
Proximal-Gradient Active-Set Complexity

First-Order Optimization Algorithms for Machine Learning
Proximal-Gradient

Mark Schmidt

University of British Columbia

Summer 2020

Proximal-Gradient Active-Set Complexity

Solving Problems with Simple Regularizers

We were discussing how to solve non-smooth L1-regularized objectives like

argmin
w∈Rd

1

2
‖Xw − y‖2 + λ‖w‖1.

Use our trick to formulate as a quadratic program?
O(d2) or worse.

Make a smooth approximation to the L1-norm?
Destroys sparsity (we’ll again just have one subgradient at zero).

Use a subgradient method?
Needs O(1/ε) iterations even in the strongly-convex case.

Transform to “smooth f with simple constraints” and use projected-gradient?
Works well, but increases problem size and destroys strong-convexity.

For “simple” regularizers, proximal-gradient methods don’t have these drawbacks

Proximal-Gradient Active-Set Complexity

Should we use projected-gradient for non-smooth problems?

Some non-smooth problems can be turned into smooth problems with simple
constraints.

But transforming might make problem harder:

For L1-regularization least squares,

argmin
w∈Rd

1

2
‖Xw − y‖2 + λ‖w‖1,

we can re-write as a smooth problem with bound constraints,

argmin
w+≥0, w−≥0

‖X(w+ − w−)− y‖2 + λ

d∑
j=1

(w+ + w−).

Doubles the number of variables.
Transformed problem is not strongly convex even if the original was.

Proximal-Gradient Active-Set Complexity

Outline

1 Proximal-Gradient

2 Active-Set Complexity

Proximal-Gradient Active-Set Complexity

Quadratic Approximation View of Gradient Method
We want to solve a smooth optimization problem:

argmin
w∈Rd

f(w).

Iteration wk works with a quadratic approximation to f :

f(v) ≈ f(wk) +∇f(wk)>(v − wk) + 1

2αk
‖v − wk‖2,

wk+1 ∈ argmin
v∈Rd

{
f(wk) +∇f(wk)>(v − wk) + 1

2αk
‖v − wk‖2

}
.

We can equivalently write this as the quadratic optimization:

wk+1 ∈ argmin
v∈Rd

{
1

2
‖v − (wk − αk∇f(wk))‖2

}
,

and the solution is the gradient algorithm:

wk+1 = wk − αk∇f(wk).

Proximal-Gradient Active-Set Complexity

Quadratic Approximation View of Proximal-Gradient Method
We want to solve a smooth plus non-smooth optimization problem:

argmin
w∈Rd

f(w)+r(w).

Iteration wk works with a quadratic approximation to f :

f(v)+r(v) ≈ f(wk) +∇f(wk)>(v − wk) + 1

2αk
‖v − wk‖2+r(v),

wk+1 ∈ argmin
v∈Rd

{
f(wk) +∇f(wk)>(v − wk) + 1

2αk
‖v − wk‖2+r(v)

}
.

We can equivalently write this as the proximal optimization:

wk+1 ∈ argmin
v∈Rd

{
1

2
‖v − (wk − αk∇f(wk))‖2+αkr(v)

}
,

and the solution is the proximal-gradient algorithm:

wk+1 = proxαkr
[wk − αk∇f(wk)].

Proximal-Gradient Active-Set Complexity

Proximal-Gradient for L1-Regularization

The proximal operator for L1-regularization when using step-size αk,

proxαkλ‖·‖1 [w
k+ 1

2] ∈ argmin
v∈Rd

{
1

2
‖v − wk+

1
2 ‖2 + αkλ‖v‖1

}
,

involves solving a simple (strongly-convex) 1D problem for each variable j:

wk+1
j ∈ argmin

vj∈R

{
1

2
(vj − w

k+ 1
2

j)2 + αkλ|vj |
}
.

We can find the argmin by finding the unique vj with 0 in the sub-differential.

The solution is given by applying “soft-threshold” operation:

1 If |wk+
1
2

j | ≤ αkλ, set wk+1
j = 0.

2 Otherwise, shrink |wk+
1
2

j | by αkλ.

Proximal-Gradient Active-Set Complexity

Proximal-Gradient for L1-Regularization

An example sof-threshold operator on absolute value with αkλ = 1:
Input Threshold Soft-Threshold
0.6715
−1.2075
0.7172
1.6302
0.4889




0
−1.2075

0
1.6302

0




0
−0.2075

0
0.6302

0


Symbolically, the soft-threshold operation computes

wk+1
j = sign(wk+

1
2)︸ ︷︷ ︸

−1 or +1

max

{
0, |wk+

1
2

j | − αkλ
}
.

