Mini-Batches and Batching Stochastic Average Gradient

First-Order Optimization Algorithms for Machine Learning

Variance-Reduced Stochastic Gradient

Mark Schmidt

University of British Columbia

Summer 2020

Mini-Batches and Batching Stochastic Average Gradient

Better Methods for Smooth Objectives and Finite Datasets?

stochastic

deterministic

log(excess cost)

hybrid

@ Stochastic methods: time
o O(1/e) iterations but requires 1 gradient per iterations.
o Rates are unimprovable for general stochastic objectives.
@ Deterministic methods:
o O(log(1/e)) iterations but requires n gradients per iteration.
e The faster rate is possible because n is finite.

@ For finite n, can we design a better method?

Mini-Batches and Batching Stochastic Average Gradient

Hybrid Deterministic-Stochastic

Approach 1: control the sample size.
Deterministic method uses all n gradients,

I~k
—n;sz(w

@ Stochastic method approximates it with 1 sample,

V fir (w ZW@

@ A common variant is to use larger sample Bk (“mini-batch”),

1 n
Z Vfilw*) ~ n;wm

icBk

particularly useful for vectorization/parallelization.
o For example, with 16 cores set |[B*| = 16 and compute 16 gradients at once.

Mini-Batches and Batching Stochastic Average Gradient

Mini-Batching as Gradient Descent with Error

@ The SG method with a sample B* (“mini-batch”) uses iterations

@ Let's view this as a “gradient method with error”,
Wt = wk — ap(V (") +),
where ¢* is the difference between approximate and true gradient.

(¥ = g¥ — Vf(w") for approximation g*)

@ If you use o = 1/L, then using descent lemma this algorithm has

1 A 1 .
P < Fh) = S ITF)P+ 5 e,
—_—
good bad

for any error eF (not necessarily unbiased or even stochastic).

Mini-Batches and Batching

Effect of Error on Convergence Rate
@ Our progress bound with o, = 1/L and error in the gradient of ¢ is
£ < f@b) — oo VN2 + ot
- 2L 2L ’
—_— —
good bad

and notice that you are guaranteed to decrease f is ¥ < || V.f(w")||.

@ Connection between “error-free” rate and “with error” rate:
o If “error-free” rate is O(1/k), you maintain this rate if ||e*||? = O(1/k).
o If “error-free” rate is O(p*), you maintain this rate if ||e*||2 = O(p").
e If error goes to zero more slowly, then rate that it goes to zero becomes bottleneck.

@ So to understanding effect of batch-size, need to know how |B¥| affects ||¥||?.

Mini-Batches and Batching

Effect of Batch Size on Error

o Effect of batch size |B¥| control error size e*.

o If we sample with replacement we get

1
Elle"I) = rge70”

where o2 is the variance of the gradient norms.
o “Doubling the batch size cuts the error in half”.

o If we sample without replacement from a training set of size n we get

n — Bk' 1
Elle* 2] = | 2
et) = = = 1™

which drives error to zero as batch size approaches n.
e For O(p*) linear convergence, need a schedule like |[B*+!| = |B*|/p.
@ For O(1/k) sublinear convergence, need a schedule like |[B**!| = |B| 4 const.

Mini-Batches and Batching Stochastic Average Gradient

Batching: Growing-Batch-Size Methods

@ The SG method with a sample B¥ uses iterations

W = Z Y fi(w

IB’“
ieBk

o For a fixed sample size |B¥|, the rate is sublinear.
o With fixed step-size, doubling batch size halves radius of “ball” around solution.
o Still need step-size to go to zero to get convergence.

@ But we can grow |B¥| to achieve a faster rate:
o Early iterations are cheap like SG iterations.
o Later iterations can use a sophisticated gradient method.
@ No need to set a magical step-size: use a line-search.
e Can incorporate linear-time approximations to Newton.

@ Another approach: at some point switch from stochastic to deterministic:
o Often after a small number of passes (but hard to know when to switch).

Mini-Batches and Batching

Variance-Reduction

@ Increasing the batch size is a form of variance-reduction.
o A way to decrease the size of the variance in SGD (“bad” term).

@ Many other forms of variance reduction exist.
e Control variates, importance sampling, re-parameterization trick, and so on.

@ These improve constants in SGD convergence rate.
e But don't improve rate unless objecctive is smooth and variance goes to zero.

