First-Order Optimization Algorithms for
Machine Learning

The Question | Hate the Most...

How much data do we need?
A difficult if not impossible question to answer.

My usual answer: “more is better”.
— With the warning: “as long as the quality doesn’t suffer”.

Another popular answer: “ten times the number of features”.

The Question | Hate the Most...

e Let’s assume you have a new supervised learning application.
— But you have no data.

* You have some way to collect IID samples.

— So you have to decide how much data to collect.

* Since it’s supervised learning, our goal is to minimize a test error:
v
F(wy= ELEGDY "ot ervor

— Expected loss over 11D examples from the test distribution.
— Here, f,(w) could be the squared error or some other loss.

Usual Approach: Collect Data then Optimize

We want to minimize the test error (which we cannot compute):

F(W)= BLEGDT ot e

We approximate this with training error over ‘n’ IID samples:

-f(\,v) = -“:\TZF (w) Ilfmin error

)

And we need to decide how large ‘n’ should be.

We can find ‘n’ if we use stochastic gradient descent (SGD).

SGD Speed of Convergence (Training Error)

* “How much data” can be related to “how fast does SGD converge”?

* Assumptions:
— ‘f’ is strongly-convex: V£ >}M1
— ‘f’ is strongly-smooth: LT ¢& V26 (.,)
— “Variance” of gradients is bounded: mig‘ “V'F'(N)-V-F (W) ¢ 6'2

* |f we use SGD under these assumptions (and suitable ay,):
— E[f(WK)] = f* = O(1/k), where f* is training error of the global optimum.
— Implies we need k=0(1/¢) iterations to have f(wk) — f* < €.

Training Error vs. Testing Error

We don’t care about training error, we want to minimize test error.
— And our goal was to decide how many examples ‘n’ to collect.

We considered SGD on collected data (Approach 1):
— Choose a random training example i, (among the ‘n’ training examples).
— Perform the SGD step.

Now consider SGD while collecting data (Approach 2):
— Collect a new random example i, (IID from the true distribution).
— Perform the SGD step.

Approach 1 uses unbiased estimates of training error gradient.
Approach 2 uses unbiased estimates of test error gradient.

SGD Speed of Convergence (Test Error)

* With Approach 1, train error after ‘k’ iterations is O(1/k).
* With Approach 2, test error after ‘k’ iterations is O(1/k).

— And we are using 1 new example on each iteration.
— So with ‘n” examples, this approach has test error of O(1/n).
— And we need n=0(1/¢) training examples to get within € of best test error.

* Notice that there is no overfitting.
— Approach 2 is doing SGD on the test error.
— It’s like doing SGD with n=00, where train error = test error.

Scenarios where you can use Approach 2

1

* Here are some scenarios where you effectively have “n = c0”:
— A dataset that is so large we cannot even go through it once (Gmail).
— A function you want to minimize that you can’t measure without noise.
— You want to encourage invariance with a continuous set of transformation:

* Infinite number of translations/rotations instead of a fixed number (or “dropout”).

3—3 33

— Learning from simulators with random numbers (physics/chem/bio):

0.0 kcalimol reached after 0:000ms-and Ofansitions

One-Pass SGD, Multi-Pass, and Caveats

* One-pass SGD:
— If you already have an IID training set, you can simulate ‘n’ steps of Approach 2.

— Go through your ‘n” examples once, doing SGD step on each example.
* Gets within O(1/n) of optimal test error.

e Under (ugly) assumptions, this “O(1/n) rate with ‘n’ examples” is unimprovable.
— Even for methods that go through the dataset more than once or that minimize train error.

* |n practice: one-pass SGD often doesn’t work well.
— It can’t overfit, but it can definitely “underfit”.
— Doing multiple passes almost always helps.
— Multiple passes can potentially improve constants in O(1/n) rate.
— One-pass SGD is also very sensitive to the step-size.
— Our “loss” might not be the error. For example, 0-1 error is approximated by logistic loss.
— Some recent works have been exploring assumptions where O(1/n) is improvable.

