
L1-Regularization and Sub-Gradients Subgradient Method

First-Order Optimization Algorithms for Machine Learning
Subgradient Method

Mark Schmidt

University of British Columbia

Summer 2020

L1-Regularization and Sub-Gradients Subgradient Method

Motivation: Automatic Brain Tumour Segmentation

Task: identifying tumours in multi-modal MRI data.

Applications:

Image-guided surgery.
Radiation target planning.
Quantifying treatment response.
Discovering growth patterns.

L1-Regularization and Sub-Gradients Subgradient Method

Motivation: Automatic Brain Tumour Segmentation

Formulate as supervised learning:
Pixel-level classifier that predicts “tumour” or “non-tumour”.
Features: convolutions, expected values (in aligned template), and symmetry.

All at multiple scales.

L1-Regularization and Sub-Gradients Subgradient Method

Motivation: Automatic Brain Tumour Segmentation

Logistic regression was among most effective models, with the right features.

But if you used all features, it overfit.

We needed feature selection.

Classical approach:

Define some ‘score’: AIC, BIC, cross-validation error, etc.
Search for features that optimize score:

Usually NP-hard, so we use greedy: forward selection, backward selection,. . .

In brain tumour application, even greedy methods were too slow.

Just one image gives 8 million training examples.

L1-Regularization and Sub-Gradients Subgradient Method

Feature Selection

General feature selection problem:

Given our usual X and y, we’ll use xj to represent column j:

X =

x1 x2 . . . xd

 , y =

y
 .

We think some features/columns xj are irrelevant for predicting y.

We want to fit a model that uses the “best” set of features.

One of most important problems in ML/statistics, but very very messy.

In 340 we saw how difficult it is to define what “relevant” means.

L1-Regularization and Sub-Gradients Subgradient Method

L1-Regularization

A popular appraoch to feature selection we saw in 340 is L1-regularization:

F (w) = f(w) + λ‖w‖1.

Advantages:
Fast: can apply to large datasets, just minimizing one function.

Convex if f is convex.

Reduces overfitting because it simultaneously regularizes.

Disadvantages:
Prone to false positives, particularly if you pick λ by cross-validation.
Not unique: there may be infinite solutions.

There exist many extensions:
“Elastic net” adds L2-regularization to make solution unique.
“Bolasso” applies this on bootstrap samples to reduce false positives.
Non-convex regularizers reduce false positives but are NP-hard.

L1-Regularization and Sub-Gradients Subgradient Method

L1-Regularization

Key property of L1-regularization: if λ is large, solution w∗ is sparse:

w∗ has many values that are exactly zero.

How setting variables to exactly 0 performs feature selection in linear models:

ŷi = w1x
i
1 + w2x

i
2 + w3x

i
3 + w4x

i
4 + w5x

i
5.

If w =
[
0 0 3 0 −2

]>
then:

ŷi = 0xi1 + 0xi2 + 3xi3 + 0xi4 + (−2)xi5
= 3xi3 − 2xi5.

Features {1, 2, 4} are not used in making predictions: we “selected” {3, 5}.
To understand why variables are set to exactly 0, we need the notion of subgradient.

L1-Regularization and Sub-Gradients Subgradient Method

Sub-Gradients and Sub-Differentials
Differentiable convex functions are always above tangent,

f(v) ≥ f(w) +∇f(w)>(v − w), ∀w, v.

A vector d is a subgradient of a convex function f at w if

f(v) ≥ f(w) + d>(v − w),∀v.

f(x)

f(x) + ∇f(x)T(y-x)

L1-Regularization and Sub-Gradients Subgradient Method

Sub-Gradients and Sub-Differentials
Differentiable convex functions are always above tangent,

f(v) ≥ f(w) +∇f(w)>(v − w), ∀w, v.

A vector d is a subgradient of a convex function f at w if

f(v) ≥ f(w) + d>(v − w),∀v.

f(x)

L1-Regularization and Sub-Gradients Subgradient Method

Sub-Gradients and Sub-Differentials Properties
We can have a set of subgradients called the sub-differential, ∂f(w).

Subdifferential is all the possible “tangent” lines.

For convex functions:
Sub-differential is always non-empty (except some weird degenerate cases).

Formally, sub-differential guaranteed non-empty on “relative interior”.

At differentiable w, the only subgradient is the gradient: ∂f(w) = {∇f(w)}.
At non-differentiable w, there will be a convex set of subgradients.

We have 0 ∈ ∂f(w) iff w is a global minimum.
This generalizes the condition that ∇f(w) = 0 for differentiable functions.

