Projected Gradient Projected Newton

First-Order Optimization Algorithms for Machine Learning
Projected-Gradient Methods

Mark Schmidt

University of British Columbia

Summer 2020

Projected Gradient

Last Time: Subgradient Methods

@ The basic subgradient method for solving non-smooth problems:

k+1 _ ok
w =W — oGk,

for any g € 0f(w*) (“sub-differential”).

@ Subgradient-based methods are slower than gradient descent:
Assumption Gradient Subgradient Quantity

Convex O(1/¢) O(1/€%) flwh) — f* <e
Strongly-Convex O(log(1/¢)) O(1/e) flwt) — f*<e

@ You cannot improve subgradient rates by acceleration.

o There are matching lower bounds for dimension-independent algorithms.

Projected Newton

o Later we'll show stochastic subgradient methods have these rates at lower cost.

Projected Gradient Projected Newton

The Key to Faster Methods

@ How can we achieve the speed of gradient descent on non-smooth problems?
o Make extra assumptions about the function f or algorithm.

@ For L1-regularized least squares, we'll use that the objective has the form
Fw) = f(w) + r(w) ,
—— ~——
smooth “simple”

that it’s the sum of a smooth function and a “simple” function.
o We'll define “simple” later, but simple functions can be non-smooth.

@ Proximal-gradient methods have rates of gradient descent for such problems.
o A generalization of projected gradient methods, which we'll cover first.

Projected Gradient Projected Newton

Projected-Gradient for Non-Negative Constraints

@ We used projected gradient in 340 for NMF to find non-negative solutions,

argmin f(w).

w>0
@ In this case the algorithm has a simple form,

wh ! = max{0, w* — o, V.f (w®)},

gradient descent

where the max is taken element-wise.
e “Do a gradient descent step, set negative values to 0.”

@ An obvious algorithm to try, and works as well as unconstrained gradient descent.

Projected Gradient

Transforming L1-Regularization into a Problem with Bound Constraints

@ What does this have to do with L1-regularization?
@ Can transform many non-smooth problems into smooth + simple constraints.

@ For smooth objectives with L1-regularization,

argmin f(w) + A||w||1,
weRY

we can re-write as a smooth problem with only non-negative constraints,
d
argmin f(wy —w_) +)\Z(w+ +w_).

w4 >0, w—>0 Al

@ Can then apply projected-gradient to this problem.

Projected Gradient Projected Newton

A Broken “Projected-Gradient” Algorithms

@ Projected-gradient addresses problem of minimizing smooth f over a convex set C,

argmin f(w).
weC

@ As another example, we often want w to be a probability,

argmin f(w),
w>0, 1Tw=1
@ Based on our “set negative values to 0" intuition, we might consider this:

@ Perform an unconstrained gradient descent step.
@ Set negative values to 0 and divide by the sum.

@ This algorithms does NOT work.
e But it can be fixed if we replace Step 2 by “project onto the constraint set”.

Projected Gradient Projected Newton

Projected-Gradient

1 1
w2 = wh — . Vf(wk), whtt e argmin v — w3z,
veC
gradient step ~~

projection step

N

Feasible Set

Projected Gradient Projected Newton

Projected-Gradient

wk—%H-

whtE =k — apVI(wh), w*t e argmin|jv —
veC

gradient step
projection step

Feasible Set

Projected Gradient Projected Newton

Projected-Gradient

@ We can view the projected-gradient algorithm as having two steps:
@ Perform an unconstrained gradient descent step,

Wt = wk — g Vf(wh).
@ Compute the projection onto the set C,

Wt € argmin [jv — w3,
veC

@ Projection is the closest point that satisfies the constraints.

o Generalizes “projection onto subspace” from linear algebra.
o We'll also write projection of w onto C as

proje[w] = argmin [|v — wl,
vel

and for convex C it's unique.

