First-Order Optimization Algorithms for Machine Learning

Online Learning Summer 2020

The Question I Hate the Most...

• How much data do we need?

- A difficult if not impossible question to answer.
- My usual answer: "more is better".
 - With the warning: "as long as the quality doesn't suffer".
- Another popular answer: "ten times the number of features".

The Question I Hate the Most...

- Let's assume you have a new supervised learning application.
 But you have no data.
- You have some way to collect IID samples.
 - So you have to decide how much data to collect.
- Since it's supervised learning, our goal is to minimize a test error:

$$\hat{f}(w) = \mathbb{E}[f_i(w)]$$
 "test error"

- Expected loss over IID examples from the test distribution.
- Here, $f_i(w)$ could be the squared error or some other loss.

Usual Approach: Collect Data then Optimize

• We want to minimize the test error (which we cannot compute):

$$\hat{f}(w) = \mathbb{E}[f_i(w)]$$
 "test error"

• We approximate this with training error over 'n' IID samples:

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$$
 "train error"

• And we need to decide how large 'n' should be.

• We can find 'n' if we use stochastic gradient descent (SGD).

SGD Speed of Convergence (Training Error)

- "How much data" can be related to "how fast does SGD converge"?
- Assumptions:
 - 'f' is strongly-convex: $\nabla^2 f(w) \not\in u I$
 - 'f' is strongly-smooth: $LI \& \nabla^2 f(w)$
 - "Variance" of gradients is bounded: $\frac{1}{2} \sum_{i=1}^{2} ||\nabla f_i(w) \nabla f(w)||^2 \leq \sigma^2$
- If we use SGD under these assumptions (and suitable α_k):

 $- E[f(w^k)] - f^* = O(1/k)$, where f* is training error of the global optimum.

- Implies we need $k=O(1/\epsilon)$ iterations to have $f(w^k) - f^* \le \epsilon$.

Training Error vs. Testing Error

- We don't care about training error, we want to minimize test error.
 - And our goal was to decide how many examples 'n' to collect.
- We considered SGD on collected data (Approach 1):
 - Choose a random training example i_k (among the 'n' training examples).
 - Perform the SGD step.
- Now consider SGD while collecting data (Approach 2):
 - Collect a new random example i_k (IID from the true distribution).
 - Perform the SGD step.
- Approach 1 uses unbiased estimates of training error gradient.
- Approach 2 uses unbiased estimates of test error gradient.

SGD Speed of Convergence (Test Error)

- With Approach 1, train error after 'k' iterations is O(1/k).
- With Approach 2, test error after 'k' iterations is O(1/k).
 - And we are using 1 new example on each iteration.
 - So with 'n' examples, this approach has test error of O(1/n).
 - And we need $n=O(1/\epsilon)$ training examples to get within ϵ of best test error.
- Notice that there is no overfitting.
 - Approach 2 is doing SGD on the test error.
 - It's like doing SGD with $n=\infty$, where train error = test error.

Scenarios where you can use Approach 2

- Here are some scenarios where you effectively have " $n = \infty$ ":
 - A dataset that is so large we cannot even go through it once (Gmail).
 - A function you want to minimize that you can't measure without noise.
 - You want to encourage invariance with a continuous set of transformation:
 - Infinite number of translations/rotations instead of a fixed number (or "dropout").

Learning from simulators with random numbers (physics/chem/bio):

http://kinefold.curie.fr/cgi-bin/form.pl

https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php

One-Pass SGD, Multi-Pass, and Caveats

- One-pass SGD:
 - If you already have an IID training set, you can simulate 'n' steps of Approach 2.
 - Go through your 'n' examples once, doing SGD step on each example.
 - Gets within O(1/n) of optimal test error.
- Under (ugly) assumptions, this "O(1/n) rate with 'n' examples" is unimprovable.
 - Even for methods that go through the dataset more than once or that minimize train error.
- In practice: one-pass SGD often doesn't work well.
 - It can't overfit, but it can definitely "underfit".
 - Doing multiple passes almost always helps.
 - Multiple passes can potentially improve constants in O(1/n) rate.
 - One-pass SGD is also very sensitive to the step-size.
 - Our "loss" might not be the error. For example, 0-1 error is approximated by logistic loss.
 - Some recent works have been exploring assumptions where O(1/n) is improvable.
 - So if you have $n=\infty$, but finite time: may be better to work with large-but-finite dataset.
 - "Optimize better on less data".

A Practical Answer to "How Much Data"?

• Whether we use one-pass SGD or minimize training error,

E[test error of model fit on training set] – (best test error in class) = O(1/n).

(under reasonable assumptions, and with parametric model)

- You rarely know the constant factor, but this gives some guidelines:
 - Adding more data helps more on small datasets than on large datasets.
 - Going from 10 training examples to 20, difference with best possible error gets cut in half. – If the best possible error is 15% you might go from 20% to 17.5% (this does **not** mean 20% to 10%).
 - Going from 110 training examples to 120, gap only goes down by ~10%.
 - Going from 1M training examples to 1M+10, you won't notice a change.
 - Doubling the data size cuts the error in half:
 - Going from 1M training to 2M training examples, gap gets cut in half.
 - If you double the data size and your test error doesn't improve, more data might not help.

