Proximal-Gradient Active-Set Complexity

First-Order Optimization Algorithms for Machine Learning

Proximal-Gradient

Mark Schmidt

University of British Columbia

Summer 2020

Proximal-Gradient Active-Set Complexity

Solving Problems with Simple Regularizers

@ We were discussing how to solve non-smooth L1-regularized objectives like

1
argmin §HXw —yl* + Awlz.
weRd

Use our trick to formulate as a quadratic program?
o O(d?) or worse.
@ Make a smooth approximation to the L1-norm?
o Destroys sparsity (we'll again just have one subgradient at zero).
Use a subgradient method?
o Needs O(1/¢) iterations even in the strongly-convex case.
@ Transform to “smooth f with simple constraints” and use projected-gradient?
o Works well, but increases problem size and destroys strong-convexity.

For “simple” regularizers, proximal-gradient methods don't have these drawbacks

Should we use projected-gradient for non-smooth problems?

@ Some non-smooth problems can be turned into smooth problems with simple
constraints.

@ But transforming might make problem harder:
e For L1-regularization least squares,

o1
argmin o || Xw — ylI* + Allwlls,
weRE

we can re-write as a smooth problem with bound constraints,

d

argmin || X (ws —w_) —y|2 + A3 (wy +wo).
w4 >0, w_>0 =il
e Doubles the number of variables.
e Transformed problem is not strongly convex even if the original was.

Outline

© Proximal-Gradient

© Active-Set Complexity

Proximal-Gradient

Quadratic Approximation View of Gradient Method

@ We want to solve a smooth optimization problem:

argmin f(w).
weRd

k

@ lteration w" works with a quadratic approximation to f:

fw) = f(w®) + V()T (v —w®) + %,

Active-Set Complexity

w**! € argmin {f(wk) + VI (w*) T (v —w) + i”v - wk||2} .
k

vERM
We can equivalently write this as the quadratic optimization:

1
W € argmin {|v ~ (wk — an(w'f))F} 7
vERY 2

and the solution is the gradient algorithm:

Wit = wk — o V f (wh).

Proximal-Gradient Active-Set Complexity

Quadratic Approximation View of Proximal-Gradient Method

@ We want to solve a smooth plus non-smooth optimization problem:
argmin f(w)+r(w).
weR?

k

@ lteration w" works with a quadratic approximation to f:

Fo)+rv) = f(wF) + Vf(w*) " (o —w*) + 2;€Hv — w®|*+r(v),

1
whtt e argmin {f(wk) + Vf(wk)T(U — wk) +—|v— wk||2+r(v)} .
veERd 2a,

We can equivalently write this as the proximal optimization:

1

W € argmin {Hv ~ (wh - akw(w’“»n%akr(v)} |
veERC 2

and the solution is the proximal-gradient algorithm:

k+1

wh = proxaw[wk — V. f(wh)).

Proximal-Gradient Active-Set Complexity

Proximal-Gradient for L1-Regularization

@ The proximal operator for L1-regularization when using step-size ay,

1 . 1 1
0%, 1 4] € angmin {5 o — L 4 ol .
veRd

involves solving a simple (strongly-convex) 1D problem for each variable j:

.1 k+3
k+1 2
,wj+ € argmin {2(vj —w; *)"+ ak/\|vj|} .
vjER
@ We can find the argmin by finding the unique v; with 0 in the sub-differential.
@ The solution is given by applying “soft-threshold” operation:
QIf |wf+%| < ap\, set wf“ =0.

@ Otherwise, shrink \w;+%| by ajA.

Proximal-Gradient

Proximal-Gradient for L1-Regularization

@ An example sof-threshold operator on absolute value with apA = 1:

Input Threshold Soft-Threshold
0.6715 0 0
—1.2075 —1.2075 —0.2075
0.7172 0 0
1.6302 1.6302 0.6302
0.4889 0 0

@ Symbolically, the soft-threshold operation computes

- = k l
wf“ = s|gn(wk+%)max {0, \wj+2] — ak)\})
—_——

—1or +1

@ Has the nice property that iterations w” are sparse.

o Compared to subgradient method which wouldn't give exact zeroes.

