
First-Order Optimization Algorithms for
Machine Learning

Online Learning

Summer 2020

The Question I Hate the Most…

• How much data do we need?

• A difficult if not impossible question to answer.

• My usual answer: “more is better”.

– With the warning: “as long as the quality doesn’t suffer”.

• Another popular answer: “ten times the number of features”.

The Question I Hate the Most…

• Let’s assume you have a new supervised learning application.

– But you have no data.

• You have some way to collect IID samples.

– So you have to decide how much data to collect.

• Since it’s supervised learning, our goal is to minimize a test error:

– Expected loss over IID examples from the test distribution.

– Here, fi(w) could be the squared error or some other loss.

Usual Approach: Collect Data then Optimize

• We want to minimize the test error (which we cannot compute):

• We approximate this with training error over ‘n’ IID samples:

• And we need to decide how large ‘n’ should be.

• We can find ‘n’ if we use stochastic gradient descent (SGD).

SGD Speed of Convergence (Training Error)

• “How much data” can be related to “how fast does SGD converge”?

• Assumptions:

– ‘f’ is strongly-convex:

– ‘f’ is strongly-smooth:

– “Variance” of gradients is bounded:

• If we use SGD under these assumptions (and suitable 𝛼𝑘):

– E[f(wk)] – f* = O(1/k), where f* is training error of the global optimum.

– Implies we need k=O(1/𝜖) iterations to have f(wk) – f* ≤ 𝜖.

Training Error vs. Testing Error

• We don’t care about training error, we want to minimize test error.
– And our goal was to decide how many examples ‘n’ to collect.

• We considered SGD on collected data (Approach 1):
– Choose a random training example ik (among the ‘n’ training examples).
– Perform the SGD step.

• Now consider SGD while collecting data (Approach 2):
– Collect a new random example ik (IID from the true distribution).
– Perform the SGD step.

• Approach 1 uses unbiased estimates of training error gradient.
• Approach 2 uses unbiased estimates of test error gradient.

SGD Speed of Convergence (Test Error)

• With Approach 1, train error after ‘k’ iterations is O(1/k).

• With Approach 2, test error after ‘k’ iterations is O(1/k).

– And we are using 1 new example on each iteration.

– So with ‘n’ examples, this approach has test error of O(1/n).

– And we need n=O(1/𝜖) training examples to get within 𝜖 of best test error.

• Notice that there is no overfitting.

– Approach 2 is doing SGD on the test error.

– It’s like doing SGD with n=∞, where train error = test error.

Scenarios where you can use Approach 2

• Here are some scenarios where you effectively have “n = ∞”:

– A dataset that is so large we cannot even go through it once (Gmail).

– A function you want to minimize that you can’t measure without noise.

– You want to encourage invariance with a continuous set of transformation:

• Infinite number of translations/rotations instead of a fixed number (or “dropout”).

– Learning from simulators with random numbers (physics/chem/bio):

http://kinefold.curie.fr/cgi-bin/form.pl
https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php

One-Pass SGD, Multi-Pass, and Caveats
• One-pass SGD:

– If you already have an IID training set, you can simulate ‘n’ steps of Approach 2.
– Go through your ‘n’ examples once, doing SGD step on each example.

• Gets within O(1/n) of optimal test error.

• Under (ugly) assumptions, this “O(1/n) rate with ‘n’ examples” is unimprovable.
– Even for methods that go through the dataset more than once or that minimize train error.

• In practice: one-pass SGD often doesn’t work well.
– It can’t overfit, but it can definitely “underfit”.
– Doing multiple passes almost always helps.
– Multiple passes can potentially improve constants in O(1/n) rate.
– One-pass SGD is also very sensitive to the step-size.
– Our “loss” might not be the error. For example, 0-1 error is approximated by logistic loss.
– Some recent works have been exploring assumptions where O(1/n) is improvable.
– So if you have n=∞, but finite time: may be better to work with large-but-finite dataset.

• “Optimize better on less data”.

A Practical Answer to “How Much Data”?

• Whether we use one-pass SGD or minimize training error,

E[test error of model fit on training set] – (best test error in class) = O(1/n).

(under reasonable assumptions, and with parametric model)

• You rarely know the constant factor, but this gives some guidelines:
– Adding more data helps more on small datasets than on large datasets.

• Going from 10 training examples to 20, difference with best possible error gets cut in half.
– If the best possible error is 15% you might go from 20% to 17.5% (this does not mean 20% to 10%).

• Going from 110 training examples to 120, gap only goes down by ~10%.
• Going from 1M training examples to 1M+10, you won’t notice a change.

– Doubling the data size cuts the error in half:
• Going from 1M training to 2M training examples, gap gets cut in half.
• If you double the data size and your test error doesn’t improve, more data might not help.

(pause)

Online Learning

• Usual supervised learning setup:
– Training phase:

• Build a model ‘w’ based on IID training examples (xt, yt).

– Testing phase:
• Use the model to make predictions ො𝑦t on new IID testing examples ො𝑥t.

• Our “score” is the total difference between predictions ො𝑦t and true test labels yt.

• In online learning there is no separate training/testing phase:
– We receive a sequence of features xt.

– You make prediction ො𝑦t on each example xt as it arrives.
• You only get to see yt after you’ve made prediction ො𝑦t.