(pause)

Online Learning

- Usual supervised learning setup:
 - Training phase:
 - Build a model 'w' based on IID training examples (x_t, y_t) .
 - Testing phase:
 - Use the model to make predictions \hat{y}_t on new IID testing examples \hat{x}_t .
 - Our "score" is the total difference between predictions \hat{y}_t and true test labels y_t .
- In online learning there is no separate training/testing phase:
 - We receive a sequence of features x_t .
 - You make prediction \hat{y}_t on each example x_t as it arrives.
 - You only get to see y_t after you've made prediction \hat{y}_t .
 - Our "score" is the total difference between predictions \hat{y}_t and true labels y_t .
 - We need to predict well as we go (not just at the end).
 - You pay a penalty for having a bad model as you are learning.

Online Learning

- In online learning, we typically don't assume data is IID.
 - Often analyze a weaker notion of performance called "regret" (discussed later).
- Classic applications: online ads, spam filtering.
- A common variation is with **bandit feedback**:
 - We only observe loss y_t for action we choose.
 - You only observe whether they clicked on your ad, not which ads they would have clicked on.
 - Here we have an exploration vs. exploitation trade-off:
 - Should we explore by picking a y_t we don't know much about?
 - Should we exploit by picking a y_t that is likely to be clicked?

Follow the Leader

- An obvious strategy for online learning is follow the leader (FTL):
 - At time 't', find the best model from the previous (t-1) examples.
 - Use this model to predict y_t .
- Problems:
 - It might be expensive to find the best model.
 - Have to solve an optimization problem over 't' examples at time 't'.
 - It can perform very poorly.

Follow the Leader Counter-Example

- Consider this online convex optimization scenario:
 - At iteration 't', we make a prediction w_t .
 - We then receive a convex function f_t and pay the penalty $f_t(w_t)$.
 - f_t could be the logistic loss on example 't'.
- In this setting, follow the leader (FTL) would choose: $w_t \in \operatorname{argmin}_{w} \sum_{i=1}^{t-1} f_i(w).$
- The problem is convex but the performance can be arbitrarily bad...

Follow the Leader Counter Example

- Assume $x \in [-1,1]$ and: FTL objective:
 - $f_1(x_1) = (1/2)x.$
 - $f_2(x_2) = -x.$
 - $f_3(x_3) = x.$
 - $f_4(x_4) = -x.$
 - $f_5(x_5) = x.$
 - $-f_6(x_6) = -x.$
 - $f_7(x_7) = x.$

— ...

- $F_1(x_1)$ undefined
 - $-F_2(x_2) = (1/2)x.$
 - $-F_3(x_3) = -(1/2)x.$
 - $-F_4(x_4) = (1/2)x.$
 - $-F_5(x_5) = -(1/2)x.$
 - $-F_6(x_6) = (1/2)x.$
 - $-F_7(x_7) = -(1/2)x.$

— ...

• FTL predictions:

— ...

- $x_1 = (initial guess)$
- $x_2 = -1$ (worst possible)
- $-x_3 = 1$ (worst possible)
- $x_4 = -1$ (worst possible)
- $-x_5 = 1$ (worst possible)
- $-x_6 = -1$ (worst possible)
- $-x_7 = 1$ (worst possible)

Regularized FTL and Regret

- Worst possible sequence:
 - $\{+1, -1, +1, -1, +1, -1, +1, -1, ...\}$
- FTL produces the sequence:
 - {x0,-1,+1,-1,+1,-1,+1,-1,...}, which is close to the worst possible.
- Best possible sequence:
 - {0,+1,-1,+1,-1,+1,-,1,+1,...}
- Best sequence with a fixed prediction:
 - $\ \{0,0,0,0,0,0,0,0,...\}$
- We have no way to bound error compared to best sequence: could have adversary.
- We instead consider a weaker notion of "success" called regret:
 - How much worse is our total error than optimal fixed prediction at time 't'.
 - Note that fixed prediction might change with 't'.

Regret

• Online algorithms typically focus on minimizing regret:

$$regret(w_{1}, w_{2}, \dots, w_{q}) = \sum_{t=1}^{T} f_{t}(w_{t}) - \min_{w \in L} \sum_{t=1}^{T} f_{t}(w_{t})$$

- "How much worse than the best *fixed* parameters in hindsight".
- Regret of an algorithm should be sublinear with 'T' like $O(\sqrt{T})$.
 - Difference with algorithm's strategy and best strategy decreases with time.
- We typically need assumptions to guarantee regret is sublinear.
 - Loss is bounded above, constraint set 'C' is bounded, and so on.
 - There is a huge/growing literature on regret minimization.

