First-Order Optimization Algorithms for Machine Learning

Convergence of Gradient Descent

Mark Schmidt

University of British Columbia

Summer 2020
Last Time: Progress Bound for Gradient Descent

- We discussed gradient descent,

\[w^{k+1} = w^k - \alpha_k \nabla f(w^k). \]

assuming that the gradient was Lipschitz continuous (weak assumption),

\[\|\nabla f(w) - \nabla f(v)\| \leq L \|w - v\|, \]

- We showed that setting \(\alpha_k = 1/L \) gives a progress bound of

\[f(w^{k+1}) \leq f(w^k) - \frac{1}{2L} \|\nabla f(w^k)\|^2, \]

- We discussed practical \(\alpha_k \) values that give similar bounds.
 - “Try a big step-size, and decrease it if isn’t satisfying a progress bound.”
Cost of L2-Regularized Least Squares

Two strategies from 340 for L2-regularized least squares:

1. Closed-form solution,

\[w = (X^T X + \lambda I)^{-1}(X^T y), \]

which costs \(O(nd^2 + d^3) \).

 - This is fine for \(d = 5000 \), but may be too slow for \(d = 1,000,000 \).

2. Run \(t \) iterations of gradient descent,

\[w^{k+1} = w^k - \alpha_k \left(X^T (Xw^k - y) + \lambda w^k \right), \]

\(\nabla f(w^k) \)

which costs \(O(ndt) \).

 - I'm using \(t \) as total number of iterations, and \(k \) as iteration number.

Gradient descent is faster if \(t \) is not too big:

 - If we only need \(t < \max\{d, d^2/n\} \) iterations.
Gradient descent can also be applied to other models like logistic regression,

\[f(w) = \sum_{i=1}^{n} \log(1 + \exp(-y^i w^T x^i)), \]

which we can’t formulate as a linear system.
- Setting \(\nabla f(w) = 0 \) gives a system of transcendental equations.

But this objective function is **convex and differentiable**.
- So gradient descent converges to a global optimum.

Alternately, another common approach is **Newton’s method**.
- Requires computing Hessian \(\nabla^2 f(w^k) \), and known as “IRLS” in statistics.
Cost of Logistic Regression

- Gradient descent costs $O(nd)$ per iteration to for logistic regression.
- Newton costs $O(nd^2 + d^3)$ per iteration to compute and invert $\nabla^2 f(w^k)$.

- Newton typically requires substantially fewer iterations.

- But for datasets with very large d, gradient descent might be faster.
 - If $t < \max\{d, d^2/n\}$ then we should use the “slow” algorithm with fast iterations.

- So, how many iterations t of gradient descent do we need?
Outline

1. Gradient Descent Convergence Rate
2. Rates of Convergence
Convergence Rate of Gradient Descent

- In 340, we claimed that $\nabla f(w^k)$ converges to zero as k goes to ∞.
 - For convex functions, this means it converges to a global optimum.
 - However, we may not have $\nabla f(w^k) = 0$ for any finite k.

- Instead, we’re usually happy with $\|\nabla f(w^k)\| \leq \epsilon$ for some small ϵ.
 - Given an ϵ, how many iterations does it take for this to happen?

We’ll first answer this question only assuming that

1. Gradient ∇f is Lipschitz continuous (as before).
2. Step-size $\alpha_k = 1/L$ (this is only to make things simpler).
3. Function f can’t go below a certain value f^* (“bounded below”).

Most ML objectives f are bounded below (like the squared error being at least 0).
 - We’re not assuming convexity (but only showing convergence to a stationary point).
Convergence Rate of Gradient Descent

Key ideas:

1. We start at some \(f(w^0) \), and at each step we decrease \(f \) by at least \(\frac{1}{2L} \| \nabla f(w^k) \|^2 \).
2. But we can’t decrease \(f(w^k) \) below \(f^* \).
3. So \(\| \nabla f(w^k) \|^2 \) must be going to zero “fast enough”.

