
Group Sparsity Structured Regularization

First-Order Optimization Algorithms for Machine Learning
Structured Regularization

Mark Schmidt

University of British Columbia

Summer 2020

Group Sparsity Structured Regularization

Last Time: Proximal-Gradient

We discussed proximal-gradient methods for problems of the form

argmin
w∈Rd

f(w)︸ ︷︷ ︸
smooth

+ r(w)︸︷︷︸
simple

,

where specifically f ∈ C1 and r is convex.

These methods use the iteration

wk+
1
2 = wk − αk∇f(wk) (gradient step)

wk+1 ∈ argmin
v∈Rd

{
1

2
‖v − wk+

1
2 ‖2 + αkr(v)

}
(proximal step)

Examples of simple functions include:
L1-regularization.
Group L1-regularization (today).

Proximal operators for these cases are soft-thresholds: sets variables/groups to 0.

Group Sparsity Structured Regularization

Motivation for Group Sparsity
Recall that multi-class logistic regression uses

ŷi = argmax
c
{w>c xi},

where we have a parameter vector wc for each class c.
We typically use softmax loss and write our parameters as a matrix,

W =

w1 w2 w3 · · · wk


Suppose we want to use L1-regularization for feature selection,

argmin
W∈Rd×k

f(W)︸ ︷︷ ︸
softmax loss

+ λ

k∑
c=1

‖wc‖1︸ ︷︷ ︸
L1-regularization

.

Unfortunately, setting elements of W to zero may not select features.

Group Sparsity Structured Regularization

Motivation for Group Sparsity

Suppose L1-regularization gives a sparse W with a non-zero in each row:

W =


−0.83 0 0 0

0 0 0.62 0
0 0 0 −0.06
0 0.72 0 0

 .
Even though it’s very sparse, it uses all features.

Remember that classifier multiplies feature j by each value in row j.
Feature 1 is used in w1.
Feature 2 is used in w3.
Feature 3 is used in w4.
Feature 4 is used in w2.

In order to remove a feature, we need its entire row to be zero.

Group Sparsity Structured Regularization

Motivation for Group Sparsity

What we want is group sparsity:

W =


−0.77 0.04 −0.03 −0.09

0 0 0 0
0.04 −0.08 0.01 −0.06
0 0 0 0

 .
Each row is a group, and we want groups (rows) of variables that have all zeroes.

If row j is zero, then xj is not used by the model.

Pattern arises in other settings where each row gives parameters for one feature:

Multiple regression, multi-label classification, and multi-task classification.

Group Sparsity Structured Regularization

Motivation for Group Sparsiy

Categorical features are another setting where group sparsity is needed.

Consider categorical features encoded as binary indicator features (“1 of k”):

A linear model would use

ŷi = w1xvan + w2xbur + w3xsur + w4x≤20 + w5x21−30 + w6x>30.

If we want feature selection of original categorical variables, we have 2 groups:

{w1, w2, w3} correspond to “City” and {w4, w5, w6} correspond to “Age”.

Group Sparsity Structured Regularization

Group L1-Regularization

Consider a problem with a set of disjoint groups G.

For example, G = {{1, 2}, {3, 4}}.

Minimizing a function f with group L1-regularization:

argmin
w∈Rd

f(w) + λ
∑
g∈G
‖wg‖p,

where g refers to individual group indices and ‖ · ‖p is some norm.

For certain norms, it encourages sparsity in terms of groups g.

Variables x1 and x2 will either be both zero or both non-zero.
Variables x3 and x4 will either be both zero or both non-zero.

Group Sparsity Structured Regularization

Group L1-Regularization

Why is it called group L1-regularization?

Consider G = {{1, 2}, {3, 4}} and using L2-norm,∑
g∈G
‖wg‖2 =

√
w2
1 + w2

2 +
√
w2
3 + w2

4.

If vector v contains the group norms, it’s the L1-norm of v:

If v ,

[
‖w12‖2
‖w34‖2

]
then

∑
g∈G
‖wg‖2 = ‖w12‖2+‖w34‖2 = v1+v2 = |v1|+|v2| = ‖v‖1.

