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Motivation: Automatic Brain Tumour Segmentation

@ Task: identifying tumours in multi-modal MRI data.

@ Applications:

e Image-guided surgery.
Radiation target planning.
Quantifying treatment response.
Discovering growth patterns.



Motivation: Automatic Brain Tumour Segmentation

@ Formulate as supervised learning:

o Pixel-level classifier that predicts “tumour” or “non-tumour”.
o Features: convolutions, expected values (in aligned template), and symmetry.
o All at multiple scales.
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Motivation: Automatic Brain Tumour Segmentation

o Logistic regression was among most effective models, with the right features.
@ But if you used all features, it overfit.
o We needed feature selection.

o Classical approach:

e Define some ‘score’: AIC, BIC, cross-validation error, etc.
e Search for features that optimize score:

o Usually NP-hard, so we use greedy: forward selection, backward selection,. ..
e In brain tumour application, even greedy methods were too slow.

@ Just one image gives 8 million training examples.
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Feature Selection

@ General feature selection problem:
o Given our usual X and y, we'll use x; to represent column j:

X=|z1 22 ... 24|, y=|y
o We think some features/columns x; are irrelevant for predicting y.

@ We want to fit a model that uses the “best” set of features.

@ One of most important problems in ML /statistics, but very very messy.
e In 340 we saw how difficult it is to define what “relevant” means.

Subgradient Method
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L1-Regularization

A popular appraoch to feature selection we saw in 340 is L1-regularization:

Fw) = f(w) + Mw]:.

Advantages:
e Fast: can apply to large datasets, just minimizing one function.
e Convex if f is convex.
e Reduces overfitting because it simultaneously regularizes.
@ Disadvantages:
e Prone to false positives, particularly if you pick A by cross-validation.
e Not unique: there may be infinite solutions.

There exist many extensions:
o “Elastic net” adds L2-regularization to make solution unique.
o "Bolasso” applies this on bootstrap samples to reduce false positives.
e Non-convex regularizers reduce false positives but are NP-hard.
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L1-Regularization

Key property of L1-regularization: if A is large, solution w* is sparse:
e w* has many values that are exactly zero.

How setting variables to exactly 0 performs feature selection in linear models:

U = wix] + waxh + w3rh + W4Ty + WsTs.

lfw=[0 0 3 0 —2] then:

gt = 0z} 4 0z + 32k + 0z + (—2)at

= 3x5 — 2w,

Features {1,2,4} are not used in making predictions: we “selected” {3,5}.
e To understand why variables are set to exactly 0, we need the notion of subgradient.
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Sub-Gradients and Sub-Differentials

Differentiable convex functions are always above tangent,

f) > fw)+ V) (v —w),Yw,v.

A vector d is a subgradient of a convex function f at w if

f) > f(w) +d" (v—w),VYo.
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Sub-Gradients and Sub-Differentials

Differentiable convex functions are always above tangent,

fw) > f(w) + Vf(w)T(v —w), Yw,v.

A vector d is a subgradient of a convex function f at w if

flw) > f(w) + dT(v —w), Vo.
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Sub-Gradients and Sub-Differentials Properties

@ We can have a set of subgradients called the sub-differential, J f(w).
o Subdifferential is all the possible “tangent” lines.

@ For convex functions:
o Sub-differential is always non-empty (except some weird degenerate cases).
o Formally, sub-differential guaranteed non-empty on ‘“relative interior”.
o At differentiable w, the only subgradient is the gradient: df(w) = {Vf(w)}.
e At non-differentiable w, there will be a convex set of subgradients.

e We have 0 € 9f(w) iff w is a global minimum.
e This generalizes the condition that V f(w) = 0 for differentiable functions.

@ For non-convex functions:

e "Global” subgradients may not exist for every w.
e Instead, we define subgradients “locally” around current w.
e This is how you define “gradient” of ReLU function in neural networks.
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Example: Sub-Differential of Absolute Function

@ Sub-differential of absolute value function:

1 w>0
dlw| =< -1 w <0
[-1,1] w=0

e “Sign of the variable if it's non-zero, anything in [—1, 1] if it's zero."

f(x)
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Example: Sub-Differential of Absolute Function

@ Sub-differential of absolute value function:

1 w>0
Olw| =< -1 w <0
[—1,1] w=0

e “Sign of the variable if it's non-zero, anything in [—1, 1] if it's zero.”
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Sub-Differential of Common Operations

@ Some convenient rules for calculating subgradients of convex functions:
o Sub-differential of max is all convex combinations of argmax gradients:

Vfi(z) fi(z) > fa(z)
V fa(z) f2(z) > fi(z)
OVfi(z) + (1= 0)Vfa(z) fi(z)= fa()

forall0 <6 <1

Omax{ f1(x), fo(x)} =

o This rules gives sub-differential of absolute value, using that |a| = max{«a, —a}.

e Sub-differential of sum is all sum of subgradients of individual functions:
O(f1(x) + fo(x)) = dy +da forany dy € Ofi(x),da € Of2(x).
o Sub-differential of composition with affine function works like the chain rule:
Of1(Aw) = ATOf1(2), where z= Aw,

and we also have daf(w) = adf(w) for a > 0 (non-negative scaling).
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Subgradient Method

Why does L1-Regularization but not L2-Regularization give Sparsity?

o Consider L2-regularized least squares,
1 A
f(w) = 51Xw =yl + S lw]

@ Element j of the gradient at w; = 0 is given by

Vif(w) = :c;r (Xw —y) +X0.

r

e For wj =0 to be a solution, we need 0 = V; f(w*) or that

0= achr* where r* = Xw* — y for the solution w*

that column j is orthogonal to the final residual.

e This is possible, but it is very unlikely (probability 0 for random data).

