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Last Time: Subgradient Methods

The basic subgradient method for solving non-smooth problems:

wk+1 = wk − αkgk,

for any gk ∈ ∂f(wk) (“sub-differential”).

Subgradient-based methods are slower than gradient descent:
Assumption Gradient Subgradient Quantity

Convex O(1/ε) O(1/ε2) f(wt)− f∗ ≤ ε
Strongly-Convex O(log(1/ε)) O(1/ε) f(wt)− f∗ ≤ ε

You cannot improve subgradient rates by acceleration.

There are matching lower bounds for dimension-independent algorithms.
Later we’ll show stochastic subgradient methods have these rates at lower cost.
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The Key to Faster Methods

How can we achieve the speed of gradient descent on non-smooth problems?

Make extra assumptions about the function f or algorithm.

For L1-regularized least squares, we’ll use that the objective has the form

F (w) = f(w)︸ ︷︷ ︸
smooth

+ r(w)︸︷︷︸
“simple”

,

that it’s the sum of a smooth function and a “simple” function.

We’ll define “simple” later, but simple functions can be non-smooth.

Proximal-gradient methods have rates of gradient descent for such problems.

A generalization of projected gradient methods, which we’ll cover first.
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Projected-Gradient for Non-Negative Constraints

We used projected gradient in 340 for NMF to find non-negative solutions,

argmin
w≥0

f(w).

In this case the algorithm has a simple form,

wk+1 = max{0, wk − αk∇f(wk)︸ ︷︷ ︸
gradient descent

},

where the max is taken element-wise.

“Do a gradient descent step, set negative values to 0.”

An obvious algorithm to try, and works as well as unconstrained gradient descent.
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Transforming L1-Regularization into a Problem with Bound Constraints

What does this have to do with L1-regularization?

Can transform many non-smooth problems into smooth + simple constraints.

For smooth objectives with L1-regularization,

argmin
w∈Rd

f(w) + λ‖w‖1,

we can re-write as a smooth problem with only non-negative constraints,

argmin
w+≥0, w−≥0

f(w+ − w−) + λ
d∑

j=1

(w+ + w−).

Can then apply projected-gradient to this problem.
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A Broken “Projected-Gradient” Algorithms

Projected-gradient addresses problem of minimizing smooth f over a convex set C,

argmin
w∈C

f(w).

As another example, we often want w to be a probability,

argmin
w≥0, 1>w=1

f(w),

Based on our “set negative values to 0” intuition, we might consider this:
1 Perform an unconstrained gradient descent step.
2 Set negative values to 0 and divide by the sum.

This algorithms does NOT work.

But it can be fixed if we replace Step 2 by “project onto the constraint set”.
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Projected-Gradient

wk+ 1
2 = wk − αk∇f(wk)︸ ︷︷ ︸

gradient step

, wk+1 ∈ argmin
v∈C

‖v − wk+ 1
2 ‖︸ ︷︷ ︸

projection step

.

Feasible Set

x - !f’(x)
f(x)

x
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Projected-Gradient

wk+ 1
2 = wk − αk∇f(wk)︸ ︷︷ ︸

gradient step

, wk+1 ∈ argmin
v∈C

‖v − wk+ 1
2 ‖︸ ︷︷ ︸

projection step

.

Feasible Set

x+

f(x)

x

x - !f’(x)
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Projected-Gradient

We can view the projected-gradient algorithm as having two steps:
1 Perform an unconstrained gradient descent step,

wk+ 1
2 = wk − αk∇f(wk).

2 Compute the projection onto the set C,

wk+1 ∈ argmin
v∈C

‖v − wk+ 1
2 ‖.

Projection is the closest point that satisfies the constraints.

Generalizes “projection onto subspace” from linear algebra.
We’ll also write projection of w onto C as

projC [w] = argmin
v∈C

‖v − w‖,

and for convex C it’s unique.
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Convergence Rate of Projected Gradient

Projected versions have same complexity as unconstrained versions:
Assumption Proj(Grad) Proj(Subgrad) Quantity

Convex O(1/ε) O(1/ε2) f(wt)− f∗ ≤ ε
Strongly-Convex O(log(1/ε)) O(1/ε) f(wt)− f∗ ≤ ε

Nice properties in the smooth case:
With αt < 2/L, guaranteed to decrease objective.
There exist practical step-size strategies as with gradient descent.
For convex f a w∗ is optimal iff it’s a “fixed point” of the update,

w∗ = projC [w
∗ − α∇f(w∗)],

for any step-size α > 0.