So group L1-regularization encourages sparsity in the group norms.

When the norm of the group is 0, all group elements are 0.

Group Sparsity Structured Regularization

Group L1-Regularization: Choice of Norm

The group L1-regularizer is sometimes written as a “mixed” norm,

‖w‖1,p ,
∑
g∈G
‖wg‖p.

The most common choice for the norm is the L2-norm:
If G = {{1, 2}, {3, 4}} we obtain

‖w‖1,2 =
√
w2

1 + w2
2 +

√
w2

3 + w2
4.

Another common choice is the L∞-norm,

‖w‖1,∞ = max{|w1|, |w2|}+max{|w3|, |w4|}.

But note that the L1-norm does not give group sparsity,

‖w‖1,1 = |w1|+ |w2|+ |w3|+ |w4| = ‖w‖1,

as it’s equivalent to non-group L1-regularization.

Group Sparsity Structured Regularization

Sparsity from the L2-Norm?

Didn’t we say sparsity comes from the L1-norm and not the L2-norm?

Yes, but we were using the squared L2-norm.

Squared vs. non-squared L2-norm in 1D:

Non-squared L2-norm is absolute value.

Non-squared L2-regularizer will set all wj = 0 for some finite λ.

Squaring the L2-norm gives a smooth function but destroys sparsity.

Group Sparsity Structured Regularization

Sparsity from the L2-Norm?

Squared vs. non-squared L2-norm in 2D:

The squared L2-norm is smooth and has no sparsity.

Non-squared L2-norm is non-smooth at the zero vector.

It doesn’t encourage us to set any wj = 0 as long as one wj′ 6= 0.
But if λ is large enough it encourages all wj to be set to 0.

Group Sparsity Structured Regularization

L2 and L1 Regularization Paths
The regularization path is the set of w values as λ varies,

wλ = argmin
w∈Rd

f(w) + λr(w),

Squared L2-regularization path vs. L1-regularization path:

With r(w) = ‖w‖2, each wj gets close to 0 but is never exactly 0.
With r(w) = ‖w‖1, each wj gets set to exactly zero for a finite λ.

Group Sparsity Structured Regularization

L22 and L2 Regularization Paths
The regularization path is the set of w values as λ varies,

wλ = argmin
w∈Rd

f(w) + λr(w),

Squared L2-regularization path vs. non-squared path:

With r(w) = ‖w‖2, each wj gets close to 0 but is never exactly 0.
With r(w) = ‖w‖2, all wj get set to exactly zero for same finite λ.

Group Sparsity Structured Regularization

Group L1-Regularization Paths

The regularization path for group L1-regularizaiton for different p values:

With p = 1 there is no grouping effect.

With p = 2 the groups become zero at the same time.

Group Sparsity Structured Regularization

Group L1-Regularization Paths
The regularization path for group L1-regularizaiton for different p values:

With p = 1 there is no grouping effect.
With p = 2 the groups become zero at the same time.
With p =∞ the groups converge to same magnitude which then goes to 0.

Group Sparsity Structured Regularization

Sub-differential of Group L1-Regularization

For our group L1-regularization objective with the 2-norm,

F (w) = f(w) + λ
∑
g∈G
‖wg‖2,

the indices g in the sub-differential are given by

∂gF (w) ≡ ∇gf(w) + λ∂‖wg‖2.

In order to have 0 ∈ ∂F (w), we thus need for each group that

0 ∈ ∇gf(w) + λ∂‖wg‖2,

and subtracting ∇gf(w) from both sides gives

−∇gf(w) ∈ λ∂‖wg‖2.

Group Sparsity Structured Regularization

Sub-differential of Group L1-Regularization

So at minimizer w∗ we must have for all groups that

−∇gf(w∗) ∈ λ∂‖w∗g‖2.