– Our “score” is the total difference between predictions ො𝑦t and true labels yt.
• We need to predict well as we go (not just at the end).

• You pay a penalty for having a bad model as you are learning.

Online Learning

• In online learning, we typically don’t assume data is IID.

– Often analyze a weaker notion of performance called “regret” (discussed later).

• Classic applications: online ads, spam filtering.

• A common variation is with bandit feedback:

– We only observe loss yt for action we choose.
• You only observe whether they clicked on your ad, not which ads they would have clicked on.

– Here we have an exploration vs. exploitation trade-off:
• Should we explore by picking a yt we don’t know much about?

• Should we exploit by picking a yt that is likely to be clicked?

Follow the Leader

• An obvious strategy for online learning is follow the leader (FTL):

– At time ‘t’, find the best model from the previous (t-1) examples.

– Use this model to predict yt.

• Problems:

– It might be expensive to find the best model.

• Have to solve an optimization problem over ‘t’ examples at time ‘t’.

– It can perform very poorly.

Follow the Leader Counter-Example

• Consider this online convex optimization scenario:

– At iteration ‘t’, we make a prediction wt.

– We then receive a convex function ft and pay the penalty ft(wt).

• ft could be the logistic loss on example ‘t’.

• In this setting, follow the leader (FTL) would choose:

𝑤𝑡 ∈ argmin𝑤
𝑖=1

𝑡−1

𝑓𝑖 𝑤 .

• The problem is convex but the performance can be arbitrarily bad…

Follow the Leader Counter Example

• Assume x ∈ [-1,1] and:

– f1(x1) = (1/2)x.

– f2(x2) = -x.

– f3(x3) = x.

– f4(x4) = -x.

– f5(x5) = x.

– f6(x6) = -x.

– f7(x7) = x.

– …

• FTL predictions:

– x1 = (initial guess)

– x2 = -1 (worst possible)

– x3 = 1 (worst possible)

– x4 = -1 (worst possible)

– x5 = 1 (worst possible)

– x6 = -1 (worst possible)

– x7 = 1 (worst possible)

– …

• FTL objective:

– F1(x1) undefined

– F2(x2) = (1/2)x.

– F3(x3) = -(1/2)x.

– F4(x4) = (1/2)x.

– F5(x5) = -(1/2)x.

– F6(x6) = (1/2)x.

– F7(x7) = -(1/2)x.

– …

Regularized FTL and Regret
• Worst possible sequence:

– {+1,-1,+1,-1,+1,-1,+1,-1,…}

• FTL produces the sequence:
– {x0,-1,+1,-1,+1,-1,+1,-1,…}, which is close to the worst possible.

• Best possible sequence:
– {0,+1,-1,+1,-1,+1,-,1,+1,…}

• Best sequence with a fixed prediction:
– {0,0,0,0,0,0,0,0,…}

• We have no way to bound error compared to best sequence: could have adversary.

• We instead consider a weaker notion of “success” called regret:
– How much worse is our total error than optimal fixed prediction at time ‘t’.
– Note that fixed prediction might change with ‘t’.

Regret

• Online algorithms typically focus on minimizing regret:

– “How much worse than the best *fixed* parameters in hindsight”.

• Regret of an algorithm should be sublinear with ‘T’ like O(𝑇).

– Difference with algorithm’s strategy and best strategy decreases with time.

• We typically need assumptions to guarantee regret is sublinear.

– Loss is bounded above, constraint set ‘C’ is bounded, and so on.

– There is a huge/growing literature on regret minimization.

Regret Analysis for Online Gradient Descent

• One way to achieve sublinear regret: follow the “regularized” leader.
– Add a suitable regularizer to “follow the leader”.

• We’ll show that “Approach 2” from earlier also has sublinear regret.
– Apply projected stochastic gradient to the new example on each iteration.

• Pretending like the potentially non-IID sample is an IID sample.

– Much cheaper than “follow the regularized leader”.

– We’ll assume strong convexity of each ft and bounded gradient:
• And constraint set ‘C’ is convex and compact.

– Here the regret is O(log(T)) with suitable 𝛼t, which is also optimal.
• Even though data is not IID, only worse by logarithmic factor than best fixed strategy.

• If the ft are convex but not strongly convex it achieves O(𝑇), which is also optimal.

Regret Analysis for Online Gradient Descent

• Proof starts out looking similar usual projected(SGD) proofs:

Regret Analysis for Online Gradient Descent

• Using strong-convexity and result from previous slide in regret:

Discussion

• Optimal regret under same step-size (and similar proof) as SGD.
– Many variations on algorithm/assumptions/analysis.

• So even with non-IID data, SGD is doing something reasonable.
– Basically optimal in terms of regret.

– Gives justification for using SGD on practical problems (real data is not IID).

• But keep in mind that for some problems,
no method may do well so “regret” is a weak notion of success.

• And using 𝛼𝑡 =
1

𝜇𝑡
still seems like a bad idea.

Summary

• “How much data do you need” question.

• Stochastic gradient descent on the test error (with one pass).

• O(1/n) error rate when you have ‘n’ training examples.

• Online learning: make predictions and pay penalties as you go.

– Without assuming data is IID.

• Regret: how well did you do compare to best fixed strategy.

• Online gradient descent: optimal regret for online convex learning.

• Next time: can deep learning go faster than O(1/n)?