Has the nice property that iterations wk are sparse.
Compared to subgradient method which wouldn’t give exact zeroes.

Proximal-Gradient Active-Set Complexity

Proximal-Gradient Method

So proximal-gradient step takes the form:

wk+
1
2 = wk − αk∇f(wk)

wk+1 = argmin
v∈Rd

{
1

2
‖v − wk+

1
2 ‖2 + αkr(v)

}
.

Second part is called the proximal operator with respect to a convex αkr.
We say that r is simple if you can efficiently compute proximal operator.

Very similar properties to projected-gradient when ∇f is Lipschitz-continuous:
Guaranteed improvement for α < 2/L, practical backtracking methods work better.
Solution is a fixed point, w∗ = proxr[w

∗ − α∇f(w∗)] for any α > 0.
If f is strongly-convex then

F (wk)− F ∗ ≤
(
1− µ

L

)k [
F (w0)− F ∗

]
,

where F (w) = f(w) + r(w).

Proximal-Gradient Active-Set Complexity

Projected-Gradient is Special case of Proximal-Gradient
Projected-gradient methods are a special case:

r(w) =

{
0 if w ∈ C
∞ if w /∈ C

, (indicator function for convex set C)

gives
wk+1 ∈ argmin

v∈Rd

1

2
‖v − wk+

1
2 ‖2 + αkr(v)︸ ︷︷ ︸

proximal operator

≡ argmin
v∈C

1

2
‖v − wk+

1
2 ‖2 ≡ argmin

v∈C
‖v − wk+

1
2 ‖︸ ︷︷ ︸

projection

.

Feasible Set

x+

f(x)

x

x - !f’(x)

Proximal-Gradient Active-Set Complexity

Properties of Proximal-Gradient

Two convenient properties of proximal-gradient:

Proximal operators are non-expansive,

‖proxr(w)− proxr(v)‖ ≤ ‖w − v‖,

it only moves points closer together (easy to see for special case of projection).
(including wk and w∗)

For convex f , only fixed points are global optima,

w∗ = proxr(w
∗ − α∇f(w∗)),

for any α > 0.
(can test ‖wk − proxr(w

k −∇f(wk))‖ for convergence)

Proximal gradient has two line-searches (generalizes projected variants):

Fix αk and search along direction to wk+1 (1 proximal operator, non-sparse iterates).
Vary αk values (multiple proximal operators per iteration, gives sparse iterations).

Proximal-Gradient Active-Set Complexity

Proximal-Gradient Linear Convergence Rate

Simplest linear convergence proofs are based on the proximal-PL inequality,

1

2
Dr(w,L) ≥ µ(F (w)− F ∗),

where compared to PL inequality we’ve replaced ‖∇f(w)‖2 with

Dr(w,α) = −2αmin
v

[
∇f(w)>(v − w) + α

2
‖v − w‖2 + r(v)− r(w)

]
,

and recall that F (w) = f(w) + r(w).

This non-intuitive property holds for many important problems:
L1-regularized least squares.
Any time f is strong-convex (i.e., add an L2-regularizer as part of f).
Any f = g(Aw) for strongly-convex g and r being indicator for polyhedral set.

But it can be painful to show that functions satisfy this property.

Proximal-Gradient Active-Set Complexity

Proximal-Gradient Convergence under Proximal-PL

Linear convergence if ∇f is Lipschitz and F is proximal-PL:

F (wk+1) = f(wk+1) + r(wk+1)

= f(wk+1) + r(wk) + r(wk+1)− r(wk)

≤ f(wk) + 〈∇f(wk), wk+1 − wk〉+
L

2
||wk+1 − wk||2 + r(wk) + r(wk+1)− r(wk)

= F (wk) + 〈∇f(wk), wk+1 − wk〉+
L

2
||wk+1 − wk||2 + r(wk+1)− r(wk)

≤ F (wk)−
1

2L
Dr(wk, L)

≤ F (wk)−
µ

L
[F (wk)− F ∗],

and then we can take our usual steps.

Proximal-Gradient Active-Set Complexity

Proximal-Newton

We can define accelerated proximal-gradient in a straightforward way.

We can define proximal-Newton methods using

wk+
1
2 = wk − αk[Hk]

−1∇f(wk) (Newton step)

wk+1 = argmin
v∈Rd

{
1

2
‖v − wk+

1
2 ‖2Hk

+ αkr(v)

}
(proximal step)

This is expensive even for simple r like L1-regularization.