The sub-differential of the scaled L2-norm is given by the “signum” function,

∂‖w‖2 =

{{
w
‖w‖2

}
w 6= 0

{v | ‖v‖2 ≤ 1} w = 0.

So at a solution w∗ we have for each group that{
−∇gf(w∗) = λ

w∗g
‖w∗g‖2

wg 6= 0,

‖∇gf(w∗)‖ ≤ λ w∗g = 0.

For sufficiently-large λ we’ll set the group to zero.
With squared group norms we would need ∇gf(w

∗) = 0 with w∗g = 0 (unlikely).

Group Sparsity Structured Regularization

Proximal-Gradient for Group L1-Regularization
The proximal operator for group L1-regularization,

argmin
v∈Rd

1

2
‖v − w‖2 + αkλ

∑
g∈G
‖v‖2

 ,

applies a soft-threshold group-wise,

wg ←
wg
‖wg‖2

max{0, ‖wg‖2 − αkλ}.

So we can solve group L1-regularization problems as fast as smooth problems.

Group Sparsity Structured Regularization

Proximal-Gradient for Group L1-Regularization
The proximal operator for group L1-regularization,

argmin
v∈Rd

1

2
‖v − w‖2 + αkλ

∑
g∈G
‖v‖2

 ,

applies a soft-threshold group-wise,

wg ←
wg
‖wg‖2

max{0, ‖wg‖2 − αkλ}.

So we can solve group L1-regularization problems as fast as smooth problems.

Group Sparsity Structured Regularization

Proximal-Gradient for Group L1-Regularization
The proximal operator for group L1-regularization,

argmin
v∈Rd

1

2
‖v − w‖2 + αkλ

∑
g∈G
‖v‖2

 ,

applies a soft-threshold group-wise,

wg ←
wg
‖wg‖2

max{0, ‖wg‖2 − αkλ}.

So we can solve group L1-regularization problems as fast as smooth problems.

Group Sparsity Structured Regularization

Outline

1 Group Sparsity

2 Structured Regularization

Group Sparsity Structured Regularization

Structured Regularization

There are many other patterns that regularization can encourage.

We’ll call this structured regularization.

The three most common cases:

Total-variation regularization encourages slow/sparse changes in w.
Nuclear-norm regularization encourages sparsity in rank of matrices.
Structured sparsity encourages sparsity in variable patterns.

Group Sparsity Structured Regularization

Total-Variation Regularization
1D total-variation regularization (“fused LASSO”) takes the form

argmin
w∈Rd

f(w) + λ

d−1∑
j=1

|wj − wj+1|.

Encourages consecutive parameters to have same value.
Often used for time-series or sequence data.

http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html

Here we’re trying to estimate de-noised wi of yi at each time xi.

http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html

Group Sparsity Structured Regularization

Total-Variation Regularization
More generally, we could penalizes differences on general graph between variables.

An example is social regularization in recommeder systems:
Penalizing the difference between your parameters and your friends’ parameters.

argmin
W∈Rd×k

f(W) + λ
∑

(i,j)∈Friends

‖wi − wj‖2.

Typically use L2-regularization (we aren’t aiming for identical parameters).

http://asawicki.info/news_1453_social_graph_-_application_on_facebook.html

http://asawicki.info/news_1453_social_graph_-_application_on_facebook.html

Group Sparsity Structured Regularization

Total-Variation Regularization
Consider applying latent factor models (from 340) on image patches.

Similar to learning first layer of convolutional neural networks.

Latent-factors discovered on patches with/without TV regularization.
Encouraging neighbours in a spatial grid to have similar filters.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

Similar to “cortical columns” theory of visual cortex.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

Group Sparsity Structured Regularization

Total-Variation Regularization

Another application is inceptionism.

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Find image x that causes strongest activation of class c in neural network.

argmin
x

f(v>c h(W
(m)h(W (m−1) · · ·h(W (1)x) + λ

∑
(xi,xj)∈neigh.

(xi − xj)2,

Total variation based on neighbours in image (needed to get interpretable images).