There exist accelerated versions and Newton-like versions (later).
Acceleration is an obvious modification, Newton is more complicated.
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Why the Projected Gradient?

We want to optimize f (smooth but possibly non-convex) over some convex set C,

argmin
w∈C

f(w).

Recall that we can view gradient descent as minimizing quadratic approximation

wk+1 ∈ argmin
v

{
f(wk) +∇f(wk)(v − wk) +

1

2αk
‖v − wk‖2

}
,

where we’ve written it with a general step-size αk instead of 1/L.
Solving the convex quadratic argmin gives wk+1 = wk − αk∇f(wk).

We could minimize quadratic approximation to f subject to the constraints,

wk+1 ∈ argmin
v∈C

{
f(wk) +∇f(wk)>(v − wk) +

1

2αk
‖v − wk‖2

}
,
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Why the Projected Gradient?
We write this “minimize quadratic approximation over the set C” iteration as

wk+1 ∈ argmin
v∈C

{
f(wk) +∇f(wk)>(v − wk) +

1

2αk
‖v − wk‖2

}
≡ argmin

v∈C

{
αkf(w

k) + αk∇f(wk)>(v − wk) +
1

2
‖v − wk‖2

}
(multiply by αk)

≡ argmin
v∈C

{
α2
k

2
‖∇f(wk)‖2 + αk∇f(wk)>(v − wk) +

1

2
‖v − wk‖2

}
(± const.)

≡ argmin
v∈C

{
‖(v − wk) + αk∇f(wk)‖2

}
(complete the square)

≡ argmin
v∈C

‖v − (wk − αk∇f(wk))︸ ︷︷ ︸
gradient descent

‖

 ,

which gives the projected-gradient algorithm: wk+1 = projC [w
k − αk∇f(wk)].
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Gradient Mapping

The projected gradient iteration is

wk+1 = projC [w
k − αk∇f(wk)].

We can re-write this iteration as

wk+1 = wk − αg(wk),

where g is called the gradient mapping

g(wk) =
1

α
(wk − wk+1).

If we have no constraints then g(wk) = ∇f(wk) (so we get gradient descent).
Gradient mappings like this are often used in analyzing first-order methods.

Since g(w∗) = 0, we often use ‖g(wk)‖ to monitor convergence.
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Simple Convex Sets

Projected-gradient is only efficient if the projection is cheap.

We say that C is simple if the projection is cheap.

For example, if it costs O(d) then it adds no cost to the algorithm.

For example, if we want w ≥ 0 then projection sets negative values to 0.

Non-negative constraints are “simple”.

Another example is w ≥ 0 and w>1 = 1, the probability simplex.

There are O(d) algorithms to compute this projection (similar to “select” algorithm)
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Simple Convex Sets

Other examples of simple convex sets:

Having upper and lower bounds on the variables, LB ≤ x ≤ UB.

Having a linear equality constraint, a>x = b, or a small number of them.

Having a half-space constraint, a>x ≤ b, or a small number of them.

Having a norm-ball constraint, ‖x‖p ≤ τ , for p = 1, 2,∞ (fixed τ).

Having a norm-cone constraint, ‖x‖p ≤ τ , for p = 1, 2,∞ (variable τ).

It’s easy to minimize smooth functions with these constraints.
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Intersection of Simple Convex Sets: Dykstra’s Algorithm

Often our set C is the intersection of simple convex set,

C ≡ ∩iCi.

For example, we could have a large number linear constraints:

C ≡ {w | aTi w ≤ bi,∀i}.

Dykstra’s algorithm can compute the projection in this case.

On each iteration, it projects a vector onto one of the sets Ci.
Requires O(log(1/ε)) such projections to get within ε.

