
Linear Convergence of Gradient Descent Newton’s Method

First-Order Optimization Algorithms for Machine Learning
Linear and Superlinear Convergence

Mark Schmidt

University of British Columbia

Summer 2020

Linear Convergence of Gradient Descent Newton’s Method

Last Time: Convergence Rate of Gradient Descent

We discussed the iteration complexity of an algorithm for a problem class:

“How many iterations t before we guarantee an accuracy ε”?

We showed that gradient descent requires t = O(1/ε) iterations.

For functions that are bounded below and have a Lipschitz-continuous gradient.

We discussed different types of rates of convergence:

Sublinear rates like error being O(1/t) (need O(1/ε) iterations).
Linear rates like error being O(ρt) (need O(log(1/ε)) iterations).

Superlinear rates like error being O(ρ2
t

) (need O(log log(1/ε)) iterations).

Linear Convergence of Gradient Descent Newton’s Method

Polyak- Lojasiewicz (PL) Inequality

For least squares, we have linear cost but we only showed sublinear rate.

For many “nice” functions f , gradient descent actually has a linear rate.

For example, for functions satisfying the Polyak- Lojasiewicz (PL) inequality,

1

2
‖∇f(w)‖2 ≥ µ(f(w)− f∗),

for all w and some µ > 0.

“Gradient grows as a quadratic function as we increase f”.

Linear Convergence of Gradient Descent Newton’s Method

Linear Convergence under the PL Inequality

Recall our guaranteed progress bound

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2.

Under the PL inequality we have −‖∇f(wk)‖2 ≤ −2µ(f(wk)− f∗), so

f(wk+1) ≤ f(wk)− µ

L
(f(wk)− f∗).

Let’s subtract f∗ from both sides,

f(wk+1)−f∗ ≤ f(wk)−f∗ − µ

L
(f(wk)− f∗),

and factorizing the right side gives

f(wk+1)− f∗ ≤
(

1− µ

L

)
(f(wk)− f∗).

Linear Convergence of Gradient Descent Newton’s Method

Linear Convergence under the PL Inequality

Applying this recursively:

f(wk)− f∗≤
(

1− µ

L

)
[f(wk−1)− f(w∗)]

≤
(

1− µ

L

) [(
1− µ

L

)
[f(wk−2)− f∗]

]
=
(

1− µ

L

)2
[f(wk−2)− f∗]

≤
(

1− µ

L

)3
[f(wk−3)− f∗]

≤
(

1− µ

L

)k
[f(w0)− f∗]

We’ll always have 0 < µ ≤ L so we have (1− µ/L) < 1.

So PL implies a linear convergence rate: f(wk)− f∗ = O(ρk) for ρ < 1.

Linear Convergence of Gradient Descent Newton’s Method

Linear Convergence under the PL Inequality

We’ve shown that

f(wk)− f∗ ≤
(

1− µ

L

)k
[f(w0)− f∗]

By using the inequality that

(1− γ) ≤ exp(−γ),

we have that
f(wk)− f∗ ≤ exp

(
−k µ

L

)
[f(w0)− f∗],

which is why linear convergence is sometimes called “exponential convergence”.

We’ll have f(wt)− f∗ ≤ ε for any t where

t ≥ L

µ
log((f(w0)− f∗)/ε) = O(log(1/ε)).

Linear Convergence of Gradient Descent Newton’s Method

Discussion of Linear Convergence under the PL Inequality

PL is satisfied for many standard convex models like least squares (bonus).

So cost of least squares is O(nd log(1/ε)).

PL is also satisfied for some non-convex functions like w2 + 3 sin2(w).

It’s satisfied for PCA on a certain “Riemann manifold”.
But it’s not satisfied for many models, like neural networks.

The PL constant µ might be terrible.

For least squares µ is the smallest non-zero eigenvalue of the Hessian

.

It may be hard to show that a function satisfies PL.

But regularizing a convex function gives a PL function with non-trivial µ...

Linear Convergence of Gradient Descent Newton’s Method

Strong Convexity

We say that a function f is strongly convex if the function

f(w)− µ

2
‖w‖2,

is a convex function for some µ > 0.
“If you ‘un-regularize’ by µ then it’s still convex.”

For C2 functions this is equivalent to assuming that

∇2f(w) � µI,

that the eigenvalues of the Hessian are at least µ everywhere.

Some nice properties of strongly-convex functions (see bonus):
A unique solution exists.
C1 strongly-convex functions satisfy the PL inequality.
If g(w) = f(Aw) for strongly-convex f and matrix A, then g is PL (least squares).

