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Last Time: Proximal-Gradient

@ We discussed proximal-gradient methods for problems of the form

argmin f(w) +r(w),
wERd N~ N~
smooth  simple

where specifically f € C' and r is convex.
@ These methods use the iteration

whte =k — .V f (w") (gradient step)
1

wh T € argmin {Hv — whte 12 + akr(v)} (proximal step)
veR? 2

@ Examples of simple functions include:
o Ll-regularization.
e Group L1-regularization (today).

e Proximal operators for these cases are soft-thresholds: sets variables/groups to 0.
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Motivation for Group Sparsity
@ Recall that multi-class logistic regression uses

' = argmax{w, z'},
Cc

where we have a parameter vector w, for each class c.
@ We typically use softmax loss and write our parameters as a matrix,

W= lw w2 ws --- wg

@ Suppose we want to use L1-regularization for feature selection,

k
argmin  f(W) + )\ZchHl .
W eRdxk SN—— —1
softmax loss —_———

L1-regularization

@ Unfortunately, setting elements of W to zero may not select features.
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Motivation for Group Sparsity

@ Suppose L1-regularization gives a sparse W with a non-zero in each row:

—-083 O 0 0
0 0 0.62 0

W= 0 0 0 —0.06
0 0.72 0 0

@ Even though it's very sparse, it uses all features.
o Remember that classifier multiplies feature j by each value in row j.
o Feature 1 is used in w;.
o Feature 2 is used in ws.
o Feature 3 is used in wy.
o Feature 4 is used in ws.

@ In order to remove a feature, we need its entire row to be zero.
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Motivation for Group Sparsity

@ What we want is group sparsity:

-0.77 0.04 -0.03 —-0.09

0 0 0 0
W= 0.04 —-0.08 0.01 —-0.06
0 0 0 0

@ Each row is a group, and we want groups (rows) of variables that have all zeroes.
o If row j is zero, then z; is not used by the model.

@ Pattern arises in other settings where each row gives parameters for one feature:
e Multiple regression, multi-label classification, and multi-task classification.



Group Sparsity
Motivation for Group Sparsiy
o Categorical features are another setting where group sparsity is needed.

o Consider categorical features encoded as binary indicator features ("1 of £"):

Vancouver 22 1 0 0 0 1 0
Burnaby 35 0 1 0 0 0 1
Vancouver 28 1 0 0 0 1 0

@ A linear model would use

i
Y = W1Tvan T W2Tbur + W3Tsur + W4T<20 + W5T21-30 + W6T>30-

@ If we want feature selection of original categorical variables, we have 2 groups:
o {wy,ws, w3} correspond to “City” and {wy,ws,ws} correspond to “Age”.
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Group L1-Regularization

@ Consider a problem with a set of disjoint groups G.
o For example, G = {{1,2},{3,4}}.

@ Minimizing a function f with group L1-regularization:

argmin f(w) + A Jwgllp,

d
weR g€

where g refers to individual group indices and || - ||, is some norm.

@ For certain norms, it encourages sparsity in terms of groups g.

o Variables 1 and x5 will either be both zero or both non-zero.
o Variables x3 and x4 will either be both zero or both non-zero.

Structured Regularization
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Group L1-Regularization

@ Why is it called group L1-regularization?

e Consider G = {{1,2},{3,4}} and using L2-norm,

S llwglz = /w? +wd + fud + wi

geG

@ If vector v contains the group norms, it's the L1-norm of v:

w
tro 2 [1202] thon 3 gl = ol sl = vr+oe = os +oal = o

geG

@ So group L1-regularization encourages sparsity in the group norms.
e When the norm of the group is 0, all group elements are 0.
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Group L1-Regularization: Choice of Norm

@ The group L1-regularizer is sometimes written as a “mixed” norm,
A
lwllp 2> lwgllp-
&Y
@ The most common choice for the norm is the L2-norm:
o If G ={{1,2},{3,4}} we obtain
Jewolhe = y/w} +wj + y/wj +u.