Let’s start with our guaranteed progress bound,

\[
f(w^k) \leq f(w^{k-1}) - \frac{1}{2L} \| \nabla f(w^{k-1}) \|^2.
\]

Since we want to bound \(\| \nabla f(w^k) \| \), let’s rearrange as

\[
\| \nabla f(w^{k-1}) \|^2 \leq 2L(f(w^{k-1}) - f(w^k)).
\]
Convergence Rate of Gradient Descent

- So for each iteration k, we have
 \[\| \nabla f(w^{k-1}) \|^2 \leq 2L[f(w^{k-1}) - f(w^k)]. \]

- Let's sum up the squared norms of all the gradients up to iteration t,
 \[\sum_{k=1}^{t} \| \nabla f(w^{k-1}) \|^2 \leq 2L \sum_{k=1}^{t} [f(w^{k-1}) - f(w^k)]. \]

- Now we use two tricks:
 1. On the left, use that all $\| \nabla f(w^{k-1}) \|$ are at least as big as their minimum.
 2. On the right, use that this is a telescoping sum:
 \[\sum_{k=1}^{t} [f(w^{k-1}) - f(w^k)] = f(w^0) - f(w^1) + f(w^1) - f(w^2) + f(w^2) - \ldots - f(w^t) = f(w^0) - f(w^t). \]
Convergence Rate of Gradient Descent

- With these substitutions we have

\[\sum_{k=1}^{t} \min_{j \in \{0, \ldots, t-1\}} \left\{ \| \nabla f(w_j) \|^2 \right\} \leq 2L[f(w^0) - f(w^t)]. \]

- Now using that \(f(w^t) \geq f^* \) we get

\[t \min_{k \in \{0,1,\ldots,t-1\}} \left\{ \| \nabla f(w^k) \|^2 \right\} \leq 2L[f(w^0) - f^*], \]

and finally that

\[\min_{k \in \{0,1,\ldots,t-1\}} \left\{ \| \nabla f(w^k) \|^2 \right\} \leq \frac{2L[f(w^0) - f^*]}{t} = O(1/t), \]

so if we run for \(t \) iterations, we'll find at least one \(k \) with \(\| \nabla f(w^k) \|^2 = O(1/t). \)
Convergence Rate of Gradient Descent

- Our “error on iteration t” bound:

$$\min_{k \in \{0, 1, \ldots, t-1\}} \left\{ \| \nabla f(w^k) \|^2 \right\} \leq \frac{2L[f(w^0) - f^*]}{t}.$$

- We want to know when the norm is below ϵ, which is guaranteed if:

$$\frac{2L[f(w^0) - f^*]}{t} \leq \epsilon.$$

- Solving for t gives that this is guaranteed for every t where

$$t \geq \frac{2L[f(w^0) - f^*]}{\epsilon},$$

so gradient descent requires $t = O(1/\epsilon)$ iterations to achieve $\| \nabla f(w^k) \|^2 \leq \epsilon$.
Outline

1. Gradient Descent Convergence Rate
2. Rates of Convergence
Discussion of $O(1/t)$ and $O(1/\epsilon)$ Results

- We showed that after t iterations, there will be a k such that
 \[\|\nabla f(w^k)\|^2 = O(1/t). \]

- If we want to have a k with $\|\nabla f(w^k)\|^2 \leq \epsilon$, number of iterations we need is
 \[t = O(1/\epsilon). \]

- So if computing gradient costs $O(nd)$, total cost of gradient descent is $O(nd/\epsilon)$.
 - $O(nd)$ per iteration and $O(1/\epsilon)$ iterations.

- This also be shown for practical step-size strategies from last time.
 - Just changes constants.
Discussion of $O(1/t)$ and $O(1/\epsilon)$ Results

- Our precise “error on iteration t” result was
 $$
 \min_{k=0,1,...,t-1} \{ \| \nabla f(w^k) \|^2 \} \leq \frac{2L[f(w^0) - f^*]}{t}.
 $$

- This is a non-asymptotic result:
 - It holds on iteration 1, there is no “limit as $t \to \infty$” as in classic results.
 - But if t goes to ∞, argument can be modified to show that $\nabla f(w^t)$ goes to zero.