Linear Convergence of Gradient Descent Newton’s Method

Strong Convexity Implies PL Inequality

As before, from Taylor’s theorem we have for C2 functions that

f(v) = f(w) +∇f(w)>(v − w) +
1

2
(v − w)>∇2f(u)(v − w).

By strong-convexity, d>∇2f(u)d ≥ µ‖d‖2 for any d and u.

f(v) ≥ f(w) +∇f(w)>(v − w) +
µ

2
‖v − w‖2

Treating right side as function of v, we get a quadratic lower bound on f .

f(x)

f(x) + ∇f(x)T(y-x)

f(x) + ∇f(x)T(y-x) + (μ/2)||y-x||2

Linear Convergence of Gradient Descent Newton’s Method

Strong Convexity Implies PL Inequality

As before, from Taylor’s theorem we have for C2 functions that

f(v) = f(w) +∇f(w)>(v − w) +
1

2
(v − w)>∇2f(u)(v − w).

By strong-convexity, d>∇2f(u)d ≥ µ‖d‖2 for any d and u.

f(v) ≥ f(w) +∇f(w)>(v − w) +
µ

2
‖v − w‖2.

Treating right side as function of v, we get a quadratic lower bound on f .

Minimize both sides in terms of v gives

f∗ ≥ f(w)− 1

2µ
‖∇f(w)‖2,

which is the PL inequality (bonus slides show for C1 functions).

Linear Convergence of Gradient Descent Newton’s Method

Combining Lipschitz Continuity and Strong Convexity

Lipschitz continuity of gradient gives guaranteed progress.

Strong convexity of functions gives maximum sub-optimality.

f(x) Guaranteed
Progress

Maximum
Suboptimality

Progress on each iteration will be at least a fixed fraction of the sub-optimality.

Linear Convergence of Gradient Descent Newton’s Method

Effect of Regularization on Convergence Rate

We said that f is strongly convex if the function

f(w)− µ

2
‖w‖2,

is a convex function for some µ > 0.
For a C2 univariate function, equivalent to f ′′(w) ≥ µ.

If we have a convex loss f , adding L2-regularization makes it strongly-convex,

f(w) +
λ

2
‖w‖2,

with µ being at least λ.

So adding L2-regularization can improve rate from sublinear to linear.
Go from exponential O(1/ε) to polynomial O(log(1/ε)) iterations.
And guarantees a unique solution.

Linear Convergence of Gradient Descent Newton’s Method

Effect of Regularization on Convergence Rate

Our convergence rate under PL was

f(wk)− f∗ ≤
(

1− µ

L

)k
︸ ︷︷ ︸

ρk

[f(w0)− f∗].

For L2-regularized least squares we have

L

µ
=

max{eig(X>X)}+ λ

min{eig(X>X)}+ λ
.

So as λ gets larger ρ gets closer to 0 and we converge faster.

The number L
µ is called the condition number of f .

For least squares, it’s the “matrix condition number” of ∇2f(w).

Linear Convergence of Gradient Descent Newton’s Method

Outline

1 Linear Convergence of Gradient Descent

2 Newton’s Method

Linear Convergence of Gradient Descent Newton’s Method

Last Time: Iteration Complexity

We discussed the iteration complexity of an algorithm for a problem class:

“How many iterations t before we guarantee an accuracy ε”?

Iteration complexity of gradient descent when ∇f is Lipschitz continuous:

Assumption Iteration Complexity Quantity

Non-Convex t = O(1/ε) mink=0,2,...,t−1 ‖∇f(wk)‖2 ≤ ε
Convex t = O(1/ε) f(wt)− f∗ ≤ ε
Strongly-Convex t = O(log(1/ε)) f(wt)− f∗ ≤ ε

Adding L2-regularization to a convex function gives a strongly-convex function.

So L2-regularization can make gradient descent converge much faster.

Can we go faster?

Linear Convergence of Gradient Descent Newton’s Method

Nesterov Acceleration (Strongly-Convex Case)

We showed that gradient descent for strongly-convex functions has

f(wk)− f∗ ≤
(

1− µ

L

)k
[f(w0)− f∗].

Applying accelerated gradient methods to strongly-convex gives

f(wk)− f∗ ≤
(

1−
√
µ

L

)k
[f(w0)− f∗],

which is a faster linear convergence rate
(αk = 1/L, βk = (

√
L−√µ)/(

√
L+
√
µ)).