@ Another common choice is the Loo-norm,

[w][1,00 = max{|wi|, |wz|} + max{|ws], [wal}.
@ But note that the L1-norm does not give group sparsity,
[wll11 = lwi + |wa| + |ws| + [wa] = [Jwl]1,

as it's equivalent to non-group L1-regularization.
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Sparsity from the L2-Norm?

@ Didn’t we say sparsity comes from the L1-norm and not the L2-norm?
e Yes, but we were using the squared L2-norm.

@ Squared vs. non-squared L2-norm in 1D:

wl3 A

@ Non-squared L2-norm is absolute value.
o Non-squared L2-regularizer will set all w; = 0 for some finite \.

@ Squaring the L2-norm gives a smooth function but destroys sparsity.

Structured Regularization
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Sparsity from the L2-Norm?

@ Squared vs. non-squared L2-norm in 2D:

lwll* V W’Zz

@ The squared L2-norm is smooth and has no sparsity.

@ Non-squared L2-norm is non-smooth at the zero vector.

o It doesn’t encourage us to set any w; = 0 as long as one w;s # 0.
o But if A is large enough it encourages all w; to be set to 0.
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L2 and L1 Regularization Paths

@ The regularization path is the set of w values as A varies,
w = argmin f(w) + Ar(w),
weR?
@ Squared L2-regularization path vs. L1-regularization path:

Path Path

Ve 3

2 14 16

0 10
log2(lambda) log2(lambda)

o With r(w) = ||w||? each w; gets close to 0 but is never exactly 0.
e With r(w) = |Jwl||1, each w; gets set to exactly zero for a finite .

Structured Regularization
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L22 and L2 Regularization Paths

@ The regularization path is the set of w values as A varies,
w = argmin f(w) + Ar(w),
weR?

@ Squared L2-regularization path vs. non-squared path:

Path Path

Ve 3 12 14 16

10
log2(lambda)

10
log2(tambda)

o With r(w) = ||w||? each w; gets close to 0 but is never exactly 0.
e With r(w) = |Jwl|2, all w; get set to exactly zero for same finite A.

Structured Regularization
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Group L1-Regularization Paths

@ The regularization path for group L1-regularizaiton for different p values:
(p=1) path

(p=2) path

— Group 1 |}
s Group 2 |
—Graup 3 |
—Group 4

Group & |

— Group 1 |-

£

L ; - ; : . M . . . .
0 500 q 1000 1500 0 200 400 GO0 Bjﬂ 1000 1200 1400 1600

@ With p =1 there is no grouping effect.

o With p = 2 the groups become zero at the same time.
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Group L1-Regularization Paths

@ The regularization path for group L1-regularizaiton for different p values:
{p=inf) path {p=2) path

5 I L . i ‘ ; B i . L . . ‘ i
i 500 1000 qwsnn 2000 2500 3000 o 20 400 600 Bjn 1000 1200 1400 1600

@ With p =1 there is no grouping effect.
o With p = 2 the groups become zero at the same time.
@ With p = oo the groups converge to same magnitude which then goes to 0.
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Sub-differential of Group L1-Regularization

@ For our group L1-regularization objective with the 2-norm,

F(w) = f(w) + A [lwgle,

geg

the indices g in the sub-differential are given by
g (w) = Vg f(w) + A0]wgll2-
@ In order to have 0 € OF (w), we thus need for each group that
0 € Vg f(w) + Adlwgll2,
and subtracting V, f(w) from both sides gives

—V f(w) € A
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Sub-differential of Group L1-Regularization
@ So at minimizer w* we must have for all groups that
—Vyf(w?) € Ad|wgll2-
@ The sub-differential of the scaled L2-norm is given by the “signum” function,
w 0
8”w‘|2 = {{ Hng} w #
{olllvflz <1} w=0.

@ So at a solution w* we have for each group that

{_ng(w*) = A\t we A0,

*
g9

Vg f (wo)|| < A wy = 0.

e For sufficiently-large A we'll set the group to zero.
o With squared group norms we would need V, f(w*) = 0 with w; = 0 (unlikely).