- This convergence rate is called “dimension-independent”:
 - It does not directly depend on dimension d.
 - Though L might grow as dimension increases.

- Consider least squares with a fixed L and $f(w^0)$, and an accuracy ϵ:
 - There is dimension d beyond which gradient descent is faster than normal equations.
Discussion of $O(1/t)$ and $O(1/\epsilon)$ Results

- We showed that after t iterations, there is always a k such that
 \[
 \min_{k=0,1,\ldots,t-1} \left\{ \| \nabla f(w^k) \|^2 \right\} \leq \frac{2L[f(w^0) - f^*]}{t}.
 \]

- It isn't necessarily the last iteration t that achieves this.
 - But iteration t does have the lowest value of $f(w^k)$.

- For real ML problems optimization bounds like this are often very loose.
 - In practice gradient descent converges much faster.
 - There is a practical and theoretical component to developing optimization methods.

- This does not imply that gradient descent finds global minimum.
 - We could be minimizing an NP-hard function with bad local optima.
Faster Convergence to Global Optimum?

What about finding the global optimum of a non-convex function?

Fastest possible algorithms requires $O(1/\epsilon^d)$ iterations for Lipschitz-continuous f.
- This is actually achieved by by picking w^k values randomly (or by “grid search”).
- You can’t beat this with simulated annealing, genetic algorithms, Bayesian optim,...

Without some assumption like Lipschitz f, getting within ϵ of f^* is impossible.
- Due to real numbers being uncountable.
- “Math with Bad Drawings” sketch of proof here.

These issues are discussed in post-lecture bonus slides.
Convergence Rate for Convex Functions

- For **convex** functions we can **get to a global optimum much faster**.

- This is because $\nabla f(w) = 0$ implies w is a global optimum.
 - So gradient descent will converge to a global optimum.

- Using a similar proof (with telescoping sum), for convex f you can show

 $$f(w^t) - f(w^*) = O(1/t),$$

 if there exists a global optimum w^* and ∇f is Lipschitz.
 - So we need $O(1/\epsilon)$ iterations to get ϵ-close to global optimum, not $O(1/\epsilon^d)$.
Faster Convergence to Global Optimum?

- Is $O(1/\epsilon)$ the best we can do for convex functions?
- No, there are algorithms that only need $O(1/\sqrt{\epsilon})$.
 - This is optimal for any algorithm based only on functions and gradients.
 - And restricting to dimension-independent rates.
- First algorithm to achieve this: Nesterov’s accelerated gradient method.
 - A variation on what’s known as the “heavy ball’ method (or “momentum”).
Heavy-Ball Method Method
Gradient Descent Convergence Rate

Rates of Convergence

Heavy-Ball Method

Gradient Method

Heavy-ball Method
Heavy-Ball Method Method
Heavy-Ball Method Method

Gradient Method

\[w^0, w^1, w^2, \ldots \]

Heavy-ball Method

\[w^0, w^1, w^2, \ldots \]
Heavy-Ball Method Method
Heavy-Ball Method Method

Gradient Method

Heavy-ball Method
Heavy-Ball Method Method
Gradient Descent Convergence Rate

Heavy-Ball Method Method

Gradient Method

Heavy-ball Method

approaches from left

Bounce around
Heavy-Ball, Momentum, CG, and Accelerated Gradient

- The heavy-ball method (called momentum in neural network papers) is
 \[w^{k+1} = w^k - \alpha_k \nabla f(w^k) + \beta_k (w^k - w^{k-1}) \].

- For strictly-convex quadratics, achieves faster rate (for appropriate \(\alpha_k \) and \(\beta_k \)).
 - With the optimal \(\alpha_k \) and \(\beta_k \), we obtain conjugate gradient.