Mini-Batches and Batching Stochastic Average Gradient

Outline

© Stochastic Average Gradient

Mini-Batches and Batching Stochastic Average Gradient

Previously: Better Methods for Smooth Objectives and Finite Datasets

stochastic

deterministic

log(excess cost)

hybrid

time

@ Stochastic methods:
e O(1/e) iterations but requires 1 gradient per iterations.
@ Deterministic methods:
o O(log(1/e)) iterations but requires n gradients per iteration.
e Growing-batch (“batching”) or “switching” methods:
o O(log(1/e)) iterations, requires fewer than n gradients in early iterations.

Mini-Batches and Batching Stochastic Average Gradient

Stochastic Average Gradient

e Growing |B*| eventually requires O(n) iteration cost.

e Can we have 1 gradient per iteration and only O(log(1/¢)) iterations?
o YES! First method was the stochastic average gradient (SAG) algorithm in 2012.

@ To motivate SAG, let's view gradient descent as performing the iteration

n
oy)
k+1 _ wk o vz&?
n -
=1

w

where on each step we set vF = V f;(w") for all i.

@ SAG method: only set vfk = Vf;, (w") for a randomly-chosen i.

o All other vF are kept at their previous value.

Mini-Batches and Batching Stochastic Average Gradient

Stochastic Average Gradient

@ We can think of SAG as having a memory:

U1
V2

vy ——
where v¥ is the gradient V f;(w*) from the last k where i was selected.

@ On each iteration we:

e Randomly choose one of the v; and update it to the current gradient.
o We take a step in the direction of the average of these v;.

Stochastic Average Gradient

Stochastic Average Gradient

@ Basic SAG algorithm (maintains g = > | v;):
e Set g = 0 and gradient approximation v; =0 fori =1,2,...,n.
o while(1)

Sample ¢ from {1,2,...,n}.

Compute V f;(w).

g=9—vi+Vfi(w).

V; = Vfl(w)

— =
w=w-— g.

@ lteration cost is O(d), and "lazy updates” allow O(z) with sparse gradients.
@ For linear models where f;(w) = h(w'?), it only requires O(n) memory:

. N T, .4 7
Vii(w)=h(w'z") z* .
scalar data

o Least squares is h(z) = 1(z — y*)?, logistic is h(z) = log(1 + exp(—y'z)), etc.

@ For neural networks, would need to store all activations (typically impractical).

Mini-Batches and Batching Stochastic Average Gradient

Stochastic Average Gradient

@ The SAG iteration is

n

Qg
wh = wh — =2 Tk,

n <
=1

where on each iteration we set vfk = Vf;, (w") for a randomly-chosen i.

@ Unlike batching, we use a gradient for every example.
e But the gradients might be out of date.

@ Stochastic variant of earlier increment aggregated gradient (IAG).
o Selects iy, cyclically, which destroys performance.

o Key proof idea: v¥ — V f;(w*) at the same rate that w* — w*:
o So the variance |le||? (“bad term") converges linearly to 0.

Stochastic Average Gradient

Convergence Rate of SAG

If each V f; is L—continuous and f is strongly-convex, with o, = 1/16L SAG has
po 1)
ky AP o -
E[f(w") — f(w")] <O ((1 111111{16L7 8n}>)

@ Number of V f; evaluations to reach accuracy e:

o Stochastic: O(ﬁ(l/e)) (Best when n is enormous)
o Gradient: O(n% log(1/e)).
o Nesterov: O(n\/%log(l/e)). (Best when n is small and L/ is big)

SAG: O(max{n, %} log(1/e)).

@ But note that the L values are again different between algorithms.

Mini-Batches and Batching Stochastic Average Gradient

Comparing Deterministic and Stochastic Methods

@ Two benchmark L2-regularized logistic regression datasets:

10

Objective minus Optimum
Objective minus Optimum

Effective Passes Effective Passes

@ Averaging makes SG work better, deterministic methods eventually catch up.

Mini-Batches and Batching Stochastic Average Gradient

SAG Compared to Deterministic/Stochastic Methods

@ Two benchmark L2-regularized logistic regression datasets:

Objective minus Optimum
Objective minus Optimum

T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes

e Starts like stochastic but linear rate, SAG step-size set to L approximation.

Stochastic Average Gradient

Discussion of SAG and Beyond

@ Bonus slides discuss practical issues related to SAG:

e Setting step-size with an approximation to L.
o Deciding when to stop.
o Lipschitz sampling of training examples.
o Improves rate for SAG, only changes constants for SG.