Projected Gradient

Convergence Rate of Projected Gradient

@ Projected versions have same complexity as unconstrained versions:
Assumption Proj(Grad) Proj(Subgrad) Quantity

Convex O(1/¢) O(1/€?) flwh) — f* <e
Strongly-Convex O(log(1/e€)) O(1/e) fwh) — f*<e

@ Nice properties in the smooth case:
o With oy < 2/L, guaranteed to decrease objective.
e There exist practical step-size strategies as with gradient descent.
e For convex f a w* is optimal iff it's a “fixed point” of the update,

w" = proje[w” — aV f(w?)],

for any step-size a > 0.

@ There exist accelerated versions and Newton-like versions (later).

o Acceleration is an obvious modification, Newton is more complicated.

Projected Newton

Projected Gradient Projected Newton
Why the Projected Gradient?
e We want to optimize f (smooth but possibly non-convex) over some convex set C,
argmin f(w).
weCl

@ Recall that we can view gradient descent as minimizing quadratic approximation
. 1
w* ! € argmin {f(wk) + Vf(w*) (v —wb) + Ton |lv — wkHZ} ,
v k

where we've written it with a general step-size oy instead of 1/L.
o Solving the convex quadratic argmin gives w*+! = w* — a;, V f(w").

@ We could minimize quadratic approximation to f subject to the constraints,

1
wh! € argmin {f(wk) + V()T (v —wk) + — v — wkHQ} ;
veC 2a,

Projected Gradient

Why the Projected Gradient?

@ We write this “minimize quadratic approximation over the set C" iteration as

1
W € argmin {f(w'“) V)T (0=)+ o w’fn?}
velC 20%

1
= argmin {akf(wk) + apVwh (v —wh) + 5“@ - wkHZ} (multiply by)
veC

2 1
= argngin {C;’“HVf(wk)H2 + apVi(wh) T (v —wh) + §HU - wk]2} (£ const.)
ve
= argngin {||(v —wh) + ak.Vf(wk)H2} (complete the square)
ve

= argr’gin v — (w* — apVf(wF)) || 3,
ve

gradient descent

which gives the projected-gradient algorithm: w**! = proj.[w* — a3, V f (w*)].

Projected Gradient

Gradient Mapping

@ The projected gradient iteration is
Wkt = proje[wk — i V f (w")].

@ We can re-write this iteration as

k+1 k

w =w" — ag(wk),

where g is called the gradient mapping

g(wk) _ E(wk _ wk—f—l)'

o If we have no constraints then g(w*) = V f(w¥) (so we get gradient descent).
o Gradient mappings like this are often used in analyzing first-order methods.

@ Since g(w*) = 0, we often use ||g(w")|| to monitor convergence.

Projected Gradient Projected Newton

Simple Convex Sets

@ Projected-gradient is only efficient if the projection is cheap.

o We say that C is simple if the projection is cheap.
o For example, if it costs O(d) then it adds no cost to the algorithm.

@ For example, if we want w > 0 then projection sets negative values to 0.
e Non-negative constraints are “simple”.

@ Another example is w > 0 and w'1 = 1, the probability simplex.
o There are O(d) algorithms to compute this projection (similar to “select” algorithm)

Projected Gradient Projected Newton

Simple Convex Sets

@ Other examples of simple convex sets:

Having upper and lower bounds on the variables, LB <z < UB.

Having a linear equality constraint, a "« = b, or a small number of them.

Having a half-space constraint, a'xz < b, or a small number of them.

Having a norm-ball constraint, ||z||, < 7, for p = 1,2, 00 (fixed 7).

Having a norm-cone constraint, ||z||, < 7, for p = 1,2, 00 (variable 7).

@ It's easy to minimize smooth functions with these constraints.