(This is not the shortest path algorithm of “Dijkstra”.)
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Line-Search for Projected Gradient
There are two ways to do Armijo line-search for the projected gradient:

Backtrack along the line between x+ and x (search interior).
“Backtracking along the feasible direction”, costs 1 projection per iteration.

f(x)
Feasible Set

x+

x1

x2

x

x - !f’(x)

Backtrack by decreasing α and re-projecting (search boundary).
“Backtracking along the projection arc”, costs 1 projection per backtrack.
More expensive but (under weak conditions) we reach boundary in finite time (later).
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Outline

1 Projected Gradient

2 Projected Newton
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Faster Projected-Gradient Methods

Accelerated projected-gradient method has the form

wk+1 = projC [v
k − αk∇f(wk)]

vk+1 = wk + βk(w
k+1 − wk).

We could alternately use the Barzilai-Borwein step-size.

Known as spectral projected-gradient.

The naive Newton-like methods with Hessian approximation Ht,

wk+1 = projC [w
k − αk[Hk]

−1∇f(wk)],

does NOT work.
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Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)



Projected Gradient Projected Newton

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)

x1

x2
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Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x1

x2
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Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x

x1

x2
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Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x

x1

x2

x - !f’(x)
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Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x

x1

x2

x - !f’(x)
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Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x+

x1

x2

x

x - !f’(x)
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Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x1

x2
Q(x)

x

x - !f’(x) x+
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Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x1

x2

xk - !H-1f’(x)
x

x - !f’(x) x+

Q(x)
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Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x1

x2

x

x - !f’(x) x+

Q(x)

xk - !H-1f’(x)
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Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x1

x2

x+

x

x - !f’(x) x+

Q(x)

xk - !H-1f’(x)
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Projected-Newton Method

The naive projected-Newton method,

wk+ 1
2 = wk − αk[Hk]

−1∇f(wk) (Newton-like step)

wk+1 = argmin
v∈C

‖v − wk+ 1
2 ‖ (projection)

which will not work.

The correct projected-Newton method uses

wk+ 1
2 = wk − αk[Hk]

−1∇f(wk) (Newton-like step)

wk+1 = argmin
v∈C

‖v − wk+ 1
2 ‖Hk (projection under Hessian metric)



Projected Gradient Projected Newton

Projected-Newton Method
Projected-gradient minimizes quadratic approximation,

wk+1 = argmin
v∈C

{
f(wk) +∇f(wk)(v − wk) +

1

2αk
‖v − wk‖2

}
.

Newton’s method can be viewed as quadratic approximation (Hk ≈ ∇2f(wk)):

wk+1 = argmin
v∈Rd

{
f(wk) +∇f(wk)(v − wk) +

1

2αk
(v − wk)Hk(v − wk)

}
.

Projected Newton minimizes constrained quadratic approximation:

wk+1 = argmin
v∈C

{
f(wk) +∇f(wk)(v − wk) +

1

2αk
(v − wk)Hk(v − wk)

}
.

Equivalently, we project Newton step under different Hessian-defined norm,

w
k+1

= argmin
v∈C

‖v − (w
k − αtH

−1
k ∇f(w

k
))‖Hk

,

where general “quadratic norm” is ‖z‖A =
√
z>Az for A � 0.
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Discussion of Projected-Newton

Projected-Newton iteration is given by

wk+1 = argmin
y∈C

{
f(wk) +∇f(wk)(v − wk) +

1

2αk
(v − wk)Hk(v − wk)

}
.

But this is expensive even when C is simple.

There are a variety of practical alternatives:
If Hk is diagonal then this is typically simple to solve for simple C.

Two-metric projection methods are special algorithms for upper/lower bounds.
Fix problem of naive method in this case by making Hk “partially diagonal”.

Inexact projected-Newton: solve the above approximately.
Useful when f is very expensive but Hk and C are simple.
“Costly functions with simple constraints”.
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Summary

Projected-gradient allows optimization with simple constraints.

Simple convex sets are those that allow efficient projection.

Projected Newton adds second-order information.

Faster convergence but expensive even for simple sets, need approximation

Next time: how long does it take to find the sparsity pattern?
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