For non-convex functions:
“Global” subgradients may not exist for every w.
Instead, we define subgradients “locally” around current w.

This is how you define “gradient” of ReLU function in neural networks.

L1-Regularization and Sub-Gradients Subgradient Method

Example: Sub-Differential of Absolute Function

Sub-differential of absolute value function:

∂|w| =

1 w > 0

−1 w < 0

[−1, 1] w = 0

“Sign of the variable if it’s non-zero, anything in [−1, 1] if it’s zero.”

f(x)

L1-Regularization and Sub-Gradients Subgradient Method

Example: Sub-Differential of Absolute Function

Sub-differential of absolute value function:

∂|w| =

1 w > 0

−1 w < 0

[−1, 1] w = 0

“Sign of the variable if it’s non-zero, anything in [−1, 1] if it’s zero.”

f(0)

L1-Regularization and Sub-Gradients Subgradient Method

Sub-Differential of Common Operations
Some convenient rules for calculating subgradients of convex functions:

Sub-differential of max is all convex combinations of argmax gradients:

∂max{f1(x), f2(x)} =

∇f1(x) f1(x) > f2(x)

∇f2(x) f2(x) > f1(x)

θ∇f1(x) + (1− θ)∇f2(x)︸ ︷︷ ︸
for all 0 ≤ θ ≤ 1

f1(x) = f2(x)

This rules gives sub-differential of absolute value, using that |α| = max{α,−α}.

Sub-differential of sum is all sum of subgradients of individual functions:

∂(f1(x) + f2(x)) = d1 + d2 for any d1 ∈ ∂f1(x), d2 ∈ ∂f2(x).

Sub-differential of composition with affine function works like the chain rule:

∂f1(Aw) = A>∂f1(z), where z = Aw,

and we also have ∂αf(w) = α∂f(w) for α > 0 (non-negative scaling).

L1-Regularization and Sub-Gradients Subgradient Method

Why does L1-Regularization but not L2-Regularization give Sparsity?

Consider L2-regularized least squares,

f(w) =
1

2
‖Xw − y‖2 + λ

2
‖w‖2.

Element j of the gradient at wj = 0 is given by

∇jf(w) = x>j (Xw − y)︸ ︷︷ ︸
r

+λ0.

For wj = 0 to be a solution, we need 0 = ∇jf(w∗) or that

0 = x>j r
∗ where r∗ = Xw∗ − y for the solution w∗

that column j is orthogonal to the final residual.
This is possible, but it is very unlikely (probability 0 for random data).
Increasing λ doesn’t help.

L1-Regularization and Sub-Gradients Subgradient Method

Why does L1-Regularization but not L2-Regularization give Sparsity?
Consider L1-regularized least squares,

f(w) =
1

2
‖Xw − y‖2 + λ

2
‖w‖1.

Element j of the subdifferential at wj = 0 is given by

∂jf(w) ≡ x>j (Xw − y)︸ ︷︷ ︸
r

+λ [−1, 1]︸ ︷︷ ︸
∂|wj |

.

For wj = 0 to be a solution, we need 0 ∈ ∂jf(w∗) or that

0 ∈ xTj r∗ + λ[−1, 1] or equivalently

−xTj r∗ ∈ λ[−1, 1] or equivalently

|x>j r∗|≤ λ,
that column j is “close to” orthogonal to the final residual.

So features j that have little to do with y will often lead to wj = 0.
Increasing λ makes this more likely to happen.

L1-Regularization and Sub-Gradients Subgradient Method

Outline

1 L1-Regularization and Sub-Gradients

2 Subgradient Method

L1-Regularization and Sub-Gradients Subgradient Method

Solving L1-Regularization Problems

How can we minimize non-smooth L1-regularized objectives?

argmin
w∈Rd

1

2
‖Xw − y‖2 + λ‖w‖1.

Formulate as a quadratic program?

O(d2) or worse.

Make a smooth approximation to the L1-norm?

Destroys sparsity (we’ll again just have one subgradient at zero).

Use a subgradient method?

L1-Regularization and Sub-Gradients Subgradient Method

Subgradient Method
The basic subgradient method:

wk+1 = wk − αkgk,
for any gk ∈ ∂f(wk).

This can increase the objective even for small αk.
Though for convex f the distance to solutions decreases:

‖wk+1 − w∗‖ < ‖wk − w∗‖ for small enough αk.

L1-Regularization and Sub-Gradients Subgradient Method

Subgradient Method
The basic subgradient method:

wk+1 = wk − αkgk,
for any gk ∈ ∂f(wk).

This can increase the objective even for small αk.
Though for convex f the distance to solutions decreases:

‖wk+1 − w∗‖ < ‖wk − w∗‖ for small enough αk.