Active-Set Complexity

Proximal-Gradient Active-Set Complexity

Proximal-Gradient Method

@ So proximal-gradient step takes the form:
whte =k — oV f (w)

.1 1
w* ! = argmin {]v —whta | 4 akr(v)} .
veERd 2
@ Second part is called the proximal operator with respect to a convex ayr.
o We say that r is simple if you can efficiently compute proximal operator.

@ Very similar properties to projected-gradient when V f is Lipschitz-continuous:
o Guaranteed improvement for o < 2/L, practical backtracking methods work better.
e Solution is a fixed point, w* = prox,.[w* — aV f(w*)] for any a > 0.
e If f is strongly-convex then

F(wk) - F* < (1 - %)k [F(u®) — F*],

where F(w) = f(w) + r(w).

Proximal-Gradient Active-Set Complexity

Projected-Gradient is Special case of Proximal-Gradient

@ Projected-gradient methods are a special case:

0 if C
r(w) = 1 we , (indicator function for convex set C)
oo ifwégC

g 1 1 _
w%-eﬁ € argmin 5”“ —whts I> + agr(v) = argmin §HU - wk”JF%H2 = argmin |lv — Wk
v veC

veRd el

proximal operator projection

Feasible Set

Proximal-Gradient

Properties of Proximal-Gradient

@ Two convenient properties of proximal-gradient:
e Proximal operators are non-expansive,

[[prox,. (w) — prox,.(v)[| < [jw — v,

it only moves points closer together (easy to see for special case of projection).
(including w* and w*)
e For convex f, only fixed points are global optima,

w* = prox,. (w* — aV f(w")),

for any a > 0.
(can test ||w® — prox, (w* — V f(w"))|| for convergence)
@ Proximal gradient has two line-searches (generalizes projected variants):
o Fix ay, and search along direction to w**! (1 proximal operator, non-sparse iterates).
e Vary «y, values (multiple proximal operators per iteration, gives sparse iterations).

Proximal-Gradient Acti

Proximal-Gradient Linear Convergence Rate

@ Simplest linear convergence proofs are based on the proximal-PL inequality,
5w, L) > u(Fw) ~ F°),
where compared to PL inequality we've replaced ||V f(w)]||? with
Dy(w,a) = =2« mvin Viw) ' (v—w)+ %Hv —w|*+7r@) —rw)]|,
and recall that F(w) = f(w) + r(w).

@ This non-intuitive property holds for many important problems:
o Ll-regularized least squares.
e Any time f is strong-convex (i.e., add an L2-regularizer as part of f).
o Any f = g(Aw) for strongly-convex g and r being indicator for polyhedral set.

@ But it can be painful to show that functions satisfy this property.

ve-Set Complexity

Proximal-Gradient Active-Set Complexity

Proximal-Gradient Convergence under Proximal-PL

@ Linear convergence if V f is Lipschitz and F' is proximal-PL:
F(wgi1) = fw™) + r(w)
= f(wi1) + r(wi) + r(wis1) — 7(w)

< flwg) +(V f(wy), w1 — wi) + g“warl — wi|]? + r(wg) 4+ r(wegr) — (s

= F(wg) +(Vf(wr), wpy1 — wi) + g”wlﬂ-l — w||* + 7 (wyt1) — 7 (w)
< P(wy) — %Dr(wk, L)
< Fwy) = 1P (wr) = F,

and then we can take our usual steps.

Proximal-Gradient
Proximal-Newton

@ We can define accelerated proximal-gradient in a straightforward way.

@ We can define proximal-Newton methods using

Wt = — o [Hy] 71V f (w®) (Newton step)
1

wht = argmin {||v —whte quk + akr(v)} (proximal step)
veRd 2

@ This is expensive even for simple r like L1-regularization.
@ But there are analogous tricks to projected-Newton methods:

e Diagonal or Barzilai-Borwein Hessian approximation.
e "Orthant-wise” methods are analogues of two-metric projection.
e Inexact methods use approximate proximal operator.

o Orthant-wise and inexact methods often combined with L-BFGS or Hessian-free.