This nearly acheives optimal possible dimension-independent rate.
For strictly-convex quadratics, conjugate gradient exactly achieves optimum possible.
There exist “restart” methods that converge slower but that don’t need to know µ.

Linear Convergence of Gradient Descent Newton’s Method

Newton’s Method
Newton’s method is a second-order strategy.

(also called IRLS for functions of the form f(Ax))

Modern form uses the update

wk+1 = wk − αkdk,
where dk is a solution to the system

∇2f(wk)dk = ∇f(wk).
(Assumes ∇2f(wk) � 0)

Equivalent to minimizing the quadratic approximation:

f(v) ≈ f(wk) +∇f(wk)>(v − wk) +
1

2αk
(v − wk)∇2f(wk)(v − wk).

To guarantee convergence, we can set the αk using an Armijo condition:

f(wk+1) ≤ f(wk) + γαk∇f(wk)>dk.

From Taylor expansion, has a natural step length of αk = 1 if y and xk are close.
(αk = 1 is always accepted when close to a minimizer)

Linear Convergence of Gradient Descent Newton’s Method

Newton’s Method

f(x)

Linear Convergence of Gradient Descent Newton’s Method

Newton’s Method

f(x)

x

Linear Convergence of Gradient Descent Newton’s Method

Newton’s Method

f(x)

x - !f’(x)

x

Linear Convergence of Gradient Descent Newton’s Method

Newton’s Method

Q(x)
f(x)

x

x - !f’(x)

Linear Convergence of Gradient Descent Newton’s Method

Newton’s Method

f(x)

xk - !H-1f’(x)

x

x - !f’(x)
Q(x)

Linear Convergence of Gradient Descent Newton’s Method

Convergence Rate of Newton’s Method

If µI � ∇2f(w) � LI and ∇2f(x) is Lipschitz-continuous,
then close to w∗ Newton’s method has local superlinear convergence:

f(wk+1)− f(w∗) ≤ ρk[f(wk)− f(w∗)],

with limk→∞ ρk = 0.

Converges very fast, use it if you can!

But Newton’s method is expensive if dimension d is large:

Requires solving ∇2f(wk)dk = ∇f(wk).

Linear Convergence of Gradient Descent Newton’s Method

Practical Approximations to Newton’s Method

Practical Newton-like methods (that can be applied to large-scale problems):
Diagonal approximation:

Approximate Hessian by a diagonal matrix D (cheap to store/invert).
A common choice is dii = ∇2

iif(w
k).

This sometimes helps, often doesn’t.

Limited-memory quasi-Newton approximation:

Approximates Hessian by a diagonal plus low-rank approximation Bk,

Bk = D + UV k,

which supports fast multiplication/inversion.
Based on “quasi-Newton” equations which use differences in gradient values.

(∇f(wk)−∇f(wk−1)) = B>(wk − wk−1).

A common choice is L-BFGS.

Linear Convergence of Gradient Descent Newton’s Method

Practical Approximations to Newton’s Method

Practical Newton-like methods (that can be applied to large-scale problems):
Barzilai-Borwein approximation:

Approximates Hessian by the identity matrix (as in gradient descent).
But chooses step-size based on least squares solution to quasi-Newton equations.

αk+1 = −αk
vk∇f(wk)
‖vk‖2 , where vk = ∇f(wk)−∇f(wk−1).

Works better than it deserves to (findMin).
Achieves superlinear convergence for strongly-convex quadratics for d = 2.
We don’t understand why it works so well for d > 2 (challenging math problem).
For non-quadratic problems, often combined with non-monotonic Armijo line-search.

(Allows function to increase on some steps.)

Linear Convergence of Gradient Descent Newton’s Method

Practical Approximations to Newton’s Method

Practical Newton-like methods (that can be applied to large-scale problems):
Hessian-free Newton:

Uses conjugate gradient to approximately solve Newton system
(∇2f(wk)d = ∇f(wk)).
Requires Hessian-vector products, but these cost same as gradient.
If you’re lazy, you can numerically approximate them using

∇2f(wk)d ≈ ∇f(w
k + δd)−∇f(wk)

δ
.

If f is analytic, can compute exactly by evaluating gradient with complex numbers.
(look up “complex-step derivative”)

You can also use forward-mode automatic differentiation to get Hessian-vector
products.

A related appraoch to the above is non-linear conjugate gradient.