- Variation is Nesterov’s accelerated gradient method,
 \[w^{k+1} = v^k - \alpha_k \nabla f(v^k), \]
 \[v^{k+1} = w^k + \beta_k (w^{k+1} - w^k), \]

- Has an error of \(O(1/t^2) \) after \(t \) iterations instead of \(O(1/t) \) for convex functions.
 - So it only needs \(O(1/\sqrt{\epsilon}) \) iterations to get within \(\epsilon \) of global opt.
 - Can use \(\alpha_k = 1/L \) and \(\beta_k = \frac{k-1}{k+2} \) to achieve this.
Iteration Complexity

- **Iteration complexity**: smallest t such that algorithm guarantees ϵ-solution.

- Iteration complexities we have discussed so far:

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Quantity</th>
<th>Algorithm</th>
<th>Iteration Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lips. f, bounded domain</td>
<td>$f(w) - f^*$</td>
<td>Random</td>
<td>$O(1/\epsilon^d)$</td>
</tr>
<tr>
<td>Lips. ∇f, bounded below</td>
<td>$|\nabla f(w)|^2$</td>
<td>Gradient</td>
<td>$O(1/\epsilon)$</td>
</tr>
<tr>
<td>Lips. ∇f, convex f</td>
<td>$f(w) - f^*$</td>
<td>Gradient</td>
<td>$O(1/\epsilon)$</td>
</tr>
<tr>
<td>Lips. ∇f, convex f</td>
<td>$f(w) - f^*$</td>
<td>Nesterov</td>
<td>$O(1/\sqrt{\epsilon})$</td>
</tr>
</tbody>
</table>

- A lot of optimization research takes these types of forms:
 - Can we get a **faster iteration complexity with more assumptions**?
 - Can we get the same iteration complexity with **fewer assumptions**?
 - Can we get the same iteration complexity with **cheaper iterations**?
Iteration Complexity

- Think of $\log(1/\epsilon)$ as “number of digits of accuracy” you want.
 - We want iteration complexity to grow slowly with $1/\epsilon$.

- Is $O(1/\epsilon)$ a good iteration complexity?

- Not really, if you need 10 iterations for a “digit” of accuracy then:
 - You might need 100 for 2 digits.
 - You might need 1000 for 3 digits.
 - You might need 10000 for 4 digits.

- We would normally call this exponential time.
Rates of Convergence

A way to measure rate of convergence is by limit of the ratio of successive errors,

$$\lim_{k \to \infty} \frac{f(w^{k+1}) - f(w^*)}{f(w^k) - f(w^*)} = \rho.$$

Different ρ values of give us different rates of convergence:

1. If $\rho = 1$ we call it a sublinear rate.
2. If $\rho \in (0, 1)$ we call it a linear rate.
3. If $\rho = 0$ we call it a superlinear rate.

Having $f(w^t) - f(w^*) = O(1/t)$ gives sublinear convergence rate:

“The longer you run the algorithm, the less progress it makes”.
Sub/Superlinear Convergence vs. Sub/Superlinear Cost

As a computer scientist, what would we ideally want?

- **Sublinear rate is bad**, we don’t want $O(1/t)$ (“exponential” time: $O(1/\epsilon)$ iterations).
- **Linear rate is ok**, we’re ok with $O(\rho^t)$ (“polynomial” time: $O(\log(1/\epsilon))$ iterations).
- **Superlinear rate is great**, amazing to have $O(\rho^{2^t})$ (“constant”: $O(\log(\log(1/\epsilon))))$).

Notice that terminology is backwards compared to computational cost:

- **Superlinear cost is bad**, we don’t want $O(d^3)$.
- **Linear cost is ok**, having $O(d)$ is ok.
- **Sublinear cost is great**, having $O(\log(d))$ is great.

Ideal algorithm: superlinear convergence and sublinear iteration cost.
Summary

- Error on iteration t of $O(1/t)$ for functions that are bounded below.
 - Implies that we need $t = O(1/\epsilon)$ iterations to have $\|\nabla f(x^k)\|^2 \leq \epsilon$.