Outline

@ Proximal-Gradient

© Active-Set Complexity

Proximal-Gradient Active-Set Complexity

Active-Set |dentification

@ For Ll-regularization, proximal-gradient “identifies” active set in finite time:
(under mild assumptions)

o For all sufficiently large k, sparsity pattern of z* matches sparsity pattern of z*.

w wh wy
w) 0 0
w’ = wg after finite k iterations w® =] 0 |, where w*=] 0
wf wj wj
Wy 0 0

@ Useful if we are only interested in finding the sparsity pattern.
e Convergence rate will be faster once this happens (optimizing over subspace).
e You could also apply Newton-like methods on the non-zero variables.

Proximal-Gradient Active-Set Complexity

Related Work and More-General Results

Idea of finitely identifying non-zeroes dates back (at least) to Bertskeas [1976].
o For projected-gradient applied to smooth functions with non-negative constraints.

Has been shown for a variety of convex/non-convex problems.
o Burke & Moré [1988], Wright [1993], Hare & Lewis [2004], Hare [2011].

These prior works only show that identification happens asymptotically.
o For some finite but unknown k.

@ Recent works consider “active-set complexity” of an algorithm:
e The number of iterations before it is guaranteed to have reached the active set.

Proximal-Gradient Active-Set Complexity

Special Case: Optimizing with Non-Negative Constraints

@ We will first consider optimization with non-negative constraints,

argmin f(w),
w>0

using the projected-gradient method with a step-size of 1/L,
1 +
wh = {wk = Vf(wk)] .
L
@ This also leads to sparsity, and we use Z as the indices i where w; = 0.

o We'll assume:
© Gradient Vf is L-Lipschitz continuous.
@ Function f is p-strongly convex.
© Non-degeneracy condition: for all i € Z we have V f(w}) > 0 for some ¢ > 0.
e “You can't have V; f(w™) = 0 for variables ¢ that are supposed to be zero.”
@ This condition is standard: prevents reaching solution through interior.

Proximal-Gradient Active-Set Complexity

Active-Set Identification for Non-Negative Constraints

@ Let's show that we set 7 € Z to zero when we're “close” to the solution.

-

/Z"_ Tamjln‘/
e Wity

S'ufa V.I-F{,T”')

A> [Wuj as Vﬁ()&*) 70)
'hom s @ {'e:jion w'n?n;
slarc is much biger

Fhaw The dislance To' ()

A%
 Cradhedd sfep

5 fra(}n"’fw sfer (1 0)

Proximal-Gradient Active-Set Complexity

Active-Set Identification for Non-Negative Constraints

@ Let's show that we set ¢ € Z to zero when we're “close” to the solution.
o Implies “for large ‘k’, if w} is zero then the algorithm sets w¥ to 0”.
o Consider an iteration k where we have ||w* — w*|| < 2.
@ In this region we have two useful properties for all i € Z:
© The value of the variable must be small: w¥ < %.
e Since w} = 0 and w¥ is within §/2L of w;.
@ The value of the gradient must be large: V; f(w") > §/2.
e Since V;f(w") > § and Vf is Lipschitz.
@ Plugging these into the projected-gradient update gives for ¢ € Z that

k+1 __ k_lvf(k)+< i_i—’—_o
Yoo S| T YWY = er e T

Proximal-Gradient Active-Set Complexity

Active-Set Complexity for Non-Negative Constraints
o If Vf is Lipschitz and f is strongly-convex then iterates converge linearly,
[l —w*|| < (1= £7HFw® = w?,

where the condition number x is L/p.

o Thus, for all sufficiently large k we have [[w* — w*|| < .
e For these k the algorithm will have the correct active set.

o Using (1 — s~ 1)¥ < exp(—k/k) and solving for k gives
klog(2L||w® — w*||/3),

so we find the sparsity pattern after this many iterations (“active-set complexity”).