Linear Convergence of Gradient Descent Newton’s Method

Numerical Comparison with minFunc

In my experience L-BFGS performs best for many problems.

But for some problems Hessian-free Newton or non-linear CG are better.

Barzilai-Borwein is a great choice if you have to implement from scratch.

Result after 25 evaluations of limited-memory solvers on 2D rosenbrock:
—————————————
x1 = 0.0000, x2 = 0.0000 (starting point)
x1 = 1.0000, x2 = 1.0000 (optimal solution)
—————————————
x1 = 0.3654, x2 = 0.1230 (minFunc with gradient descent)
x1 = 0.8756, x2 = 0.7661 (minFunc with Barzilai-Borwein)
x1 = 0.5840, x2 = 0.3169 (minFunc with Hessian-free Newton)
x1 = 0.7478, x2 = 0.5559 (minFunc with preconditioned Hessian-free Newton)
x1 = 1.0010, x2 = 1.0020 (minFunc with non-linear conjugate gradient)
x1 = 1.0000, x2 = 1.0000 (minFunc with limited-memory BFGS - default)

Linear Convergence of Gradient Descent Newton’s Method

Superlinear Convergence in Practice?

You get local superlinear convergence if:

Gradient is Lipschitz-continuous and f is strongly-convex.
Function is in C2 and Hessian is Lipschitz continuous.
Oracle is second-order and method asymptotically uses Newton’s direction.

But the practical Newton-like methods don’t achieve this:

Diagonal scaling, Barzilai-Borwein, and L-BFGS don’t converge to Newton.
Hessian-free uses conjugate gradient which isn’t superlinear in high-dimensions.
These methods usually outperform Nesterov’s accelerated method in practice.

Full quasi-Newton methods achieve this, but require Ω(d2) memory/time.

Linear Convergence of Gradient Descent Newton’s Method

Cubic Regularization of Newton’s Method

Gradient descent (αk = 1/L) uses upper-bound on second-order term,

wk+1 ∈ argmin
w

{
f(w) +∇f(w)T (w − wk) +

L

2
‖w − wk‖2

}
.

Cubic regularization of Newton’s method upper bounds third-order term,

wk+1 ∈ argmin
w

{
f(w) +∇f(w)T (w − wk) +

1

2
(w − wk)∇2f(w)(w − wk) +

M

6
‖w − wk‖3

}
.

An alternative to line-search (or “trust-region”) methods.
Leads to global (non-asymptotic) convergence rates.
Guarantees decrease if M is Lipschitz constant of Hessian.

Though this might gives steps that are smaller than needed.

Can be combined with acceleration to give faster rates than Newton.
Requires iterative solution to compute wk+1.

Recent work shows “quartic regularization” is feasible for convex functions.
Uses iterative solver for wk+1 with tensor-vector products.

Linear Convergence of Gradient Descent Newton’s Method

Summary

Polyak- Lojasiewicz inequality leads to linear convergence of gradient descent.

Only needs O(log(1/ε)) iterations to get within ε of global optimum.

Strongly-convex differentiable functions functions satisfy PL-inequality.

Adding L2-regularization makes gradient descent go faster.

Newton’s method uses second-derivatives to converge faster.

Expensive in pure form, but practical approximations exist.

Next time: why does L1-regularization set variables to 0?

Linear Convergence of Gradient Descent Newton’s Method

Why is µ ≤ L?

The descent lemma for functions with L-Lipschitz ∇f is that

f(v) ≤ f(w) +∇f(w)>(v − w) +
L

2
‖v − w‖2.

Minimizing both sides in terms of v (by taking the gradient and setting to 0 and
observing that it’s convex) gives

f∗ ≤ f(w)− 1

2L
‖∇f(w)‖2.

So with PL and Lipschitz we have

1

2µ
‖∇f(w)‖2 ≥ f(w)− f∗ ≥ 1

2L
‖∇f(w)‖2,

which implies µ ≤ L.

Linear Convergence of Gradient Descent Newton’s Method

C1 Strongly-Convex Functions satisfy PL

If g(x) = f(x)− µ
2‖x‖

2 is convex then from C1 definition of convexity

g(y) ≥ g(x) +∇g(x)>(y − x)

or that

f(y)− µ

2
‖y‖2 ≥ f(x)− µ

2
‖x‖2 + (∇f(x)− µx)>(y − x),

which gives

f(y) ≥ f(x) +∇f(x)>(y − x) +
µ

2
‖y‖2 − µx>y +

µ

2
‖x‖2

= f(x) +∇f(x)>(y − x) +
µ

2
‖y − x‖2, (complete square)

the inequality we used to show C2 strongly-convex function f satisfies PL.