- Convergence to global min for non-convex (slow) and convex (faster) functions.
 - Nesterov's accelerated gradient method has better bound than gradient descent.

- Iteration complexity measures number of iterations to reach accuracy ϵ.

- Sublinear/linear/superlinear convergence measure speed of convergence.

- Post-lecture slides: Cover various related issues.
 - L for logistic regression, non-convex iteration complexity, smoothing non-smooth?

- Next time: didn’t I say that regularization makes gradient descent go faster?
Digression: Logistic Regression Gradient and Hessian

- With some tedious manipulations, gradient for logistic regression is
 \[\nabla f(w) = X^T r. \]
 where vector \(r \) has \(r_i = -y^i h(-y^i w^T x^i) \) and \(h \) is the sigmoid function.

- We know the gradient has this form from the multivariate chain rule.
 - Functions for the form \(f(Xw) \) always have \(\nabla f(w) = X^T r \) (see bonus slide).

- With some more tedious manipulations we get
 \[\nabla^2 f(w) = X^T D X. \]
 where \(D \) is a diagonal matrix with \(d_{ii} = h(y^i w^T x^i) h(-y^i w^T x^i) \).
 - The \(f(Xw) \) structure leads to a \(X^T D X \) Hessian structure.
 - For other problems \(D \) may not be diagonal.
Convexity of Logistic Regression

- Logistic regression Hessian is

$$\nabla^2 f(w) = X^T DX.$$

where D is a diagonal matrix with $d_{ii} = h(y_i w^T x^i)h(-y_i w^T x^i)$.

- Since the sigmoid function is non-negative, we can compute $D^{\frac{1}{2}}$, and

$$v^T X^T DX v = v^T X^T D^{\frac{1}{2}} D^{\frac{1}{2}} X v = (D^{\frac{1}{2}} X v)^T (D^{\frac{1}{2}} X v) = \| XD^{\frac{1}{2}} v \|^2 \geq 0,$$

so $X^T DX$ is positive semidefinite and logistic regression is convex.

- It becomes strictly convex if you add L2-regularization, making solution unique.
Lipschitz Continuity of Logistic Regression Gradient

- Logistic regression Hessian is
 \[
 \nabla^2 f(w) = \sum_{i=1}^{n} \left(h(y_i w^T x^i) h(-y_i w^T x^i) x^i (x^i)^T \right)
 \]

 \[
 \leq 0.25 \sum_{i=1}^{n} x^i (x^i)^T
 \]

 \[
 = 0.25 X^T X.
 \]

- In the second line we use that \(h(\alpha) \in (0, 1) \) and \(h(-\alpha) = 1 - \alpha \).

 - This means that \(d_{ii} \leq 0.25 \).

- So for logistic regression, we can take \(L = \frac{1}{4} \max \{ \text{eig}(X^T X) \} \).
Multivariate Chain Rule

- If \(g : \mathbb{R}^d \mapsto \mathbb{R}^n \) and \(f : \mathbb{R}^n \mapsto \mathbb{R} \), then \(h(x) = f(g(x)) \) has gradient

\[
\nabla h(x) = \nabla g(x)^T \nabla f(g(x)),
\]

where \(\nabla g(x) \) is the Jacobian (since \(g \) is multi-output).

- If \(g \) is an affine map \(x \mapsto Ax + b \) so that \(h(x) = f(Ax + b) \) then we obtain

\[
\nabla h(x) = A^T \nabla f(Ax + b).
\]

- Further, for the Hessian we have

\[
\nabla^2 h(x) = A^T \nabla^2 f(Ax + b) A.
\]
First-Order Oracle Model of Computation

- Should we be happy with an algorithm that takes $O(\log(1/\epsilon))$ iterations?
 - Is it possible that algorithms exist that solve the problem faster?

- To answer questions like this, need a class of functions.
 - For example, strongly-convex with Lipschitz-continuous gradient.

