
First-Order Optimization Algorithms for
Machine Learning

Over-Parameterized Models

Summer 2020

“Hidden” Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:

• Training goes to 0 with enough units: we’re finding a global min.
– Even though objective function is highly non-convex.

• What should happen to training and test error for larger #hidden?
https://www.neyshabur.net/papers/inductive_bias_poster.pdf

“Hidden” Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:

• Test error continues to go down!?! Where is fundamental trade-off??

• There exist global mins with large #hidden units with test error = 1.

– But among the global minima, SGD is somehow converging to “good” ones.
https://www.neyshabur.net/papers/inductive_bias_poster.pdf

Multiple Global Minima?

• For standard objectives, there is a global min function value f*:

Multiple Global Minima?

• For standard objectives, there is a global min function value f*:

• But this may be achieved by many different parameter values.

Multiple Global Minima?

• Now consider the test error:

– These training error “global minima” may have very-different test errors.
– Maybe some of these global minima might even be more “regularized” than others.

Implicit Regularization of SGD

• There is growing evidence that using SGD regularizes parameters.
– We call this the “implicit regularization” of the optimization algorithm.

• Experiments indicate SGD implicitly regularizes neural networks.
– But we don’t have a complete theory for how SGD is regularizing.
– Beyond empirical evidence, we know this happens in simpler cases.

• Known example of implicit regularization in a simpler case:
– Consider a least squares problem where there exists a ‘w’ where Xw=y.

• Residuals are all zero, we fit the data exactly.

– You run [stochastic] gradient descent starting from w=0.
– Converges to solution Xw=y that has the minimum L2-norm.

• So using SGD is equivalent to L2-regularization here, but regularization is “implicit”.

Implicit Regularization of SGD

• Known example of implicit regularization in a simpler case:
– Consider a logistic regression problem where data is linearly separable.

• We can fit the data exactly.

– You run gradient descent from any starting point.
– Converges to max-margin solution of the problem.

• So using gradient descent is equivalent to encouraging large margin on separable data.

• Similar result known for boosting and matrix factorization.
– Implicit regularization tends to also achieved with momentum,

but may not be maintained if we use “adative” methods like AdaGrad/Adam.

Double Descent Curves

• What is going on???

https://openai.com/blog/deep-double-descent/

Worst vs. Best “Global Minimum”

Worst vs. Best “Global Minimum”

• Learning theory results analyze global min with worst test error.
– Actual test error for different global minima be better than worst case bound.
– Theory is correct, but maybe “worst overfitting possible” is too pessimistic?

Worst vs. Best “Global Minimum”

• Consider instead the global min with best test error.
– With small models, “minimize training error” leads to unique (or similar) global mins.
– With larger models, there is a lot of flexibility in the space of global mins (gap between best/worst).

• Gap between “worst” and “best” global min can grow with model complexity.

Worst vs. Best “Global Minimum”

• Can get “double descent” curve in practice if parameters roughly track “best” global min shape.
– One way to do this: increase regularization strength 𝜆 as you increase model size.

• Maybe “neural network trained with SGD” has “more implicit regularization for bigger models”?
– But this behavior is not specific to implicit regularization of SGD and not specific to neural networks.

Implicit Regularization of SGD (as function of size)

• Why would implicit regularization of SGD increase with dimension?

– H1: maybe SGD finds low-norm solutions?

• In higher-dimensions, there is flexibility in global mins to have a low norm?

– H2: maybe SGD stays closer to starting point as we increase dimension?

• This would be more like a regularizer of the form ||w – w0||.

https://rajatvd.github.io/NTK/

(pause)

Over-Parameterized Models

• “Over-parameterization”:
– You have so many parameters that you can drive the loss to 0.

– True for many modern deep neural networks.
• Best models in many applications, implicit regularization may explain why they don’t overfit.

– Also true for linear models with a sufficiently-expressive basis/kernel.
• You can make it true by making model more complicated.

• How does over-parameterization affect optimization?
– Empirically and theoretically finding cases where SGD reaches global minimum.

– Variance-reduced SGD doesn’t seem to help with deep learning.

– Adam optimizer seems to work well on many of these problems.
• Despite it working poorly for many seemingly-easy problems.

• Adam doesn’t even converge under standard assumptions.

Strong Growth Condition (SGC)

• Over-parameterization changes behaviour of gradients at solution:

• Don’t need SGD step size to go to zero in over-parameterized case.
– We’re going to show that plain SGD converges fast in over-parameterized case.

• Would explain why variance-reduction doesn’t help for deep learning.
– It’s not needed, and might slow convergence.
– And why Adam would work (acts more like a constant step size).

Strong Growth Condition (SGC)

• Recent works characterize over-parameterization in various ways.
• We’ll consider the strong growth condition (SGC):

– Used by Tseng and Solodov in the 90s to analyze SGD on neural networks.
• Under SGC, they showed that SGD converges with a constant step size.
• This is possible because it implies variance goes to zero at a solution.

• The SGC is a very-strong assumption:
– Assumes that gradient is zero at the solution for every training example:

– Model is over-parameterized enough to “interpolate” (fit exactly) the data.

Convergence Rates under SGC
• Recall our expected progress by using SGD in descent lemma:

• Using SGC we get a progress bound of:

• Implications:

– Decrease E[f(wk)] for any constant step size 𝛼𝑘 ≤
2

𝐿𝜌
(no need to have decreasing step size).