— So if you have n=00, but finite time: may be better to work with large-but-finite dataset.
* “Optimize better on less data”.

A Practical Answer to “How Much Data”?
* Whether we use one-pass SGD or minimize training error,

E[test error of model fit on training set] — (best test error in class) = O(1/n).

(under reasonable assumptions, and with parametric model)

* You rarely know the constant factor, but this gives some guidelines:

— Adding more data helps more on small datasets than on large datasets.

* Going from 10 training examples to 20, difference with best possible error gets cut in half.
— If the best possible error is 15% you might go from 20% to 17.5% (this does not mean 20% to 10%).

* Going from 110 training examples to 120, gap only goes down by ~10%.
* Going from 1M training examples to 1M+10, you won’t notice a change.

— Doubling the data size cuts the error in half:

e Going from 1M training to 2M training examples, gap gets cut in half.
 If you double the data size and your test error doesn’t improve, more data might not help.

(pause)

Online Learning

e Usual supervised learning setup:
— Training phase:
* Build a model ‘w’ based on IID training examples (x,, v,)-

— Testing phase:
* Use the model to make predictions), on new IID testing examples X,.
* Our “score” is the total difference between predictions y,and true test labels y,.

* |In online learning there is no separate training/testing phase:
— We receive a sequence of features x,.
— You make prediction J, on each example x, as it arrives.
* You only get to see y, after you've made prediction ¥,.

— Our “score” is the total difference between predictions y,and true labels y..
* We need to predict well as we go (not just at the end).
* You pay a penalty for having a bad model as you are learning.

Online Learning

* Inonline learning, we typically don’t assume data is IID.
— Often analyze a weaker notion of performance called “regret” (discussed later).

e Classic applications: online ads, spam filtering.

e A common variation is with bandit feedback:

— We only observe loss y, for action we choose.

* You only observe whether they clicked on your ad, not which ads they would have clicked on.

— Here we have an exploration vs. exploitation trade-off:
* Should we explore by picking a y, we don’t know much about?
* Should we exploit by picking a y, that is likely to be clicked?

Follow the Leader

* An obvious strategy for online learning is follow the leader (FTL):
— At time ‘t’, find the best model from the previous (t-1) examples.
— Use this model to predict y,.

* Problems:
— It might be expensive to find the best model.

* Have to solve an optimization problem over ‘t” examples at time ‘t’.

— |t can perform very poorly.

Follow the Leader Counter-Example

e Consider this online convex optimization scenario:
— At iteration ‘t’, we make a prediction w..
— We then receive a convex function f, and pay the penalty f (w,).

* f, could be the logistic loss on example ‘t’.

* In this setting, follow the leader (FTL) would choose:
t—1
Wy € argmin,, fi(w).
i=1

* The problem is convex but the performance can be arbitrarily bad...

Follow the Leader Counter Example

e Assume x € [-1,1] and: * FTL objective: * FTL predictions:
— £,(x,) = (1/2)x. — F,(x,) undefined — X, = (initial guess)
— f,(x;) = -x. — F,(x,) = (1/2)x. — X, = -1 (worst possible)
— f53(x3) = x. — Fa(x3) = -(1/2)x. — X5 = 1 (worst possible)
— f4lxy) = -x. — Fu(x,) = (1/2)x. — X, = -1 (worst possible)
— fs(xs) = x. — Fs(xs) = -(1/2)x. — X = 1 (worst possible)
— f5(xg) = -x. — Felxg) = (1/2)x. — X = -1 (worst possible)

f;(x7) = x. — F,(x;) = -(1/2)x. — X, =1 (worst possible)

Regularized FTL and Regret

Worst possible sequence:
— {+1,-1,+41,-1,+1,-1,+1,-1,...}
FTL produces the sequence:
— {x0,-1,+1,-1,+1,-1,+1,-1,...}, which is close to the worst possible.
Best possible sequence:
- {0,+1,-1,+1,-1,+1,-,1,+1,...}
Best sequence with a fixed prediction:
- {0,0,0,0,0,0,0,0,...}

We have no way to bound error compared to best sequence: could have adversary.

