
Projected Gradient Projected Newton

First-Order Optimization Algorithms for Machine Learning
Projected-Gradient Methods

Mark Schmidt

University of British Columbia

Summer 2020



Projected Gradient Projected Newton

Last Time: Subgradient Methods

The basic subgradient method for solving non-smooth problems:

wk+1 = wk − αkgk,

for any gk ∈ ∂f(wk) (“sub-differential”).

Subgradient-based methods are slower than gradient descent:
Assumption Gradient Subgradient Quantity

Convex O(1/ε) O(1/ε2) f(wt)− f∗ ≤ ε
Strongly-Convex O(log(1/ε)) O(1/ε) f(wt)− f∗ ≤ ε

You cannot improve subgradient rates by acceleration.

There are matching lower bounds for dimension-independent algorithms.
Later we’ll show stochastic subgradient methods have these rates at lower cost.



Projected Gradient Projected Newton

The Key to Faster Methods

How can we achieve the speed of gradient descent on non-smooth problems?

Make extra assumptions about the function f or algorithm.

For L1-regularized least squares, we’ll use that the objective has the form

F (w) = f(w)︸ ︷︷ ︸
smooth

+ r(w)︸︷︷︸
“simple”

,

that it’s the sum of a smooth function and a “simple” function.

We’ll define “simple” later, but simple functions can be non-smooth.

Proximal-gradient methods have rates of gradient descent for such problems.

A generalization of projected gradient methods, which we’ll cover first.



Projected Gradient Projected Newton

Projected-Gradient for Non-Negative Constraints

We used projected gradient in 340 for NMF to find non-negative solutions,

argmin
w≥0

f(w).

In this case the algorithm has a simple form,

wk+1 = max{0, wk − αk∇f(wk)︸ ︷︷ ︸
gradient descent

},

where the max is taken element-wise.

“Do a gradient descent step, set negative values to 0.”

An obvious algorithm to try, and works as well as unconstrained gradient descent.



Projected Gradient Projected Newton

Transforming L1-Regularization into a Problem with Bound Constraints

What does this have to do with L1-regularization?

Can transform many non-smooth problems into smooth + simple constraints.

For smooth objectives with L1-regularization,

argmin
w∈Rd

f(w) + λ‖w‖1,

we can re-write as a smooth problem with only non-negative constraints,

argmin
w+≥0, w−≥0

f(w+ − w−) + λ
d∑

j=1

(w+ + w−).

Can then apply projected-gradient to this problem.



Projected Gradient Projected Newton

A Broken “Projected-Gradient” Algorithms

Projected-gradient addresses problem of minimizing smooth f over a convex set C,

argmin
w∈C

f(w).

As another example, we often want w to be a probability,

argmin
w≥0, 1>w=1

f(w),

Based on our “set negative values to 0” intuition, we might consider this:
1 Perform an unconstrained gradient descent step.
2 Set negative values to 0 and divide by the sum.

This algorithms does NOT work.

But it can be fixed if we replace Step 2 by “project onto the constraint set”.



Projected Gradient Projected Newton

Projected-Gradient

wk+ 1
2 = wk − αk∇f(wk)︸ ︷︷ ︸

gradient step

, wk+1 ∈ argmin
v∈C

‖v − wk+ 1
2 ‖︸ ︷︷ ︸

projection step

.

Feasible Set

x - !f’(x)
f(x)

x



Projected Gradient Projected Newton

Projected-Gradient

wk+ 1
2 = wk − αk∇f(wk)︸ ︷︷ ︸

gradient step

, wk+1 ∈ argmin
v∈C

‖v − wk+ 1
2 ‖︸ ︷︷ ︸

projection step

.

Feasible Set

x+

f(x)

x

x - !f’(x)



Projected Gradient Projected Newton

Projected-Gradient

We can view the projected-gradient algorithm as having two steps:
1 Perform an unconstrained gradient descent step,

wk+ 1
2 = wk − αk∇f(wk).

2 Compute the projection onto the set C,

wk+1 ∈ argmin
v∈C

‖v − wk+ 1
2 ‖.

Projection is the closest point that satisfies the constraints.

Generalizes “projection onto subspace” from linear algebra.
We’ll also write projection of w onto C as

projC [w] = argmin
v∈C

‖v − w‖,

and for convex C it’s unique.



