First-Order Optimization Algorithms for
Machine Learning

Over-Parameterized Models
Summer 2020

“Hidden” Regularization in Neural Networks

* Fitting single-layer neural network with SGD and no regularization:

MNIST CIFAR-10
i : — r : _ 0.7r . : : —— : . =
0.06} — Training H — Training
— Test (at convergence)| 0.6 —Test (at convergence)
0.05} 1
0.5
0.04
§ § 0.4
L5 0.03f TP
0.02} 0.2
0.01} 0.1
L 1 1 0 L 1 L 1
04 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

* Training goes to 0 with enough units: we're finding a global min.
— Even though objective function is highly non-convex.

 What should happen to training and test error for larger #hidden?

“Hidden” Regularization in Neural Networks

Fitting single-layer neural network with SGD and no regularization:

MNIST CIFAR-10
‘ ' ‘ i : — r : : 0.7+ . ‘ . — : .
0.06 —Training H —Training
— Test (at convergence)| 0.6 —Test (at convergence)
0.05} 1
0.5
0.04
§ § 0.4
L5 0.03f T
0.02} 0.2
0.01} 0.1
L 1 I . 0 L L L 1
04 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

Test error continues to go down!?! Where is fundamental trade-off??

There exist global mins with large #hidden units with test error = 1.
— But among the global minima, SGD is somehow converging to “good” ones.

Multiple Global Minima?

e For standard objectives, there is a global min function value f*:

Tedin error
Clegl

Multiple Global Minima?

e For standard objectives, there is a global min function value f*:

Tedin error
Clegl

* But this may be achieved by many different parameter values.

Multiple Global Minima?

e Now consider the test error:

Clegl

PGr ﬁMdo(

— These training error “global minima” may have very-different test errors.
— Maybe some of these global minima might even be more “regularized” than others.

Implicit Regularization of SGD

* There is growing evidence that using SGD regularizes parameters.
— We call this the “implicit regularization” of the optimization algorithm.

* Experiments indicate SGD implicitly regularizes neural networks.
— But we don’t have a complete theory for how SGD is regularizing.
— Beyond empirical evidence, we know this happens in simpler cases.

 Known example of implicit regularization in a simpler case:

— Consider a least squares problem where there exists a ‘w’” where Xw=y.
* Residuals are all zero, we fit the data exactly.
— You run [stochastic] gradient descent starting from w=0.

— Converges to solution Xw=y that has the minimum L2-norm.
* So using SGD is equivalent to L2-regularization here, but regularization is “implicit”.

Implicit Regularization of SGD

 Known example of implicit regularization in a simpler case:
— Consider a logistic regression problem where data is linearly separable.
* We can fit the data exactly.
— You run gradient descent from any starting point.

— Converges to max-margin solution of the problem.
* So using gradient descent is equivalent to encouraging large margin on separable data.

Xa

r fer{‘ed’ class"ﬁ" wilh MK M ”Mw,-n"

('&qnj__‘-ﬂh“__‘_ i" d-xsf (Iun"ﬂ)

Ooo

e Similar result known for boosting and matrix factorization.

— Implicit regularization tends to also achieved with momentum,
but may not be maintained if we use “adative” methods like AdaGrad/Adam.

Double Descent Curves

Expected

0.7 (Classical Statistics)
. A
S 06 '
LLJ
- '
‘s 05
— 3
~ Kl
0.4 ~
A Reality \\N,\

0.3

0.2

1 10 20 30 40 50 60

Model Size (ResNet18 Width)
* What is going on???

Worst vs. Best “Global Minimum”

'lps'f Cvror (wdls" 9,0‘».’ Min)

Crror

ffaiﬂ errofl

Model size

Worst vs. Best “Global Minimum”

',Ps'l Cvror (wdfs‘, 9'0“0.’ Min)

Al
,()f
x‘;
x:t‘
X AX
xx £ X X%
error kg KX 38
L K4 Py
g X1 ‘X
XL 24 X
x{x 8oy
35
A& x X
FXKyg AX
x‘l

.,-faiﬂ errof

—

Mode size

* Learning theory results analyze global min with worst test error.
— Actual test error for different global minima be better than worst case bound.
— Theory is correct, but maybe “worst overfitting possible” is too pessimistic?

Worst vs. Best “Global Minimum”

Crror

Mode size

* Consider instead the global min with best test error.
— With small models, “minimize training error” leads to unique (or similar) global mins.
— With larger models, there is a lot of flexibility in the space of global mins (gap between best/worst).

* Gap between “worst” and “best” global min can grow with model complexity.

Worst vs. Best “Global Minimum”

105” evror (wdfs" 9,0"9.’ Min)

Crror

> ag SroIR > X

)

(bt 94

-

&a“’a})\"*x\

U EVE 1
<
o
N

Mode size

Can get “double descent” curve in practice if parameters roughly track “best” global min shape.
— One way to do this: increase regularization strength A as you increase model size.

Maybe “neural network trained with SGD” has “more implicit regularization for bigger models”?
— But this behavior is not specific to implicit regularization of SGD and not specific to neural networks.