But there are analogous tricks to projected-Newton methods:

Diagonal or Barzilai-Borwein Hessian approximation.
“Orthant-wise” methods are analogues of two-metric projection.
Inexact methods use approximate proximal operator.

Orthant-wise and inexact methods often combined with L-BFGS or Hessian-free.

Proximal-Gradient Active-Set Complexity

Outline

1 Proximal-Gradient

2 Active-Set Complexity

Proximal-Gradient Active-Set Complexity

Active-Set Identification

For L1-regularization, proximal-gradient “identifies” active set in finite time:
(under mild assumptions)

For all sufficiently large k, sparsity pattern of xk matches sparsity pattern of x∗.

w0 =



w0
1

w0
2

w0
3

w0
4

w0
5


−−−−−−−−−−−−−−→

after finite k iterations wk =



wk1

0

0

wk4

0


, where w∗ =



w∗1

0

0

w∗4

0


Useful if we are only interested in finding the sparsity pattern.

Convergence rate will be faster once this happens (optimizing over subspace).
You could also apply Newton-like methods on the non-zero variables.

Proximal-Gradient Active-Set Complexity

Related Work and More-General Results

Idea of finitely identifying non-zeroes dates back (at least) to Bertskeas [1976].

For projected-gradient applied to smooth functions with non-negative constraints.

Has been shown for a variety of convex/non-convex problems.

Burke & Moré [1988], Wright [1993], Hare & Lewis [2004], Hare [2011].

These prior works only show that identification happens asymptotically.

For some finite but unknown k.

Recent works consider “active-set complexity” of an algorithm:

The number of iterations before it is guaranteed to have reached the active set.

Proximal-Gradient Active-Set Complexity

Special Case: Optimizing with Non-Negative Constraints

We will first consider optimization with non-negative constraints,

argmin
w≥0

f(w),

using the projected-gradient method with a step-size of 1/L,

wk+1 =

[
wk − 1

L
∇f(wk)

]+
.

This also leads to sparsity, and we use Z as the indices i where w∗i = 0.

We’ll assume:
1 Gradient ∇f is L-Lipschitz continuous.
2 Function f is µ-strongly convex.
3 Non-degeneracy condition: for all i ∈ Z we have ∇f(w∗i) ≥ δ for some δ > 0.

“You can’t have ∇if(w
∗) = 0 for variables i that are supposed to be zero.”

This condition is standard: prevents reaching solution through interior.

Proximal-Gradient Active-Set Complexity

Active-Set Identification for Non-Negative Constraints

Let’s show that we set i ∈ Z to zero when we’re “close” to the solution.

Proximal-Gradient Active-Set Complexity

Active-Set Identification for Non-Negative Constraints
Let’s show that we set i ∈ Z to zero when we’re “close” to the solution.

Implies “for large ‘k’, if w∗i is zero then the algorithm sets wki to 0”.

Consider an iteration k where we have ‖wk − w∗‖ ≤ δ
2L .

In this region we have two useful properties for all i ∈ Z:
1 The value of the variable must be small: wki ≤ δ

2L .

Since w∗i = 0 and wk
i is within δ/2L of wi.

2 The value of the gradient must be large: ∇if(wk) ≥ δ/2.
Since ∇if(w

∗) ≥ δ and ∇f is Lipschitz.

Plugging these into the projected-gradient update gives for i ∈ Z that

wk+1
i =

[
wki −

1

L
∇if(wk)

]+
≤
[
δ

2L
− δ

2L

]+
= 0.

Proximal-Gradient Active-Set Complexity

Active-Set Complexity for Non-Negative Constraints

If ∇f is Lipschitz and f is strongly-convex then iterates converge linearly,

‖wk − w∗‖ ≤ (1− κ−1)k‖w0 − w∗‖,

where the condition number κ is L/µ.

Thus, for all sufficiently large k we have ‖wk − w∗‖ ≤ δ
2L .

For these k the algorithm will have the correct active set.

Using (1− κ−1)k ≤ exp(−k/κ) and solving for k gives

κ log(2L‖w0 − w∗‖/δ),

so we find the sparsity pattern after this many iterations (“active-set complexity”).

Proximal-Gradient Active-Set Complexity

Active-Set Complexity for Non-Smooth Regularizers

Can be generalized to lower/upper bounds and non-smooth but separable,

argmin
l≤w≤u

f(w) +

n∑
i=1

gi(wi).

Key differences:
The set Z will be variables occuring at bounds or non-smooth points.