Group Sparsity Structured Regularization

Proximal-Gradient for Group L1-Regularization
@ The proximal operator for group L1-regularization,
)1 2
argmin § [|v —w]* + axA > lvllz s
vERA geG
applies a soft-threshold group-wise,

wy — —— max{0, |wy||2 — arA}.

g9
[[wg]l2

v

3

@ So we can solve group L1-regularization problems as fast as smooth problems.
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Proximal-Gradient for Group L1-Regularization

@ The proximal operator for group L1-regularization,
. 1 9
argmin q =[|v —w]* + axA > lvllz s
vER4 geG
applies a soft-threshold group-wise,

Wq

m max{0, [lwg|[2 — arA}.
g

Wy

"‘/"77

@ So we can solve group L1-regularization problems as fast as smooth problems.
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Proximal-Gradient for Group L1-Regularization

@ The proximal operator for group L1-regularization,
. 1 9
argmin q =[|v —w]* + axA > lvllz s
vER4 geG
applies a soft-threshold group-wise,

Wq

m max{0, [lwg|[2 — arA}.
g

><‘/,]7,

P""’[w’_)

@ So we can solve group L1-regularization problems as fast as smooth problems.
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Structured Regularization

@ There are many other patterns that regularization can encourage.

o We'll call this structured regularization.

@ The three most common cases:
o Total-variation regularization encourages slow/sparse changes in w.

e Nuclear-norm regularization encourages sparsity in rank of matrices.

e Structured sparsity encourages sparsity in variable patterns.

Structured Regularization
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Total-Variation Regularization
@ 1D total-variation regularization (“fused LASSO") takes the form

d—1
argmin f(w) + /\Z lwj — wjq1].
weR =1

@ Encourages consecutive parameters to have same value.
@ Often used for time-series or sequence data.

T T T T T T T T

2 4

Yol '

2000 4000 6000 8000 10000 12000 14000 16000
Xr

http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html

Here we're trying to estimate de-noised w; of 4/* at each time zt.


http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html
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Total-Variation Regularization

@ More generally, we could penalizes differences on general graph between variables.

@ An example is social regularization in recommeder systems:
e Penalizing the difference between your parameters and your friends' parameters.

argmin f(W) + A Z |lw; — wj||2.
WeRdxk (i,7) EFriends

o Typically use L2-regularization (we aren't aiming for identical parameters).
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http://asawicki.info/news_1453_social_graph_-_application_on_facebook.html


http://asawicki.info/news_1453_social_graph_-_application_on_facebook.html
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Total-Variation Regularization

e Consider applying latent factor models (from 340) on image patches.
e Similar to learning first layer of convolutional neural networks.

o Latent-factors discovered on patches with/without TV regularization.
e Encouraging neighbours in a spatial grid to have similar filters.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

@ Similar to “cortical columns” theory of visual cortex.


http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
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Total-Variation Regularization

@ Another application is inceptionism.

optimize
with prior

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

e Find image x that causes strongest activation of class ¢ in neural network.

argmin f(v] AW (W=D op (WD) 4 A Z (z; — x;)%,

(zi,2;)€Eneigh.

o Total variation based on neighbours in image (needed to get interpretable images).


https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Structured Regularization

Nuclear Norm Regularization
@ With matrix parameters an alternative is nuclear norm regularization,

argmin f(W) + A[W][.,
W eRdxk

where ||W ||, is the sum of singular values.

@ ‘“Ll-regularization of the singular values”.
e Encourages parameter matrix to have low-rank.

e Consider a multi-class logistic regression with a huge number of features/labels,

|
W= |w wy --- wg :UVT, with U= |u; us|,V=|v1 v,
|

U and V can be much smaller, and XTW = (XU)V T can be computed faster:
o O(ndk) cost reduced to O(ndr + nkr) for rank r, much faster if » < min{d, k}.
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Structured Sparsity

@ Structured sparsity is variation on group L1-regularization,

argmin f(w) + Z Agllwgllp,

d
weR geg

where now the groups g can overlap.