Implicit Regularization of SGD (as function of size)

 Why would implicit regularization of SGD increase with dimension?
— H1: maybe SGD finds low-norm solutions?
* In higher-dimensions, there is flexibility in global mins to have a low norm?

— H2: maybe SGD stays closer to starting point as we increase dimension?

* This would be more like a regularizer of the form | |w —w?]| |.

Training loss Relative change in norm of weights from initialization
— Width 10 0.30{ —— Width 10
Width 100 Width 100

2.0 —— Width 1000 —— Width 1000

15

Loss

1.0

0.5

0.0

0 200 400 600 800 1000 0 200 400 600 800 1000
Step Step (n)

(pause)

Over-Parameterized Models

e “Over-parameterization”:
— You have so many parameters that you can drive the loss to 0.

— True for many modern deep neural networks.
* Best models in many applications, implicit regularization may explain why they don’t overfit.

— Also true for linear models with a sufficiently-expressive basis/kernel.
* You can make it true by making model more complicated.

* How does over-parameterization affect optimization?
— Empirically and theoretically finding cases where SGD reaches global minimum.
— Variance-reduced SGD doesn’t seem to help with deep learning.

— Adam optimizer seems to work well on many of these problems.
* Despite it working poorly for many seemingly-easy problems.
* Adam doesn’t even converge under standard assumptions.

Strong Growth Condition (SGC)

 Qver-parameterization changes behaviour of gradients at solution:

GfaJl'fﬁ‘ls q'f 50 V‘I"‘V‘ “oomﬂJV(‘ \/ollmnra> Gl‘no’fm-’ a" SG’MkM (6'/0/-‘,4/‘”1*,,}‘.J)

ramf i Tere] » ; ﬂ” ZND""I\L vap//'wt(p
(‘ir.lc"l’W‘Y to (owc(/
Ov\-r

* Don’t need SGD step size to go to zero in over-parameterized case.
— We're going to show that plain SGD converges fast in over-parameterized case.

* Would explain why variance-reduction doesn’t help for deep learning.
— It’s not needed, and might slow convergence.
— And why Adam would work (acts more like a constant step size).

Strong Growth Condition (SGC)

* Recent works characterize over-parameterization in various ways.
* We’ll consider the strong growth condition (SGC):

g [Mg T < plsen)?

— Used by Tseng and Solodov in the 90s to analyze SGD on neural networks.
e Under SGC, they showed that SGD converges with a constant step size.
* This is possible because it implies variance goes to zero at a solution.

* The SGCis a very-strong assumption:
— Assumes that gradient is zero at the solution for every training example:

VEN 20 =7 vy g7 0

— Model is over-parameterized enough to “interpolate” (fit exactly) the data.

Convergence Rates under SGC
Recall our expected progress by using SGD in descent lemma:

L

B[(w*)] < f(w®) = x| VF(@P)]” + ag S E[V i, (wh)]°]

Using SGC we get a progress bound of: g FN VF(‘«//()//Z uhc/*'

. | Séc
ELSWHI€FI) = u, () = °(—2F>HV][‘(\N/())2

Implications:
. 2 . .
— Decrease E[f(wk)] for any constant step size a;, < i (no need to have decreasing step size).

— Convergence rate is basically same as deterministic gradient descent:

* O((1- u/Lp)¥) for PL functions instead of O(1/k) (faster than VR methods for small p, without “finite data” assumption).
— In this setting you can show that 1 < p < L;,4. /U, SO rate is “between gradient descent and an ‘unnaccelerated’ gradient descent”.

« 0(1/k) rate for convex functions instead O(1/Vk) (again without “finite data” assumption).
* 0O(1/k) rate for | ||7f(w")||2 instead of O(1/Vk) (faster than fancier stochastic methods).

“Faster” SGD under the SGC (Al/Stats 2019) g

e Sutskever, Martens, Dahl, Hinton [2013]:

— Nesterov acceleration improves practical performance in some settings.
— Acceleration is closely-related to momentum, which also helps in practice.

e Existing stochastic analyses only achieved partial acceleration.

Deterministic 0 (nk) 0 (n/k) Unconditional acceleration
SGD + (var < ¢?) g’ Kk o’ k\ Fasterifx > ¢g?
O|—+- o|\—+ |-
€ € € €
Variance Reduction O(n + k) O(n + Jnk) Fasterifx>n
SGC + SGC 0(x) 0(VK) Unconditional acceleration

* Under SGC we show full acceleration (convex, appropriate parameters).
— Special cases also shown by Liu and Belkin [2018], Jain et al. [2018]

“Painless” SGD under the SGC (NeurIPS 2019)

* Previous SGC/interpolation results relied on particular step-sizes.

— Depending on values we don’t know, like eigenvalues of Hessian.

e Existing methods to set step-size don’t guarantee fast convergence.

— Meta-learning, heuristics, adaptive, online learning, prob line-search.

* Under SGC, we showed you can can set the step-size as you go.