Projected Gradient

Intersection of Simple Convex Sets: Dykstra's Algorithm

@ Often our set C is the intersection of simple convex set,
C = n,C;.
@ For example, we could have a large number linear constraints:
C={w|alw < bV}

@ Dykstra's algorithm can compute the projection in this case.

e On each iteration, it projects a vector onto one of the sets C;.
o Requires O(log(1/€)) such projections to get within .

(This is not the shortest path algorithm of “Dijkstra”.)

Projected Gradient

Line-Search for Projected Gradient

@ There are two ways to do Armijo line-search for the projected gradient:

o Backtrack along the line between = and x (search interior).
e "“Backtracking along the feasible direction”, costs 1 projection per iteration.

J

PA;

o Backtrack by decreasing a: and re-projecting (search boundary).
e "“Backtracking along the projection arc”, costs 1 projection per backtrack.
o More expensive but (under weak conditions) we reach boundary in finite time (later).

Outline

@ Projected Gradient

© Projected Newton

Projected Newton

Faster Projected-Gradient Methods

@ Accelerated projected-gradient method has the form

whtl = projc[vk = aka(wk)]

P = wF + B (wF Tt — wh).

@ We could alternately use the Barzilai-Borwein step-size.
e Known as spectral projected-gradient.

@ The naive Newton-like methods with Hessian approximation H,
whth = proje[w® — ax[Hi] 7'V f(w)],

does NOT work.

Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

Feasible Set

Projected Gradient

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Feasible Set

Projected Newton

Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

Feasible Set

Projected Gradient

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Feasible Set

Projected Newton

Projected Gradient

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Feasible Set

Projected Newton

Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

Feasible Set

Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

Feasible Set

Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

Feasible Set

Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

Feasible Set

Projected Newton

Projected-Newton Method

@ The naive projected-Newton method,

wtE = ok — o [Hy) "1V f (w") (Newton-like step)

wk+1 — argmin ||,U — wk+% || (projection)

veC

which will not work.

@ The correct projected-Newton method uses

Wt = wk — o [Hy 1V f(wh) (Newton-like step)

k+1

w" T = argmin [jv — wk+%||Hk (projection under Hessian metric)

veC

Projected Gradient Projected Newton

Projected-Newton Method

Projected-gradient minimizes quadratic approximation,

1
wht! = argmin {f(wk) + Vf(w*) (v —w®) + —|v - wkHQ} .
veC 20y,

Newton's method can be viewed as quadratic approximation (Hy ~ V2 f(w*)):

wht = argmin {f(wk) + Vf(wk)(v — wk) + L(’U — wk)Hk(U - wk)} .
veERL 2ay,

Projected Newton minimizes constrained quadratic approximation:

whtt = argen;in {f(wk) + Vf(wh) (v —wh) + %ik@ — wF)Hy,(v - wk)} :

Equivalently, we project Newton step under different Hessian-defined norm,

k+1 . k —1 k
wht =argmén lv = (W™ —arH "V f(w))HHkn
veE

where general “quadratic norm” is ||z||4 = V2T Az for A = 0.

Projected Gradient Projected Newton

Discussion of Projected-Newton

@ Projected-Newton iteration is given by

w1 = argmin {f(wk) + VI (v —wh) + L(v — w*)Hy (v — wk)} :
yeC 20

@ But this is expensive even when C is simple.

@ There are a variety of practical alternatives:
o If Hy is diagonal then this is typically simple to solve for simple C.

o Two-metric projection methods are special algorithms for upper/lower bounds.
o Fix problem of naive method in this case by making Hj “partially diagonal”.

e Inexact projected-Newton: solve the above approximately.
@ Useful when f is very expensive but Hy and C are simple.
o “Costly functions with simple constraints”.

Summary

Projected-gradient allows optimization with simple constraints.

Simple convex sets are those that allow efficient projection.
Projected Newton adds second-order information.
o Faster convergence but expensive even for simple sets, need approximation

Next time: how long does it take to find the sparsity pattern?

Projected Newton

	Projected Gradient
	Projected Newton