@ Why is this interesting?
o Consider the case of two groups, {1} and {1, 2},

argmin f(w) + Ay |w1| + Aoy /w? + w3.
weR?

o This encourages 3 non-zero “patterns”: {}, {w2}, {w1, w2}
@ “You can only take w; if you've already taken ws."

If wy # 0, the third term is smooth and doesn’t encourage ws to be zero.
If wa # 0, we still pay a A\; penalty for making w; non-zero.
We can use this type of “ordering” to impose patterns on our sparsity.
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Structured Sparsity

o Consider a problem with matrix parameters W.

@ We want W to be “band-limited”:

e Non-zeroes only on the main diagonals.

w11 W12

W21 W22

w31 W32

W = 0 W42
0 0
0 0
0 0

w13
w23
w33
W43
W53
0
0

0
W24
W34
W44
W54

We4
0

e This makes many computations much faster.
@ We can enforce this with structured sparsity:
e Only allow non-zeroes on +1 diagonal if you are non-zero on main diagonal.
e Only allow non-zeroes on £2 diagonal if you are non-zero on £1 diagonal.
e Only allow non-zeroes on £3 diagonal if you are non-zero on £2 diagonal.

w35
Wy5
Ws5
Wes
wWrs

o O O

Ws6
We6
Wre

o o oo

Ws7
We7

w7 |

Structured Regularization
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Structured Sparsity

o Consider a linear model with higher-order terms,

9" = wo + w1z} + wazh + wszh + wiorixh + wisx|xh + wosxhrh + wio3TiTHTS.

e If d is non-trivial, then the number of higher-order terms is too large.

@ We can use structured sparsity to enforce a hierarchy.
e We only allow wis # 0 if wy # 0 and we # 0.

@ You can enforce this using the groups {{wi2}, {wi, w12}, {w2, wi2}}:

argmin f(w) + A2|wia| + A\ \/w% +w?y + A2\/w§ + w?,.
w
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Structured Sparsity

@ We can use structured sparsity to enforce a hierarchy.

e We only allow wiq # 0 if wy; # 0 and ws # 0.
o We onIy allow w123 7é 0if w12 75 0, w13 7é O, and w23 7& 0.
o We only allow wia34 # 0 if all threeway interactions are present.

Fig 9: Power set of the set {1

..... 4}: in blue, an authorized set of selected subsets.
In red, an example of a group used within the norm (a subset and all of its
descendants in the DAG).

http://arxiv.org/pdf/1109.2397v2.pdf
o For certain bases, you can work with the full hierarchy in polynomial time.

o Otherwise, a heuristic is to gradually “grow” the set of allowed bases.


http://arxiv.org/pdf/1109.2397v2.pdf
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Structured Sparsity

@ Structured sparsity encourages zeroes to be any intersections of groups.
o Possible non-zeroes are given by Nyecgr g€ for all G' C G.
o Equivalently, the set of zeroes is any U,cg/g.
o Our first example used {1} and {1, 2} so possible non-zeroes {}, {2}, or {1,2}.
o Eg. {2}is {1,2} n{1}¢ = {1,2} N {2}.
@ Example is enforcing convex non-zero patterns:

N0 e
ETTO CCrEm
-jjjuj:-m
——
—

Fig 3: (Left) The set of blue groups to penalize in order to select contiguous
patterns in a sequence. (Right) In red, an example of such a nonzero pattern
with its corresponding zero pattern (hatched area).

https://arxiv.org/pdf/1109.2397v2.pdf


https://arxiv.org/pdf/1109.2397v2.pdf
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Structured Sparsity

@ Structured sparsity encourages zeroes to be any intersections of groups.
o Possible non-zeroes are given by Nyecgr g€ for all G' C G.
o Equivalently, the set of zeroes is any U,cg/g.
o Our first example used {1} and {1,2} so possible non-zeroes {}, {2}, or {1,2}.
o Eg., {2}is {1,2} n{1}°={1,2} n{2}.
@ Example is enforcing convex non-zero patterns:

FLERENL]L
e Em=

FFFrr
] 14

https://arxiv.org/pdf/1109.2397v2. pdf


https://arxiv.org/pdf/1109.2397v2.pdf
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Structured Sparsity

@ Structured sparsity encourages zeroes to be any intersections of groups.
o Possible non-zeroes are given by Nyecgr g€ for all G' C G.

o Equivalently, the set of zeroes is any U,cg/g.
o Our first example used {1} and {1, 2} so possible non-zeroes {}, {2}, or {1,2}.

o Eg., {2}is {1,2} n{1}° = {1,2} N {2}.

@ Example is enforcing convex non-zero patterns:

Y0 SEEEER 264890 ArSEds
PREVEE SENEME ¢ EE St |” o]
HIREEE BEPEAN EREEES AIERAY
aar. dEREEE E&@Eﬁﬁ a1 11,
SHETLE RESEDY EREEas IENINE
EEERFE PRONED HloEERE !Ilili

https://arxiv.org/pdf/1109.2397v2.pdf

o Left-to-right: data, NMF, sparse PCA, and PCA with structured sparsity.


https://arxiv.org/pdf/1109.2397v2.pdf
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Structured Sparsity

@ Structured sparsity encourages zeroes to be any intersections of groups.
o Possible non-zeroes are given by Nyecgr g€ for all G' C G.
o Equivalently, the set of zeroes is any U,cg/g.
o Our first example used {1} and {1, 2} so possible non-zeroes {}, {2}, or {1,2}.
o Eg, {2}is{1,2}n{1}*={1,2} n{2}.

@ Example is enforcing convex non-zero patterns:

iaden
units Theorem
proof
waining ol
trained class
bounded
cells. connection
cell patierns. P would state
fiing em K || | ey states
response [ | neurons [N o0 [ what control
stmulus system | [po[ | o current
| [Laoes | [reinforcement
probabitty | [matix
iikelihood n Homance Cirult
distribution t P test ‘analog
models vector experiments. chip
disrbutions ’ table implemented
performed
optimal
optimization Tmege
error images.
minimum visal
aigorithm object
objects

Figure 4. Example of a topic hierarchy estimated from 1714 NIPS
proceedings papers (from 1988 through 1999). Fach node corre-
sponds to a topic whose § most important words are displayed.
Single characters such as n, ¢, are part of the vocabulary and

Figure 3. Learned dictionary with tree structure of depth 4. The

ro0t of the tree is in the middle of the igure. The branching factors
often appear in NIPS papers, and their place in the hicrarchy is ~ are

re pi = 10, p2 = 2, p = 2. The dictionary is learned on

semantically relevant to children topics. 50,000 patches of size 16 x 16 pixels.

www.di.ens.fr/~fbach/icm12010a.pdf
o There ic aleo 3 variant ( “over-l ASSO”) that considers 1inions of orolins.


www.di.ens.fr/~fbach/icml2010a.pdf

Summary

Group L1-regularization encourages sparsity in variable groups.
Structured regularization encourages more-general patterns in variables.
Total-variation penalizes differences between variables.

Structured sparsity can enforce sparsity hierarchies.

Next time: finding all the cat videos on YouTube.

Structured Regularization



Structured Regularization

Debugging a Proximal-Gradient Code

@ In general, debugging optimization codes can be difficult.
e The code can appear to work even if it's wrong.

@ A reasonable strategy is to test things you expect to be true.
e And keep a set of tests that should remain true if you update the code.
@ For example, for proximal-gradient methods you could check:

o Does it decrease the objective function for a small enough step-size?
o Are the step-sizes sensible (are they much smaller than 1/L)?
e Is the optimality condition going to zero as you run the algorithm?

@ For group L1-regularization, some other checks that you can do:

e Set A = 0 and see if you get the unconstrained solution.

e Assign each variable to its own group and see if you get the L1-regularized solution.

e Assign all variables to the same group and see if you get an L2-regularization
solution (and 0 for large-enough \).
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