@ There are now a bunch of stochastic algorithm with fast rates:
SDCA, MISO, mixedGrad, SVRG, S2GD, Finito, SAGA, etc.
Accelerated /Newton-like/coordinate-wise/proximal /ADMM versions.
Analysis in non-convex settings, including new algorithms for PCA.
You can apparently get medals for research:

https://ismp2018.sciencesconf.org/data/pages/_SIJP8196. jpg

@ Most notable variation is SVRG which gets rid of the memory...

https://ismp2018.sciencesconf.org/data/pages/_SJP8196.jpg

Mini-Batches and Batching Stochastic Average Gradient

Stochastic Variance-Reduced Gradient (SVRG)

SVRG algorithm: gets rid of memory by occasionally computing exact gradient.

Wit = wP — o (Vi (0F) = V fi, (ws) + V£ (ws)),

mean zero

where wy is updated every m iterations.

Convergence properties similar to SAG (for suitable m).
@ Unbiased: E[V f;, (ws)] = V f(ws) (special case of “control variate™).
@ Theoretically m depends on L, p, and n (some analyses randomize it).

@ In practice m = n seems to work well.
e O(d) storage at average cost of 3 gradients per iteration.

Mini-Batches and Batching Stochastic Average Gradient

End of Part 2: Key ldeas

@ Typical ML problems are written as optimization problem
argmin F'(w Z fi(w' 2") + Ar(w).
weR?

Coordinate optimization:
e Faster than gradient descent if iterations are d-times cheaper.
o Allows non-smooth 7 if it's separable.
Stochastic subgradient:
o lIteration cost is n-times cheaper than [sub]gradient descent.
e For non-smooth problems, convergence rate is same as subgradient method.
e For smooth problems, number of iterations is much higher than gradient descent.
o Effect of constant step size and batch size.
SAG and SVRG:
e Special case when F' is smooth.
e Same low cost as stochastic gradient methods.
o But similar convergence rate to gradient descent (many extensions exist).

Stochastic Average Gradient

Even Bigger Problems?

o What about datasets that don't fit on one machine?
o We need to consider parallel and distributed optimization.
@ New issues:
e Synchronization: we may not want to wait for the slowest machine.
e Communication: it's expensive to transfer data and parameters across machines.
o Failures: in huge-scale settings, machine failure probability is non-trivial.
o Batch size: for SGD is it better to get more parallelism or more iterations?

@ “Embarassingly” parallel solution:
e Split data across machines, each machine computes gradient of their subset.
o Papers present more fancy methods, but always try this first (“linear speedup”).

@ Fancier methods:
o Asyncronous stochastic subgradient (works fine if you make the step-size smaller).
o Parallel coordinate optimization (works fine if you make the step-size smaller).
o Decentralized gradient (needs a smaller step-size and an “EXTRA" trick).

Stochastic Average Gradient

Skipped Topics: Kernel Methods and Dual Methods

@ In previous years, I've covered the following topics:
@ Kernel methods:

o Allows using some exponential- or infinite-sized feature sets.

Allows defining a “similarity” between training examples rather than features.
Mercer's theorem and how to determine if a kernel is valid.

Representer theorem and models allowing kernel trick.

Multiple kernel learning and connection to structured sparsity.

o Large-scale kernel approximations that avoid the high cost.

@ Dual methods:

Lagrangian function, dual function, and convex conjugate.

Fenchel dual for deriving duals of “loss plus regularizer” problems.

Connection between stochastic subgradient method and dual coordinate ascent.
Turning non-smooth problems into equivalent smooth problems.

Line-search for stochastic subgradient methods.

o If you're interested, | put the slides on these topics here:

https://wuw.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf

https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf

Stochastic Average Gradient

Summary

Mini-batches and effect of batch size.:

e Doubling batch size halves the variance.
e Growing batch size leads to faster rate in terms of iterations.

@ And makes it easier to set the step-size and use Newton-like methods.

Stochastic average gradient: O(log(1/¢)) iterations with 1 gradient per iteration.

SVRG removes the memory requirement of SAG.

Next time: optimization with n = oo (possibly non-11D).

Stochastic Average Gradient

SAG Practical Implementation Issues

@ Implementation tricks:
o Improve performance at start using --g instead of Lg.
@ m is the number of examples visited.

e Common to use o, = 1/L and use adaptive L.

e Start with L = 1 and double it whenever we don't satisfiy

fo (w’“ - 2Vi, (w’“>) < fiu0h) = =V M)

2

and ||V f;, (w®)]|| is non-trivial. Costs O(1) for linear models in terms of n and d.

o Can use [[w*™ — w*||/a = L||g|| = ||V f(w*)|| to decide when to stop.

o Lipschitz sampling of examples improves convergence rate:
@ As with coordinate descent, sample the ones that can change quickly more often.
e For classic SG methods, this only changes constants.

	Mini-Batches and Batching
	Stochastic Average Gradient