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Group Sparsity Structured Regularization

Nuclear Norm Regularization
With matrix parameters an alternative is nuclear norm regularization,

argmin
W∈Rd×k

f(W) + λ‖W‖∗,

where ‖W‖∗ is the sum of singular values.

“L1-regularization of the singular values”.
Encourages parameter matrix to have low-rank.

Consider a multi-class logistic regression with a huge number of features/labels,

W =

w1 w2 · · · wk

 = UV >, with U =

u1 u2

 , V =

v1 v2

 ,
U and V can be much smaller, and XW = (XU)V > can be computed faster:

O(ndk) cost reduced to O(ndr + nkr) for rank r, much faster if r < min{d, k}.

Group Sparsity Structured Regularization

Structured Sparsity
Structured sparsity is variation on group L1-regularization,

argmin
w∈Rd

f(w) +
∑
g∈G

λg‖wg‖p,

where now the groups g can overlap.

Why is this interesting?
Consider the case of two groups, {1} and {1, 2},

argmin
w∈Rd

f(w) + λ1|w1|+ λ2

√
w2

1 + w2
2.

This encourages 3 non-zero “patterns”: {}, {w2}, {w1, w2}.
“You can only take w1 if you’ve already taken w2.”

If w1 6= 0, the third term is smooth and doesn’t encourage w2 to be zero.
If w2 6= 0, we still pay a λ1 penalty for making w1 non-zero.
We can use this type of “ordering” to impose patterns on our sparsity.

Group Sparsity Structured Regularization

Structured Sparsity

Consider a problem with matrix parameters W .
We want W to be “band-limited”:

Non-zeroes only on the main diagonals.

W =



w11 w12 w13 0 0 0 0
w21 w22 w23 w24 0 0 0
w31 w32 w33 w34 w35 0 0
0 w42 w43 w44 w45 w46 0
0 0 w53 w54 w55 w56 w57

0 0 0 w64 w65 w66 w67

0 0 0 0 w75 w76 w77


.

This makes many computations much faster.

We can enforce this with structured sparsity:
Only allow non-zeroes on ±1 diagonal if you are non-zero on main diagonal.
Only allow non-zeroes on ±2 diagonal if you are non-zero on ±1 diagonal.
Only allow non-zeroes on ±3 diagonal if you are non-zero on ±2 diagonal.

Group Sparsity Structured Regularization

Structured Sparsity

Consider a linear model with higher-order terms,

ŷi = w0 + w1x
i
1 + w2x

i
2 + w3x

i
3 + w12x

i
1x
i
2 + w13x

i
1x
i
3 + w23x

i
2x
i
3 + w123x

i
1x
i
2x
i
3.

If d is non-trivial, then the number of higher-order terms is too large.

We can use structured sparsity to enforce a hierarchy.
We only allow w12 6= 0 if w1 6= 0 and w2 6= 0.

You can enforce this using the groups {{w12}, {w1, w12}, {w2, w12}}:

argmin
w

f(w) + λ12|w12|+ λ1

√
w2

1 + w2
12 + λ2

√
w2

2 + w2
12.

Group Sparsity Structured Regularization

Structured Sparsity

We can use structured sparsity to enforce a hierarchy.

We only allow w12 6= 0 if w1 6= 0 and w2 6= 0.
We only allow w123 6= 0 if w12 6= 0, w13 6= 0, and w23 6= 0.
We only allow w1234 6= 0 if all threeway interactions are present.

http://arxiv.org/pdf/1109.2397v2.pdf

For certain bases, you can work with the full hierarchy in polynomial time.

Otherwise, a heuristic is to gradually “grow” the set of allowed bases.

http://arxiv.org/pdf/1109.2397v2.pdf

Group Sparsity Structured Regularization

Structured Sparsity
Structured sparsity encourages zeroes to be any intersections of groups.

Possible non-zeroes are given by ∩g∈G′gc for all G′ ⊆ G.
Equivalently, the set of zeroes is any ∪g∈G′g.