Linear Convergence of Gradient Descent Newton’s Method

Linear Convergence without Strong-Convexity
The least squares problem is convex but not strongly convex.

We could add a regularizer to make it strongly-convex.
But if we really want the MLE, are we stuck with sub-linear rates?

Many conditions give linear rates that are weaker than strong-convexity:
1963: Polyak- Lojasiewicz (PL).
1993: Error bounds.
2000: Quadratic growth.
2013-2015: essential strong-convexity, weak strong convexity, restricted secant
inequality, restricted strong convexity, optimal strong convexity, semi-strong
convexity.

Least squares satisfies all of the above.

Do we need to study any of the newer ones?
No! All of the above imply PL except for QG.
But with only QG gradient descent may not find optimal solution.

Linear Convergence of Gradient Descent Newton’s Method

PL Inequality for Least Squares

Least squares can be written as f(x) = g(Ax) for a σ-strongly-convex g and matrix A, we’ll show that the PL inequality is satisfied for
this type of function.

The function is minimized at some f(y∗) with y∗ = Ax for some x, let’s use X∗ = {x|Ax = y∗} as the set of minimizers. We’ll use
xp as the “projection” (defined next lecture) of x onto X∗.

f
∗

= f(xp) ≥ f(x) + 〈∇f(x), xp − x〉 +
σ

2
||A(xp − x)||2

≥ f(x) + 〈∇f(x), xp − x〉 +
σθ(A)

2
||xp − x||2

≥ f(x) + min
y

[
〈∇f(x), y − x〉 +

σθ(A)

2
||y − x||2

]
= f(x)−

1

2θ(A)σ
||∇f(x)||2.

The first line uses strong-convexity of g, the second line uses the “Hoffman bound” which relies on X∗ being a polyhedral set defined in this

particular way to give a constant θ(A) depending on A that holds for all x (in this case it’s the smallest non-zero singular value of A), and

the third line uses that xp is a particular y in the min.

Linear Convergence of Gradient Descent Newton’s Method

Linear Convergence for “Locally-Nice” Functions

For linear convergence it’s sufficient to have

L[f(xt+1)− f(xt)] ≥ 1

2
‖∇f(xt)‖2 ≥ µ[f(xt)− f∗],

for all xt for some L and µ with L ≥ µ > 0.
(technically, we could even get rid of the connection to the gradient)

Notice that this only needs to hold for all xt, not for all possible x.

We could get linear rate for “nasty” function if the iterations stay in a “nice” region.
We can get lucky and converge faster than the global L/µ would suggest.

Arguments like this give linear rates for some non-convex problems like PCA.

Linear Convergence of Gradient Descent Newton’s Method

Convergence of Iterates

Under strong-convexity, you can also show that the iterations converge linearly.

With a step-size of 1/L you can show that

‖wk+1 − w∗‖ ≤
(

1− µ

L

)
‖wk − w∗‖.

If you use a step-size of 2/(µ+ L) this improves to

‖wk+1 − w∗‖ ≤
(
L− µ
L+ µ

)
‖wk − w∗‖.

Under PL, the solution w∗ is not unique.

You can show linear convergence of ‖wk − wkp‖, where wkp is closest solution.

Linear Convergence of Gradient Descent Newton’s Method

Improved Rates on Non-Convex Functions

We showed that we require O(1/ε) iterations for gradient descent to get norm of
gradient below ε in the non-convex setting.

Is it possible to improve on this with a gradient-based method?

Yes, in 2016 it was shown that a gradient method can improve this to O(1/ε3/4):

Combination of acceleration and trying to estimate a “local” µ value.

Linear Convergence of Gradient Descent Newton’s Method

Complexity of Minimizing Strongly-Convex Functions

For strongly-convex functions:

Sub-gradient methods achieve optimal rate of O(1/ε).
If ∇f is Lipschitz continuous, we’ve shown that gradient descent has O(log(1/ε)).

Nesterov’s algorithms improves this from O(Lµ log(1/ε)) to O(
√

L
µ log(1/ε)).

Corresponding to linear convergence rate with ρ = (1−
√

µ
L).

This is close to the optimal dimension-independent rate of ρ =
(√

L−√µ√
L+
√
µ

)2
.

	Linear Convergence of Gradient Descent
	Newton's Method