@ Increasing A\ doesn't help.
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Subgradient Method

Why does L1-Regularization but not L2-Regularization give Sparsity?

@ Consider L1-regularized least squares,
1 A
Fw) = 1Xw =) + 5wl
@ Element j of the subdifferential at w; = 0 is given by
0 f(w) = x]T (Xw—y)+A[—1,1].
~— ~——
T Olw;|

@ For w; = 0 to be a solution, we need 0 € 0; f(w*) or that

0e x;rr* + A[-1,1] or equivalently
—$JT7°* € \N-1,1] or equivalently
EIESEPY

that column j is “close to" orthogonal to the final residual.
o So features j that have little to do with y will often lead to w; = 0.
e Increasing A\ makes this more likely to happen.
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Solving L1-Regularization Problems

@ How can we minimize non-smooth L1-regularized objectives?

1
argmin _ || Xw — ylI> + Allwllr-
weERC

Formulate as a quadratic program?
o O(d?) or worse.

Make a smooth approximation to the L1-norm?
o Destroys sparsity (we'll again just have one subgradient at zero).

Use a subgradient method?
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Subgradient Method

@ The basic subgradient method:

k+1 _  k
w =W — oGk,

for any g € Of(w").
@ This can increase the objective even for small ay.

e Though for convex f the distance to solutions decreases:
o ||w*tt —w*| < ||jw* —w*|| for small enough ay,.
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Subgradient Method

@ The basic subgradient method:

k+1 _  k
w =W — oGk,

for any g € Of(w").
@ This can increase the objective even for small ay.

e Though for convex f the distance to solutions decreases:
o ||w*tt —w*| < ||jw* —w*|| for small enough ay,.
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Subgradient Method

@ The basic subgradient method:

k+1 k
w" = w" — aggr,

for any g € Of(w").

@ This can increase the objective even for small «ay.
e Though for convex f the distance to solutions decreases:
o |lwF T —w*|| < ||w* —w*| for small enough au,.

@ The subgradients g; don't necessarily converge to 0 as we approach a w*.
o If we are at a solution w*, we might move away from it.
e So as in stochastic gradient, we need decreasing step-sizes like

oar =O0(1/k), or ap=001/Vk),

in order to converge.
o This destroys performance.
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Convergence Rate of Subgradient Methods

@ Subgradient methods are slower than gradient descent:
Assumption Gradient Subgradient Quantity
Convex O(1/e) O(1/€%) flwh) — f* <e
Strongly-Convex  O(log(1/¢)) O(1/e) flwh) — f* <e

@ Other subgradient-based methods are not faster.

o There are matching lower bounds in dimension-independent setting.
e Includes cutting plane and bundle methods.
@ These tend to be faster in practice, though cost grows with iteration number.

@ Also, acceleration doesn't improve subgradient rates.
o We do NOT go from O(1/¢2) to O(1/¢) by adding momentum.

@ Smoothing f and applying gradient descent doesn't help.
e May need to have L = 1/¢ in a sufficiently-accurate smooth approximation.
o However, if you smooth and accelerate you can close the gaps a bit (bonus).
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Summary

L1-regularization: feature selection as convex optimization.
Subgradients: generalize gradients for non-smooth convex functions.

Subgradient method: optimal but very-slow general non-smooth method.

Next time: solving problems with “simple” regularizers in O(log(1/€)).

Subgradient Method
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L1-Regularization vs. L2-Regularization

@ Another view on sparsity of L2- vs. L1-regularization using our constraint trick:

argmin f(w) + A|w|l, <&  argmin f(w) + A7 with 7 > [Jw]|,.
weR weR?, TR

. .| @Unconstrained Solution - ... | @Unconstrained Solution
.| © L2-Regularized Solution/.| |. 3 E <] © L1-Regularized Solution |.|

@ Notice that L2-regularization has a rotataional invariance.
e This actually makes it more sensitive to irrelevant features.
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Does Smoothing Help?

@ Nesterov's smoothing paper gives a way to take a non-smooth convex f and
number ¢, then it constructs a new function f such that

fw) < fe(w) < f(w) +

so that minimizing fc(w) gets us within € of the optimal solution.
o And further that f.(w) is differentiable with L = O(1/e).

o If we apply gradient descent to the smooth function, we get

t= O/ = 0@/ ,
—— ——

smoothed problem original problem

for convex functions (same speed as subgradient).
@ For strongly-convex functions we get

t = O(Llog(1/€)) = O((1/€) log(1/¢)),
which is actually worse than the best subgradient methods by a log factor.
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Does Smoothing Help?

@ Nesterov's smoothing paper gives a way to take a non-smooth convex f and
number ¢, then it constructs a new function f. such that
fw) < fe(w) < f(w) + ¢,

so that minimizing f.(w) gets us within € of the optimal solution.
o And further that f.(w) is differentiable with L = O(1/e).

o If we apply accelerated gradient descent to the smooth function, we get

t= O(VLJe) = 0(1/e),
which is faster than subgradient methods.

(same speed as unaccelerated gradient descent)
@ For strongly-convex functions the accelerated method gets

t =0V Llog(1/e)) = O((1/+/€) log(1/e)),

which is faster than subgradient methods (but not linear converence).
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What is the best subgradient?

@ We considered the deterministic subgradient method,

t+1

ot =2t — ayg;, where gy € Of(21),

under any choice of subgradient.

@ But what is the "best” subgradient to use?
o Convex functions have directional derivatives everywhere.
e Direction —g; that minimizes directional derivative is minimum-norm subgradient,

g' = argmin [|g||
geDf (xt)

e This is the steepest descent direction for non-smooth convex optimization problems.

You can compute this for L1-regularization, but not many other problems.
Used in best deterministic L1-regularization methods, combined with Newton.
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