Our first example used {1} and {1, 2} so possible non-zeroes {}, {2}, or {1, 2}.
E.g., {2} is {1, 2} ∩ {1}c = {1, 2} ∩ {2}.

Example is enforcing convex non-zero patterns:

https://arxiv.org/pdf/1109.2397v2.pdf

There is also a variant (“over-LASSO”) that considers unions of groups.
Left-to-right: data, NMF, sparse PCA, and PCA with structured sparsity.

https://arxiv.org/pdf/1109.2397v2.pdf

Group Sparsity Structured Regularization

Structured Sparsity
Structured sparsity encourages zeroes to be any intersections of groups.

Possible non-zeroes are given by ∩g∈G′gc for all G′ ⊆ G.
Equivalently, the set of zeroes is any ∪g∈G′g.

Our first example used {1} and {1, 2} so possible non-zeroes {}, {2}, or {1, 2}.
E.g., {2} is {1, 2} ∩ {1}c = {1, 2} ∩ {2}.

Example is enforcing convex non-zero patterns:

https://arxiv.org/pdf/1109.2397v2.pdf

There is also a variant (“over-LASSO”) that considers unions of groups.
Left-to-right: data, NMF, sparse PCA, and PCA with structured sparsity.

https://arxiv.org/pdf/1109.2397v2.pdf

Group Sparsity Structured Regularization

Structured Sparsity
Structured sparsity encourages zeroes to be any intersections of groups.

Possible non-zeroes are given by ∩g∈G′gc for all G′ ⊆ G.
Equivalently, the set of zeroes is any ∪g∈G′g.

Our first example used {1} and {1, 2} so possible non-zeroes {}, {2}, or {1, 2}.
E.g., {2} is {1, 2} ∩ {1}c = {1, 2} ∩ {2}.

Example is enforcing convex non-zero patterns:

https://arxiv.org/pdf/1109.2397v2.pdf

There is also a variant (“over-LASSO”) that considers unions of groups.

Left-to-right: data, NMF, sparse PCA, and PCA with structured sparsity.

https://arxiv.org/pdf/1109.2397v2.pdf

Group Sparsity Structured Regularization

Structured Sparsity
Structured sparsity encourages zeroes to be any intersections of groups.

Possible non-zeroes are given by ∩g∈G′gc for all G′ ⊆ G.
Equivalently, the set of zeroes is any ∪g∈G′g.

Our first example used {1} and {1, 2} so possible non-zeroes {}, {2}, or {1, 2}.
E.g., {2} is {1, 2} ∩ {1}c = {1, 2} ∩ {2}.

Example is enforcing convex non-zero patterns:

www.di.ens.fr/~fbach/icml2010a.pdf

There is also a variant (“over-LASSO”) that considers unions of groups.

Left-to-right: data, NMF, sparse PCA, and PCA with structured sparsity.

www.di.ens.fr/~fbach/icml2010a.pdf

Group Sparsity Structured Regularization

Summary

Group L1-regularization encourages sparsity in variable groups.

Structured regularization encourages more-general patterns in variables.

Total-variation penalizes differences between variables.

Structured sparsity can enforce sparsity hierarchies.

Next time: finding all the cat videos on YouTube.

Group Sparsity Structured Regularization

Debugging a Proximal-Gradient Code

In general, debugging optimization codes can be difficult.

The code can appear to work even if it’s wrong.

A reasonable strategy is to test things you expect to be true.

And keep a set of tests that should remain true if you update the code.

For example, for proximal-gradient methods you could check:

Does it decrease the objective function for a small enough step-size?
Are the step-sizes sensible (are they much smaller than 1/L)?
Is the optimality condition going to zero as you run the algorithm?

For group L1-regularization, some other checks that you can do:

Set λ = 0 and see if you get the unconstrained solution.
Assign each variable to its own group and see if you get the L1-regularized solution.
Assign all variables to the same group and see if you get an L2-regularization
solution (and 0 for large-enough λ).

	Group Sparsity
	Structured Regularization