Regret Analysis for Online Gradient Descent

- One way to achieve sublinear regret: follow the "regularized" leader.
 Add a suitable regularizer to "follow the leader".
- We'll show that "Approach 2" from earlier also has sublinear regret.
 - Apply projected stochastic gradient to the new example on each iteration.
 - Pretending like the potentially non-IID sample is an IID sample.
 - Much cheaper than "follow the regularized leader".
 - We'll assume strong convexity of each f_t and bounded gradient: $\|f_{f_t}(x)\| \leq G$
 - And constraint set 'C' is convex and compact.
 - Here the regret is O(log(T)) with suitable α_t , which is also optimal.
 - Even though data is not IID, only worse by logarithmic factor than best fixed strategy.
 - If the f_t are convex but not strongly convex it achieves $O(\sqrt{T})$, which is also optimal.

Regret Analysis for Online Gradient Descent

• Proof starts out looking similar usual projected(SGD) proofs:

$$\begin{aligned} \| u_{ti} - u_{ti} \|^{2} &= \| Poij_{\mathcal{L}} [u_{t} - \alpha_{t} \nabla f_{t} (u_{t})] - u_{ti} \|^{2} & (def'n \ of \ algorithm) \\ &\leq \| | (u_{t} - \alpha_{t} \nabla f_{t} (u_{t})] - u_{ti} \|^{2} & (projecting \ onlo \ convex \ |C' reduces \\ &= \| (u_{t} - u_{ti}) - \alpha_{t} \nabla f_{t} (u_{t}) \|^{2} \\ &= \| u_{ti} - u_{ti} \|^{2} - 2 \alpha_{t} \nabla f_{t} (u_{t}) \|^{2} \\ &= \| u_{ti} - u_{ti} \|^{2} - 2 \alpha_{t} \nabla f_{t} (u_{t}) \|^{2} \\ Re^{-primate} & \nabla f_{t} (u_{t} - u_{ti}) \leq \frac{\| u_{ti} - u_{ti} \|^{2} - \| u_{ti} - u_{ti} \|^{2} + \alpha_{t} \frac{\| \nabla f_{t} (u_{t}) \|^{2}}{2 \alpha_{t}} \end{aligned}$$

Regret Analysis for Online Gradient Descent

• Using strong-convexity and result from previous slide in regret:

$$\begin{aligned} reg(t^{+}(u_{11}u_{21}), v_{1}) &= \sum_{t=1}^{T} \left[\int_{t} (u_{tt}) - f_{t}(u_{tt}) \right] \\ &\leq \sum_{t=1}^{T} \left[\nabla f_{t}(u_{t})^{T}(u_{t} - u_{tt}) - \frac{u_{t}}{2} ||u_{t} - u_{tt}||^{2} \right] \quad (shong \ convert, ly) \\ &\leq \sum_{t=1}^{T} \left[\frac{||u_{t} - u_{tt}||^{2} - ||u_{t+1} - u_{tt}||^{2} + u_{t}}{2} \int_{t}^{2} (-\frac{1}{2} - \frac{u_{t}}{2} ||u_{t} - u_{tt}||^{2} \right] \quad (previous \ slide) \\ &\leq \sum_{t=1}^{T} \left(\frac{1}{u_{t}} - \frac{1}{u_{t-1}} - u_{t} \right) ||u_{t} - u_{tt}||^{2} + \frac{C}{2} \sum_{t=1}^{T} u_{t} \quad (re - atransport \ dot fine \ u_{t} - \frac{1}{u_{t}} - \frac{1}{u_{t}} - \frac{1}{u_{t}} \right) \\ &= O + \frac{G^{2}}{2} \sum_{t=1}^{T} \frac{1}{u_{t}} \quad (de^{t}ining \ w_{t} - \frac{1}{u_{t}}) \\ &\leq \frac{C^{2}}{u_{t}} (1 + log(T)) \quad (\sum_{t=1}^{T} \frac{1}{t} \leq \frac{C}{t} - \frac{1}{u_{t}} + log(T)) \end{aligned}$$

Discussion

- Optimal regret under same step-size (and similar proof) as SGD.
 - Many variations on algorithm/assumptions/analysis.
- So even with non-IID data, SGD is doing something reasonable.
 - Basically optimal in terms of regret.
 - Gives justification for using SGD on practical problems (real data is not IID).
- But keep in mind that for some problems, no method may do well so "regret" is a weak notion of success.

• And using
$$\alpha_t = \frac{1}{\mu t}$$
 still seems like a bad idea.

Summary

- "How much data do you need" question.
- Stochastic gradient descent on the test error (with one pass).
- O(1/n) error rate when you have 'n' training examples.
- Online learning: make predictions and pay penalties as you go.
 Without assuming data is IID.
- Regret: how well did you do compare to best fixed strategy.
- Online gradient descent: optimal regret for online convex learning.

• Next time: can deep learning go faster than O(1/n)?