Active-Set Complexity

Active-Set Complexity for Non-Smooth Regularizers

e Can be generalized to lower/upper bounds and non-smooth but separable,

argmin f(w) + 3 gi (wy).
=1

I<w<u

o Key differences:
e The set Z will be variables occuring at bounds or non-smooth points.
o For L1-regularization this is again the variables with w; = 0.
e The quantity J will be the “minimum distance to the sub-differential boundary”,

§ = min{min{~V;f(w") — min{dg;(w;)}, max{dg;(wi)} + Vif(z*)}}.

e For Ll-regularization this is § = A — max;cz{|V fi(w™)[}.

e The non-degeneracy condition is that § > 0.
o For L1-regularization we require |V;f(w*)| # A for i € Z.

o Proof needs to bound w” from above and below based on dg;(w}).
o For other problems/algorithms, see “Wiggle Room Lemma”.

Active-Set Complexity

Superlinear Convergence

@ In a typical setting, we might hope that |Z¢| << d.
e Here we have the potential for faster algorithms by doing Newton steps on Z.

@ Some possibilities:
e At some point, switch from proximal-gradient to Newton on the manifold.
o Unfortunately, hard to decide when to switch.

o Each iteration checks progress of proximal-gradient and Newton [Wright, 2012].
o Two-metric projection [Gafni & Bertsekas, 1984].
@ May require expensive Newton steps before we're on the manifold.

e There remains some theoretical and experimental work to do here.

Active-Set Complexity

Summary

Simple regularizers are those that allow efficient proximal operator.
Proximal-gradient: linear rates for sum of smooth and simple non-smooth.
Manifold identification: identify the sparsity pattern in finite iterations.

Active-set complexity is the number of iterations needed to find manifold.

Next time: going beyond L1-regularization to “structured sparsity”.

Active-Set Complexity

Indicator Function for Convex Sets

@ The indicator function for a convex set is

0 ifweC
r(w) = : :
oo ifwégC

o This is a function with “extended-real-valued” output: : R? — {R, cc}.

@ The convention for convexity of such functions:
e The “domain” is defined as the w values where r(w) # oo (in this case C).
o We need this domain to be convex.
e And the function should to be convex on this domain.

Active-Set Complexity

Implicit subgradient viewpoint of proximal-gradient

@ The proximal-gradient iteration is

1
wh T € argmin < |jv — (w® — ap V. (w*)]|? + agr(v).
veRd 2

@ By non-smooth optimality conditions that 0 is in subdifferential, we have that
0 € (W — (w* — .V f(w®)) + apdr(w*),
which we can re-write as
wh T = wP — ap(Vf(wF) 4+ or(w*)).

@ So proximal-gradient is like doing a subgradient step, with

@ Gradient of the smooth term at w*.
@ A particular subgradient of the non-smooth term at wktl,

o “Implicit” subgradient.

Active-Set Complexity

Proximal-Gradient for LO-Regularization

@ There are some results on proximal-gradient for non-convex r.

@ Most common case is LO-regularization,

f(w) + Al[wllo,

where ||w]|o is the number of non-zeroes.
o Includes AIC and BIC from 340.

@ The proximal operator for axA||wl|o is simple:
o Set w; = 0 whenver |w;| < axA (“hard” thresholding).

@ Analysis is complicated a bit because discontinuity of prox as function of ay.
o If step size is too small then you may not be able to move.

Active-Set Complexity

Faster Rate for Proximal-Gradient

@ It's possible to show a slightly faster rate for proximal-gradient using
ar=2/(p+L).

@ See http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_
ProximalGradient.pdf

http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_ProximalGradient.pdf
http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_ProximalGradient.pdf

Active-Set Complexity

Equivalent Conditions to Proximal-PL

@ When V f is L-Lipschitz continuous, the following 3 conditions are equivalent:
@ Proximal-PL for some p > 0:

1
5D, L) 2 p(F(w) = F7),
@ Error bounds for some ¢ > 0:

lw —wp| < ¢

w — prox, (w - in(w))

where wy, is the projection of x onto the set of solution.
© Kurdyka-Lojasiewicz for some p > 0:

2 _ F*
geggnwﬂll s||* > pu(F(w)),

where OF (w) is the “local” sub-differential.
(Same as usual sub-differential for convex)

	Proximal-Gradient
	Active-Set Complexity

