have low-rank.

Consider a multi-class logistic regression with a huge number of features/labels,

W =

w1 w2 · · · wk

 = UV >, with U =

u1 u2

 , V =

v1 v2

 ,
U and V can be much smaller, and XW = (XU)V > can be computed faster:

O(ndk) cost reduced to O(ndr + nkr) for rank r, much faster if r < min{d, k}.
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Structured Sparsity
Structured sparsity is variation on group L1-regularization,

argmin
w∈Rd

f(w) +
∑
g∈G

λg‖wg‖p,

where now the groups g can overlap.

Why is this interesting?
Consider the case of two groups, {1} and {1, 2},

argmin
w∈Rd

f(w) + λ1|w1|+ λ2

√
w2

1 + w2
2.

This encourages 3 non-zero “patterns”: {}, {w2}, {w1, w2}.
“You can only take w1 if you’ve already taken w2.”

If w1 6= 0, the third term is smooth and doesn’t encourage w2 to be zero.
If w2 6= 0, we still pay a λ1 penalty for making w1 non-zero.
We can use this type of “ordering” to impose patterns on our sparsity.
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Structured Sparsity

Consider a problem with matrix parameters W .
We want W to be “band-limited”:

Non-zeroes only on the main diagonals.

W =



w11 w12 w13 0 0 0 0
w21 w22 w23 w24 0 0 0
w31 w32 w33 w34 w35 0 0
0 w42 w43 w44 w45 w46 0
0 0 w53 w54 w55 w56 w57

0 0 0 w64 w65 w66 w67

0 0 0 0 w75 w76 w77


.

This makes many computations much faster.

We can enforce this with structured sparsity:
Only allow non-zeroes on ±1 diagonal if you are non-zero on main diagonal.
Only allow non-zeroes on ±2 diagonal if you are non-zero on ±1 diagonal.
Only allow non-zeroes on ±3 diagonal if you are non-zero on ±2 diagonal.
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Structured Sparsity

Consider a linear model with higher-order terms,

ŷi = w0 + w1x
i
1 + w2x

i
2 + w3x

i
3 + w12x

i
1x
i
2 + w13x

i
1x
i
3 + w23x

i
2x
i
3 + w123x

i
1x
i
2x
i
3.

If d is non-trivial, then the number of higher-order terms is too large.

We can use structured sparsity to enforce a hierarchy.
We only allow w12 6= 0 if w1 6= 0 and w2 6= 0.

You can enforce this using the groups {{w12}, {w1, w12}, {w2, w12}}:

argmin
w

f(w) + λ12|w12|+ λ1

√
w2

1 + w2
12 + λ2

√
w2

2 + w2
12.
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Structured Sparsity

We can use structured sparsity to enforce a hierarchy.

We only allow w12 6= 0 if w1 6= 0 and w2 6= 0.
We only allow w123 6= 0 if w12 6= 0, w13 6= 0, and w23 6= 0.
We only allow w1234 6= 0 if all threeway interactions are present.

http://arxiv.org/pdf/1109.2397v2.pdf

For certain bases, you can work with the full hierarchy in polynomial time.

Otherwise, a heuristic is to gradually “grow” the set of allowed bases.

http://arxiv.org/pdf/1109.2397v2.pdf
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Structured Sparsity
Structured sparsity encourages zeroes to be any intersections of groups.

Possible non-zeroes are given by ∩g∈G′gc for all G′ ⊆ G.
Equivalently, the set of zeroes is any ∪g∈G′g.

Our first example used {1} and {1, 2} so possible non-zeroes {}, {2}, or {1, 2}.
E.g., {2} is {1, 2} ∩ {1}c = {1, 2} ∩ {2}.

Example is enforcing convex non-zero patterns:

https://arxiv.org/pdf/1109.2397v2.pdf

There is also a variant (“over-LASSO”) that considers unions of groups.
Left-to-right: data, NMF, sparse PCA, and PCA with structured sparsity.

https://arxiv.org/pdf/1109.2397v2.pdf
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Structured Sparsity
Structured sparsity encourages zeroes to be any intersections of groups.

Possible non-zeroes are given by ∩g∈G′gc for all G′ ⊆ G.
Equivalently, the set of zeroes is any ∪g∈G′g.

Our first example used {1} and {1, 2} so possible non-zeroes {}, {2}, or {1, 2}.
E.g., {2} is {1, 2} ∩ {1}c = {1, 2} ∩ {2}.

Example is enforcing convex non-zero patterns:

www.di.ens.fr/~fbach/icml2010a.pdf

There is also a variant (“over-LASSO”) that considers unions of groups.

Left-to-right: data, NMF, sparse PCA, and PCA with structured sparsity.

www.di.ens.fr/~fbach/icml2010a.pdf
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Summary

Group L1-regularization encourages sparsity in variable groups.

Structured regularization encourages more-general patterns in variables.

Total-variation penalizes differences between variables.

Structured sparsity can enforce sparsity hierarchies.

Next time: finding all the cat videos on YouTube.
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Debugging a Proximal-Gradient Code

In general, debugging optimization codes can be difficult.

The code can appear to work even if it’s wrong.

A reasonable strategy is to test things you expect to be true.

And keep a set of tests that should remain true if you update the code.

For example, for proximal-gradient methods you could check:

Does it decrease the objective function for a small enough step-size?
Are the step-sizes sensible (are they much smaller than 1/L)?
Is the optimality condition going to zero as you run the algorithm?

For group L1-regularization, some other checks that you can do:

Set λ = 0 and see if you get the unconstrained solution.
Assign each variable to its own group and see if you get the L1-regularized solution.
Assign all variables to the same group and see if you get an L2-regularization
solution (and 0 for large-enough λ).
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