- We also need a model of computation: what operations are allowed?

- We will typically use a first-order oracle model of computation:
 - On iteration k, algorithm choose an x^k and receives $f(x^k)$ and $\nabla f(x^k)$.
 - To choose x^k, algorithm can do anything that doesn’t involve f.

- Common variation is zero-order oracle where algorithm only receives $f(x^k)$.
Complexity of Minimizing Real-Valued Functions

- Consider minimizing real-valued functions over the unit hyper-cube,
 \[
 \min_{x \in [0,1]^d} f(x).
 \]

- You can use any algorithm you want.
 (simulated annealing, gradient descent + random restarts, genetic algorithms, Bayesian optimization,...)

- How many zero-order oracle calls \(t \) before we can guarantee \(f(x^t) - f(x^*) \leq \epsilon \)?
 - Impossible!

- Given any algorithm, we can construct an \(f \) where \(f(x^k) - f(x^*) > \epsilon \) forever.
 - Make \(f(x) = 0 \) except at \(x^* \) where \(f(x) = - \epsilon - 2^{\text{whatever}} \).
 (the \(x^* \) is algorithm-specific)

- To say anything in oracle model we need assumptions on \(f \).
One of the simplest assumptions is that f is Lipschitz-continuous,

$$|f(x) - f(y)| \leq L\|x - y\|.$$

Function can’t change arbitrarily fast as you change x.
One of the simplest assumptions is that f is \textit{Lipschitz-continuous},

$$|f(x) - f(y)| \leq L\|x - y\|.$$

Function can’t change arbitrarily fast as you change x.

Complexity of Minimizing \textit{Lipschitz-Continuous} Functions
One of the simplest assumptions is that f is Lipschitz-continuous,

$$|f(x) - f(y)| \leq L\|x - y\|.$$

Function can’t change arbitrarily fast as you change x.

Complexity of Minimizing Lipschitz-Continuous Functions
One of the simplest assumptions is that \(f \) is \textit{Lipschitz-continuous},

\[
|f(x) - f(y)| \leq L\|x - y\|.
\]

Function can’t change arbitrarily fast as you change \(x \).
One of the simplest assumptions is that \(f \) is Lipschitz-continuous,

\[
|f(x) - f(y)| \leq L\|x - y\|.
\]

Function can’t change arbitrarily fast as you change \(x \).
Complexity of Minimizing Lipschitz-Continuous Functions

- One of the simplest assumptions is that f is Lipschitz-continuous,

$$|f(x) - f(y)| \leq L\|x - y\|.$$

- Function can’t change arbitrarily fast as you change x.

- Under only this assumption, any algorithm requires at least $\Omega(1/\epsilon^d)$ iterations.

- An optimal $O(1/\epsilon^d)$ worst-case rate is achieved by a grid-based search method.

- You can also achieve optimal rate in expectation by random guesses.
 - Lipschitz-continuity implies there is a ball of ϵ-optimal solutions around x^*.
 - The radius of the ball is $\Omega(\epsilon)$ so its area is $\Omega(\epsilon^d)$.
 - If we succeed with probability $\Omega(\epsilon^d)$, we expect to need $O(1/\epsilon^d)$ trials.

(mean of geometric random variable)
Complexity of Minimizing Convex Functions

- Life gets better if we assume convexity.
 - We’ll consider first-order oracles and rates with no dependence on d.

- Subgradient methods (next week) can minimize convex functions in $O(1/\epsilon^2)$.
 - This is optimal in dimension-independent setting.

- If the gradient is Lipschitz continuous, gradient descent requires $O(1/\epsilon)$.
 - With Nesterov’s algorithm, this improves to $O(1/\sqrt{\epsilon})$ which is optimal.
 - Here we don’t yet have strong-convexity.

- What about the CPSC 340 approach of smoothing non-smooth functions?
 - Gradient descent still requires $O(1/\epsilon^2)$ in terms of solving original problem.
 - Nesterov improves to $O(1/\epsilon)$ in terms of original problem.