– Convergence rate is basically same as deterministic gradient descent:
• O((1 – 𝜇/L𝜌)k) for PL functions instead of O(1/k) (faster than VR methods for small 𝜌, without “finite data” assumption).

– In this setting you can show that 1 ≤ 𝜌 ≤ 𝐿𝑚𝑎𝑥/𝜇, so rate is “between gradient descent and an ‘unnaccelerated’ gradient descent”.

• O(1/k) rate for convex functions instead O(1/ 𝑘) (again without “finite data” assumption).

• O(1/k) rate for ||𝛻𝑓 𝑤𝑘 ||2 instead of O(1/ 𝑘) (faster than fancier stochastic methods).

“Faster” SGD under the SGC (AI/Stats 2019)

• Sutskever, Martens, Dahl, Hinton [2013]:
– Nesterov acceleration improves practical performance in some settings.

– Acceleration is closely-related to momentum, which also helps in practice.

• Existing stochastic analyses only achieved partial acceleration.

• Under SGC we show full acceleration (convex, appropriate parameters).
– Special cases also shown by Liu and Belkin [2018], Jain et al. [2018]

Method Regular Accelerated Comment

Deterministic ෨𝑂(𝑛𝜅) ෨𝑂(𝑛 𝜅) Unconditional acceleration

SGD + (var < 𝜎2)
𝑂

𝜎2

𝜖
+
𝜅

𝜖
𝑂

𝜎2

𝜖
+

𝜅

𝜖

Faster if 𝜅 > 𝜎2

Variance Reduction ෨𝑂(𝑛 + 𝜅) ෨𝑂(𝑛 + 𝑛𝜅) Faster if 𝜅 > 𝑛

SGC + SGC ෨𝑂(𝜅) ෨𝑂(𝜅) Unconditional acceleration

“Painless” SGD under the SGC (NeurIPS 2019)

• Previous SGC/interpolation results relied on particular step-sizes.

– Depending on values we don’t know, like eigenvalues of Hessian.

• Existing methods to set step-size don’t guarantee fast convergence.

– Meta-learning, heuristics, adaptive, online learning, prob line-search.

• Under SGC, we showed you can can set the step-size as you go.

• Achieved (basically) optimal rate in a variety of settings:

“Painless” SGD under the SGC (NeurIPS 2019)

• Key idea: Armijo line-search on the batch.
– “Backtrack if you don’t improve cost on the batch relative to the norm of the batch’s gradient.”

• Backtracking guarantees steps are “not too big”.

• With appropriate initialization, guarantees steps are “not too small”.
– Theory says that it’s at least as good as the best constant step-size.

• Requires an extra forward pass per iteration, and forward pass for each backtrack.

• We proposed a procedure to propose trial step sizes that works well in practice:
– Slowly increases the step size, but median number of backtracking steps per iteration is 0.

“Painless” SGD under the SGC (NeurIPS 2019)

• We did a variety of experiments, including training CNNs on standard problems.
– Better in practice than any fixed step size, adaptive methods, alternative adaptive step sizes.

Discussion: Sensitivity to Assumptions

• To ease some of your anxiety/skepticism:
– You don’t need to run it to the point of interpolating the data, it just needs to be possible.

– Results can be modified to handle case of being “close” to interpolation.
• You get an extra term depending on your step-size and how “close” you are.

– We ran synthetic experiments where we controlled the degree of over-parameterization:
• If it’s over-parameterized, the stochastic line search works great.

• If it’s close to being over-parameterized, it still works really well.

• If it’s far from being over-parameterized, it catastrophically fails.

– Another group [Berrada, Zisserman, Pawan Kumar] proposed a similar method a few days later.

– We’ve compared to a wide variety of existing methods to set the step size.

• To add some anxiety/skepticism:
– My students said all the neural network experiments were done with batch norm.

– They had more difficulty getting it to work for LSTMs (“first thing we tried” didn’t work here).

– Some of the line-search results have extra “sneaky” assumptions I would like to remove.

“Furious” SGD under the SGC (AI/Stats 2020)

• The reason “stochastic Newton” can’t improve rate is the variance.

• SGC gets rid of the variance, so stochastic Newton makes sense.

• Under SGC:

– Stochastic Newton gets “linear” convergence with constant batch size.

• Previous works required finite-sum assumption or exponentially-growing batch size.

– Stochastic Newton gets “quadratic” with exponentially-growing batch.

• Previous works required faster-than-exponential growing batch size for “superlinear”.

• The paper gives a variety of other results and experiments.

– Self-concordant analysis, L-BFGS analysis, Hessian-free implementation.

SGD vs. Over-Parameterization

• For under-parameterized models, use variance reduction.
– “Classic ML”.

• For over-parameterized models, don’t use variance reduction.
– “Modern ML”.

• Try out the line-search, we want to make it a black box code.
– It will helpful to know cases where it does and doesn’t work.

• Variance-reduction might still be relevant for deep learning:
– Reducing Noise in GAN Training with Variance Reduced Extragradient. T.

Chavdarova, G. Gidel, F. Fleuret, S. Lacoste-Julien [NeurIPS, 2019].

Summary

• Implicit regularization and double descent curves.

– Possible explanations for why deep networks often generalize well.

• Over-parameterization:

– Fast convergence of plain SGD with constant step size in this setting.

– May explain weird optimization phenomenon in deep learning.

• Why SGD is hard to be beat, why Adam works, why VR does not work.

– Allows us to use tricks from deterministic setting:

• Acceleration, line-search, second-order.

• The end (thanks for listening).