We instead consider a weaker notion of “success” called regret:
— How much worse is our total error than optimal fixed prediction at time ‘t’.
— Note that fixed prediction might change with ‘t’.

Regret

* Online algorithms typically focus on minimizing regret:
] T
r€ /(+(V v, -.. = — M/'V)
y Iy 9y)W7> E;Pt("i/t) W“Lgﬁf (w)

— “How much worse than the best *fixed* parameters in hindsight”.

e Regret of an algorithm should be sublinear with ‘T’ like O(VT).
— Difference with algorithm’s strategy and best strategy decreases with time.

* We typically need assumptions to guarantee regret is sublinear.
— Loss is bounded above, constraint set ‘C’ is bounded, and so on.
— There is a huge/growing literature on regret minimization.

Regret Analysis for Online Gradient Descent

* One way to achieve sublinear regret: follow the “regularized” leader.
— Add a suitable regularizer to “follow the leader”.

 We'll show that “Approach 2” from earlier also has sublinear regret.

— Apply projected stochastic gradient to the new example on each iteration.
* Pretending like the potentially non-IID sample is an IID sample.

— Much cheaper than “follow the regularized leader”.

— We'll assume strong convexity of each f, and bounded gradient: H D/‘ {X)’/é G

e And constraint set ‘C’ is convex and compact. 1

— Here the regret is O(log(T)) with suitable «,, which is also optimal.
* Even though data is not IID, only worse by logarithmic factor than best fixed strategy.

* If the f, are convex but not strongly convex it achieves O(\/T), which is also optimal.

Regret Analysis for Online Gradient Descent

* Proof starts out looking similar usual projected(SGD) proofs:
(-orffmq‘ ﬁXoJ ’w‘ d+ HMP /T‘ (”.21 It\>

“ "Vt“‘ \'\/,(”‘l = “ PfOJLCWtb xtV{;(wt)]— W,-”l (Jef‘n of a’af]ﬂpm)
é 'I (wt _D(tv?f(wf»‘ "V;,I < (,;fa)uf[n/ pr Conyey I(llc:/w(g)
dishws
= “ (""t“""r) b“tvﬁ(“’c)‘ z

- ““"-ib"'ﬁ'“l ‘20(6 VE(WJT (\pt' V"P)*Kg “VE‘(%) [/Z

”f aveqm e’
1'V'0)
V6 o) € el g P 4 191207

:Zo(f. 4 w
<G

Regret Analysis for Online Gradient Descent

e Using strong- convexity and result from previous slide in regret:

regt b u,)= 2({(%) ﬂug()]
ELVP(>("'i "Vfr) - l/"l{‘ i)/]] ({bom] rouyu‘,’y\

7
°‘£

(
}!Z‘ (“ - - -M)”n{ w. '/2+ C io((/e atranfe, de fine No 0 CM(/

use ||
7 e %”0)
- G2 J (im
—_ O + —; -(2,44—'(, ((‘j 4 o(= __-(

- (14 1oy (1)) (izgg, = 1+ Ly (1))

£

N\
plf‘

Discussion

Optimal regret under same step-size (and similar proof) as SGD.
— Many variations on algorithm/assumptions/analysis.

So even with non-lID data, SGD is doing something reasonable.
— Basically optimal in terms of regret.
— Gives justification for using SGD on practical problems (real data is not IID).

But keep in mind that for some problems,
no method may do well so “regret” is a weak notion of success.

. 1. . .
And using a; = it still seems like a bad idea.

Summary

“How much data do you need” question.
Stochastic gradient descent on the test error (with one pass).
O(1/n) error rate when you have ‘n’ training examples.

Online learning: make predictions and pay penalties as you go.
— Without assuming data is IID.

Regret: how well did you do compare to best fixed strategy.
Online gradient descent: optimal regret for online convex learning.

Next time: can deep learning go faster than O(1/n)?