Projected Gradient Projected Newton

Convergence Rate of Projected Gradient

Projected versions have same complexity as unconstrained versions:
Assumption Proj(Grad) Proj(Subgrad) Quantity

Convex O(1/ε) O(1/ε2) f(wt)− f∗ ≤ ε
Strongly-Convex O(log(1/ε)) O(1/ε) f(wt)− f∗ ≤ ε

Nice properties in the smooth case:
With αt < 2/L, guaranteed to decrease objective.
There exist practical step-size strategies as with gradient descent.
For convex f a w∗ is optimal iff it’s a “fixed point” of the update,

w∗ = projC [w
∗ − α∇f(w∗)],

for any step-size α > 0.

There exist accelerated versions and Newton-like versions (later).
Acceleration is an obvious modification, Newton is more complicated.



Projected Gradient Projected Newton

Why the Projected Gradient?

We want to optimize f (smooth but possibly non-convex) over some convex set C,

argmin
w∈C

f(w).

Recall that we can view gradient descent as minimizing quadratic approximation

wk+1 ∈ argmin
v

{
f(wk) +∇f(wk)(v − wk) +

1

2αk
‖v − wk‖2

}
,

where we’ve written it with a general step-size αk instead of 1/L.
Solving the convex quadratic argmin gives wk+1 = wk − αk∇f(wk).

We could minimize quadratic approximation to f subject to the constraints,

wk+1 ∈ argmin
v∈C

{
f(wk) +∇f(wk)>(v − wk) +

1

2αk
‖v − wk‖2

}
,



Projected Gradient Projected Newton

Why the Projected Gradient?
We write this “minimize quadratic approximation over the set C” iteration as

wk+1 ∈ argmin
v∈C

{
f(wk) +∇f(wk)>(v − wk) +

1

2αk
‖v − wk‖2

}
≡ argmin

v∈C

{
αkf(w

k) + αk∇f(wk)>(v − wk) +
1

2
‖v − wk‖2

}
(multiply by αk)

≡ argmin
v∈C

{
α2
k

2
‖∇f(wk)‖2 + αk∇f(wk)>(v − wk) +

1

2
‖v − wk‖2

}
(± const.)

≡ argmin
v∈C

{
‖(v − wk) + αk∇f(wk)‖2

}
(complete the square)

≡ argmin
v∈C

‖v − (wk − αk∇f(wk))︸ ︷︷ ︸
gradient descent

‖

 ,

which gives the projected-gradient algorithm: wk+1 = projC [w
k − αk∇f(wk)].



Projected Gradient Projected Newton

Gradient Mapping

The projected gradient iteration is

wk+1 = projC [w
k − αk∇f(wk)].

We can re-write this iteration as

wk+1 = wk − αg(wk),

where g is called the gradient mapping

g(wk) =
1

α
(wk − wk+1).

If we have no constraints then g(wk) = ∇f(wk) (so we get gradient descent).
Gradient mappings like this are often used in analyzing first-order methods.

Since g(w∗) = 0, we often use ‖g(wk)‖ to monitor convergence.



Projected Gradient Projected Newton

Simple Convex Sets

Projected-gradient is only efficient if the projection is cheap.

We say that C is simple if the projection is cheap.

For example, if it costs O(d) then it adds no cost to the algorithm.

For example, if we want w ≥ 0 then projection sets negative values to 0.

Non-negative constraints are “simple”.

Another example is w ≥ 0 and w>1 = 1, the probability simplex.

There are O(d) algorithms to compute this projection (similar to “select” algorithm)



Projected Gradient Projected Newton

Simple Convex Sets

Other examples of simple convex sets:

Having upper and lower bounds on the variables, LB ≤ x ≤ UB.

Having a linear equality constraint, a>x = b, or a small number of them.

Having a half-space constraint, a>x ≤ b, or a small number of them.

Having a norm-ball constraint, ‖x‖p ≤ τ , for p = 1, 2,∞ (fixed τ).

Having a norm-cone constraint, ‖x‖p ≤ τ , for p = 1, 2,∞ (variable τ).

It’s easy to minimize smooth functions with these constraints.



Projected Gradient Projected Newton

Intersection of Simple Convex Sets: Dykstra’s Algorithm

Often our set C is the intersection of simple convex set,

C ≡ ∩iCi.

For example, we could have a large number linear constraints:

C ≡ {w | aTi w ≤ bi,∀i}.

Dykstra’s algorithm can compute the projection in this case.