For L1-regularization this is again the variables with w∗i = 0.

The quantity δ will be the “minimum distance to the sub-differential boundary”,

δ = min
i∈Z
{min{−∇if(w∗)−min{∂gi(w∗i)},max{∂gi(w∗i)}+∇if(x∗)}}.

For L1-regularization this is δ = λ−maxi∈Z{|∇fi(w∗)|}.
The non-degeneracy condition is that δ > 0.

For L1-regularization we require |∇if(w
∗)| 6= λ for i ∈ Z.

Proof needs to bound wki from above and below based on ∂gi(w
∗
i).

For other problems/algorithms, see “Wiggle Room Lemma”.

Proximal-Gradient Active-Set Complexity

Superlinear Convergence

In a typical setting, we might hope that |Zc| << d.

Here we have the potential for faster algorithms by doing Newton steps on Z.

Some possibilities:
At some point, switch from proximal-gradient to Newton on the manifold.

Unfortunately, hard to decide when to switch.

Each iteration checks progress of proximal-gradient and Newton [Wright, 2012].
Two-metric projection [Gafni & Bertsekas, 1984].

May require expensive Newton steps before we’re on the manifold.

There remains some theoretical and experimental work to do here.

Proximal-Gradient Active-Set Complexity

Summary

Simple regularizers are those that allow efficient proximal operator.

Proximal-gradient: linear rates for sum of smooth and simple non-smooth.

Manifold identification: identify the sparsity pattern in finite iterations.

Active-set complexity is the number of iterations needed to find manifold.

Next time: going beyond L1-regularization to “structured sparsity”.

Proximal-Gradient Active-Set Complexity

Indicator Function for Convex Sets

The indicator function for a convex set is

r(w) =

{
0 if w ∈ C
∞ if w /∈ C

.

This is a function with “extended-real-valued” output: r : Rd → {R,∞}.

The convention for convexity of such functions:

The “domain” is defined as the w values where r(w) 6=∞ (in this case C).
We need this domain to be convex.
And the function should to be convex on this domain.

Proximal-Gradient Active-Set Complexity

Implicit subgradient viewpoint of proximal-gradient

The proximal-gradient iteration is

wk+1 ∈ argmin
v∈Rd

1

2
‖v − (wk − αk∇f(wk))‖2 + αkr(v).

By non-smooth optimality conditions that 0 is in subdifferential, we have that

0 ∈ (wk+1 − (wk − αk∇f(wk)) + αk∂r(w
k+1),

which we can re-write as

wk+1 = wk − αk(∇f(wk) + ∂r(wk+1)).

So proximal-gradient is like doing a subgradient step, with
1 Gradient of the smooth term at wk.
2 A particular subgradient of the non-smooth term at wk+1.

“Implicit” subgradient.

Proximal-Gradient Active-Set Complexity

Proximal-Gradient for L0-Regularization

There are some results on proximal-gradient for non-convex r.

Most common case is L0-regularization,

f(w) + λ‖w‖0,

where ‖w‖0 is the number of non-zeroes.

Includes AIC and BIC from 340.

The proximal operator for αkλ‖w‖0 is simple:

Set wj = 0 whenver |wj | ≤ αkλ (“hard” thresholding).

Analysis is complicated a bit because discontinuity of prox as function of αk.

If step size is too small then you may not be able to move.

Proximal-Gradient Active-Set Complexity

Faster Rate for Proximal-Gradient

It’s possible to show a slightly faster rate for proximal-gradient using
αt = 2/(µ+ L).

See http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_

ProximalGradient.pdf

http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_ProximalGradient.pdf
http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_ProximalGradient.pdf

Proximal-Gradient Active-Set Complexity

Equivalent Conditions to Proximal-PL

When ∇f is L-Lipschitz continuous, the following 3 conditions are equivalent:
1 Proximal-PL for some µ > 0:

1

2
Dr(w,L) ≥ µ(F (w)− F ∗),

2 Error bounds for some c > 0:

‖w − wp‖ ≤ c
∣∣∣∣∣∣∣∣w − prox 1

L r

(
w − 1

L
∇f(w)

)∣∣∣∣∣∣∣∣ ,
where wp is the projection of x onto the set of solution.

3 Kurdyka-Lojasiewicz for some µ > 0:

min
s∈∂F (w)

1

2
‖s‖2 ≥ µ(F (w)− F ∗),

where ∂F (w) is the “local” sub-differential.
(Same as usual sub-differential for convex)

	Proximal-Gradient
	Active-Set Complexity