* Achieved (basically) optimal rate in a variety of settings:

Theorem 1 (Strongly-Convex). Assuming interpolation, L-smoothness and ju strong-convexity of f, Theorem 3 (Non-Convex). Assuming the SGC with constant p and under L;-smoothness of f;’s,
and convexity of the f;, SGD with Armijo line-search with ¢ = 1/2 in Equation 1 achieves the rate: SGD with A rmijo line-search in Equation 1 with ¢ = p Lya and setting nuq. = 1 achieves the rate:

: T ;
E [||u'r/- — 11**|]2] < (max {(] - ,[—1> (1 = Dax /1)}) ||wo — u'*Hz.

L"ML\'
Lo, 2} +1

max
kzomh}[_1 E ||Vf('u,';c)||2 = { T [f(wo) — f*].

.....

Theorem 2 (Convex). Assuming interpolation and under L;-smoothness and convexity of f;’s, SGD
with Armijo line-search for all ¢ > 1/2 in Equation 1 and iterate averaging achieves the rate:

vy aw L O
¢ - max {2 02 }
(2¢—1)T

E[f(wr) — f(w*)] <

|wo — w*||?.

“Painless” SGD under the SGC (NeurIPS 2019)

 Key idea: Armijo line-search on the batch.
— “Backtrack if you don’t improve cost on the batch relative to the norm of the batch’s gradient.”

Algorithm 1 SGD+Armijo(f, wo, Nmax. b ¢, 3, 7, opt)

I: fork=1,...,T do

2: i) <— sample mini-batch of size b

3 n < reset(n, Pmax, Y, b, k, opt) /3

-+ repeat

5: n<pB-n

6: wy, < wi — NV fir(wg)

7o until fi(wp) < fix(we) — ¢ ||V far(wi) |

8: Wh41 < 71!;“
9: end for
10: return w41

e Backtracking guarantees steps are “not too big”.

* With appropriate initialization, guarantees steps are “not too smal
— Theory says that it’s at least as good as the best constant step-size.

* Requires an extra forward pass per iteration, and forward pass for each backtrack.

 We proposed a procedure to propose trial step sizes that works well in practice:
— Slowly increases the step size, but median number of backtracking steps per iteration is O.

|”

“Painless” SGD under the SGC (NeurIPS 2019)

 We did a variety of experiments, including training CNNs on standard problems.
— Better in practice than any fixed step size, adaptive methods, alternative adaptive step sizes.

CIFAR10 ResNet CIFAR100 ResNet - CIFAR100 DenseNet

94
741 W*"""'*"“'J
721
i""“"-”'ﬂ‘
mﬁhtM‘
70 PR
681
90 3 2 5 > A 5
Iterations led lterations led

Ilterations led

- SGD + Goldstein —4— Coin-Betting AdaBound —8— Adam —4— Polyak + Armijo —&— SGD + Armijo —e— Tuned 5GD

Discussion: Sensitivity to Assumptions

To ease some of your anxiety/skepticism:
— You don’t need to run it to the point of interpolating the data, it just needs to be possible.
— Results can be modified to handle case of being “close” to interpolation.

* You get an extra term depending on your step-size and how “close” you are.

— We ran synthetic experiments where we controlled the degree of over-parameterization:

* |fit’'s over-parameterized, the stochastic line search works great.

* Ifit’s close to being over-parameterized, it still works really well.
* Ifit’s far from being over-parameterized, it catastrophically fails.

— Another group [Berrada, Zisserman, Pawan Kumar] proposed a similar method a few days later.
— We've compared to a wide variety of existing methods to set the step size.

To add some anxiety/skepticism:
— My students said all the neural network experiments were done with batch norm.
— They had more difficulty getting it to work for LSTMs (“first thing we tried” didn’t work here).
— Some of the line-search results have extra “sneaky” assumptions | would like to remove.

“Furious” SGD under the SGC (Al/Stats 2020)

The reason “stochastic Newton” can’t improve rate is the variance.
SGC gets rid of the variance, so stochastic Newton makes sense.
Under SGC:

— Stochastic Newton gets “linear” convergence with constant batch size.

* Previous works required finite-sum assumption or exponentially-growing batch size.

— Stochastic Newton gets “quadratic” with exponentially-growing batch.

* Previous works required faster-than-exponential growing batch size for “superlinear”.

The paper gives a variety of other results and experiments.
— Self-concordant analysis, L-BFGS analysis, Hessian-free implementation.

SGD vs. Over-Parameterization

For under-parameterized models, use variance reduction.
— “Classic ML”.

For over-parameterized models, don’t use variance reduction.
— “Modern ML”.

Try out the line-search, we want to make it a black box code.
— It will helpful to know cases where it does and doesn’t work.

Variance-reduction might still be relevant for deep learning:

— Reducing Noise in GAN Training with Variance Reduced Extragradient. T.
Chavdarova, G. Gidel, F. Fleuret, S. Lacoste-Julien [NeurlPS, 2019].

Summary

* Implicit regularization and double descent curves.
— Possible explanations for why deep networks often generalize well.

* Over-parameterization:
— Fast convergence of plain SGD with constant step size in this setting.

— May explain weird optimization phenomenon in deep learning.
* Why SGD is hard to be beat, why Adam works, why VR does not work.

— Allows us to use tricks from deterministic setting:

* Acceleration, line-search, second-order.

* The end (thanks for listening).