L1-Regularization and Sub-Gradients Subgradient Method

Subgradient Method

The basic subgradient method:

wk+1 = wk − αkgk,

for any gk ∈ ∂f(wk).

This can increase the objective even for small αk.
Though for convex f the distance to solutions decreases:

‖wk+1 − w∗‖ < ‖wk − w∗‖ for small enough αk.

The subgradients gk don’t necessarily converge to 0 as we approach a w∗.
If we are at a solution w∗, we might move away from it.
So as in stochastic gradient, we need decreasing step-sizes like

αk = O(1/k), or αk = O(1/
√
k),

in order to converge.
This destroys performance.

L1-Regularization and Sub-Gradients Subgradient Method

Convergence Rate of Subgradient Methods
Subgradient methods are slower than gradient descent:

Assumption Gradient Subgradient Quantity

Convex O(1/ε) O(1/ε2) f(wt)− f∗ ≤ ε
Strongly-Convex O(log(1/ε)) O(1/ε) f(wt)− f∗ ≤ ε

Other subgradient-based methods are not faster.
There are matching lower bounds in dimension-independent setting.
Includes cutting plane and bundle methods.

These tend to be faster in practice, though cost grows with iteration number.

Also, acceleration doesn’t improve subgradient rates.
We do NOT go from O(1/ε2) to O(1/ε) by adding momentum.

Smoothing f and applying gradient descent doesn’t help.
May need to have L = 1/ε in a sufficiently-accurate smooth approximation.
However, if you smooth and accelerate you can close the gaps a bit (bonus).

L1-Regularization and Sub-Gradients Subgradient Method

Summary

L1-regularization: feature selection as convex optimization.

Subgradients: generalize gradients for non-smooth convex functions.

Subgradient method: optimal but very-slow general non-smooth method.

Next time: solving problems with “simple” regularizers in O(log(1/ε)).

L1-Regularization and Sub-Gradients Subgradient Method

L1-Regularization vs. L2-Regularization

Another view on sparsity of L2- vs. L1-regularization using our constraint trick:

argmin
w∈Rd

f(w) + λ‖w‖p ⇔ argmin
w∈Rd,τ∈R

f(w) + λτ with τ ≥ ‖w‖p.

Notice that L2-regularization has a rotataional invariance.
This actually makes it more sensitive to irrelevant features.

L1-Regularization and Sub-Gradients Subgradient Method

Does Smoothing Help?
Nesterov’s smoothing paper gives a way to take a non-smooth convex f and
number ε, then it constructs a new function fε such that

f(w) ≤ fε(w) ≤ f(w) + ε,

so that minimizing fε(w) gets us within ε of the optimal solution.
And further that fε(w) is differentiable with L = O(1/ε).

If we apply gradient descent to the smooth function, we get

t = O(L/ε)︸ ︷︷ ︸
smoothed problem

= O(1/ε2)︸ ︷︷ ︸
original problem

,

for convex functions (same speed as subgradient).
For strongly-convex functions we get

t = O(L log(1/ε)) = O((1/ε) log(1/ε)),

which is actually worse than the best subgradient methods by a log factor.

L1-Regularization and Sub-Gradients Subgradient Method

Does Smoothing Help?
Nesterov’s smoothing paper gives a way to take a non-smooth convex f and
number ε, then it constructs a new function fε such that

f(w) ≤ fε(w) ≤ f(w) + ε,

so that minimizing fε(w) gets us within ε of the optimal solution.
And further that fε(w) is differentiable with L = O(1/ε).

If we apply accelerated gradient descent to the smooth function, we get

t = O(
√
L/ε) = O(1/ε),

which is faster than subgradient methods.
(same speed as unaccelerated gradient descent)
For strongly-convex functions the accelerated method gets

t = O(
√
L log(1/ε)) = O((1/

√
ε) log(1/ε)),

which is faster than subgradient methods (but not linear converence).

L1-Regularization and Sub-Gradients Subgradient Method

What is the best subgradient?

We considered the deterministic subgradient method,

xt+1 = xt − αtgt, where gt ∈ ∂f(xt),

under any choice of subgradient.

But what is the “best” subgradient to use?
Convex functions have directional derivatives everywhere.
Direction −gt that minimizes directional derivative is minimum-norm subgradient,

gt = argmin
g∈∂f(xt)

||g||

This is the steepest descent direction for non-smooth convex optimization problems.

You can compute this for L1-regularization, but not many other problems.
Used in best deterministic L1-regularization methods, combined with Newton.

	L1-Regularization and Sub-Gradients
	Subgradient Method