On each iteration, it projects a vector onto one of the sets Ci.
Requires O(log(1/ε)) such projections to get within ε.

(This is not the shortest path algorithm of “Dijkstra”.)



Projected Gradient Projected Newton

Line-Search for Projected Gradient
There are two ways to do Armijo line-search for the projected gradient:

Backtrack along the line between x+ and x (search interior).
“Backtracking along the feasible direction”, costs 1 projection per iteration.

f(x)
Feasible Set

x+

x1

x2

x

x - !f’(x)

Backtrack by decreasing α and re-projecting (search boundary).
“Backtracking along the projection arc”, costs 1 projection per backtrack.
More expensive but (under weak conditions) we reach boundary in finite time (later).



Projected Gradient Projected Newton

Outline

1 Projected Gradient

2 Projected Newton



Projected Gradient Projected Newton

Faster Projected-Gradient Methods

Accelerated projected-gradient method has the form

wk+1 = projC [v
k − αk∇f(wk)]

vk+1 = wk + βk(w
k+1 − wk).

We could alternately use the Barzilai-Borwein step-size.

Known as spectral projected-gradient.

The naive Newton-like methods with Hessian approximation Ht,

wk+1 = projC [w
k − αk[Hk]

−1∇f(wk)],

does NOT work.



Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)



Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)

x1

x2



Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x1

x2



Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x

x1

x2



Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x

x1

x2

x - !f’(x)



Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x

x1

x2

x - !f’(x)



Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x+

x1

x2

x

x - !f’(x)



Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x1

x2
Q(x)

x

x - !f’(x) x+



Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x1

x2

xk - !H-1f’(x)
x

x - !f’(x) x+

Q(x)



Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x1

x2

x

x - !f’(x) x+

Q(x)

xk - !H-1f’(x)



Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x1

x2

x+

x

x - !f’(x) x+

Q(x)

xk - !H-1f’(x)



Projected Gradient Projected Newton

Projected-Newton Method

The naive projected-Newton method,

wk+ 1
2 = wk − αk[Hk]

−1∇f(wk) (Newton-like step)

wk+1 = argmin
v∈C

‖v − wk+ 1
2 ‖ (projection)

which will not work.

The correct projected-Newton method uses

wk+ 1
2 = wk − αk[Hk]

−1∇f(wk) (Newton-like step)

wk+1 = argmin
v∈C

‖v − wk+ 1
2 ‖Hk (projection under Hessian metric)



Projected Gradient Projected Newton

Projected-Newton Method
Projected-gradient minimizes quadratic approximation,

wk+1 = argmin
v∈C

{
f(wk) +∇f(wk)(v − wk) +

1

2αk
‖v − wk‖2

}
.

Newton’s method can be viewed as quadratic approximation (Hk ≈ ∇2f(wk)):

wk+1 = argmin
v∈Rd

{
f(wk) +∇f(wk)(v − wk) +

1

2αk
(v − wk)Hk(v − wk)

}
.

Projected Newton minimizes constrained quadratic approximation:

wk+1 = argmin
v∈C

{
f(wk) +∇f(wk)(v − wk) +

1

2αk
(v − wk)Hk(v − wk)

}
.

Equivalently, we project Newton step under different Hessian-defined norm,

w
k+1

= argmin
v∈C

‖v − (w
k − αtH

−1
k ∇f(w

k
))‖Hk

,

where general “quadratic norm” is ‖z‖A =
√
z>Az for A � 0.



Projected Gradient Projected Newton

Discussion of Projected-Newton

Projected-Newton iteration is given by

wk+1 = argmin
y∈C

{
f(wk) +∇f(wk)(v − wk) +

1

2αk
(v − wk)Hk(v − wk)

}
.

But this is expensive even when C is simple.

There are a variety of practical alternatives:
If Hk is diagonal then this is typically simple to solve for simple C.

Two-metric projection methods are special algorithms for upper/lower bounds.
Fix problem of naive method in this case by making Hk “partially diagonal”.

Inexact projected-Newton: solve the above approximately.
Useful when f is very expensive but Hk and C are simple.
“Costly functions with simple constraints”.



Projected Gradient Projected Newton

Summary

Projected-gradient allows optimization with simple constraints.

Simple convex sets are those that allow efficient projection.

Projected Newton adds second-order information.

Faster convergence but expensive even for simple sets, need approximation

Next time: how long does it take to find the sparsity pattern?


	Projected Gradient
	Projected Newton

