First-Order Optimization Algorithms for Machine Learning Stochastic Subgradient

Mark Schmidt

University of British Columbia

Summer 2020

Last time: Stochastic Gradient Descent

• We discussed minimizing finite sums,

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w),$$

when n is very large.

• We discussed the stochastic gradient method,

$$w^{k+1} = w^k - \alpha_k \nabla f_{i_k}(w^k),$$

where i_k is chosen uniformly from $\{1, 2, \ldots, n\}$.

- Iterations are *n*-times cheaper than gradient descent.
 - But convergence rate is much slower than gradient descent.
 - And tricks like momentum/Newton/adaptive do not close the gap.

Stochastic vs. Deterministic for Non-Smooth

- The story changes for non-smooth problems.
- Consider the binary support vector machine (SVM) objective:

$$f(w) = \sum_{i=1}^{n} \max\{0, 1 - y_i(w^{\top} x_i)\} + \frac{\lambda}{2} ||w||^2.$$

• Rates for subgradient methods for non-smooth objectives:

Assumption	Deterministic	Stochastic
Convex	$O(1/\epsilon^2)$	$O(1/\epsilon^2)$
Strongly	$O(1/\epsilon)$	$O(1/\epsilon)$

- So for non-smooth problems (without nice structure as in proximal-gradient):
 - Deterministic methods are not faster than stochastic method.
 - So use stochastic subgradient (iterations are *n* times faster).

SGD Convergence Rate

Subgradient Method

• The basic subgradient method:

$$w^{k+1} = w^k - \alpha_k g_k,$$

for some $g_k \in \partial f(w^k)$.

- Decreases distance to solution for small enough α_k (for convex f).
- The basic stochastic subgradient method:

$$w^{k+1} = w^k - \alpha_k g_{i_k},$$

for some $g_{i_k} \in \partial f_{i_k}(w^k)$ for some random $i_k \in \{1, 2, \dots, n\}$.

- Stochastic subgradient is n times faster with similar convergence properties.
- Decreases expected distance to solution for small enough α_k (for convex f).

- We'll first show progress bound for stochastic gradient assuming ∇f is Lipschitz. • We'll come back to the non-smooth case.
- Recall the the descent lemma applied to w^{k+1} and w^k ,

$$f(w^{k+1}) \le f(w^k) + \nabla f(w^k)^\top (w^{k+1} - w^k) + \frac{L}{2} \|w^{k+1} - w^k\|^2.$$

• Plugging in stochastic gradient iteration $(w^{k+1}-w^k)=-\alpha_k \nabla f_{i_k}(w^k)$ gives

$$f(w^{k+1}) \le f(w^k) - \alpha_k \nabla f(w^k)^\top \nabla f_{i_k}(w^k) + \alpha_k^2 \frac{L}{2} \|\nabla f_{i_k}(w^k)\|^2.$$

• So far any choice of α_k and i_k we have

$$f(w^{k+1}) \le f(w^k) - \alpha_k \nabla f(w^k)^\top \nabla f_{i_k}(w^k) + \alpha_k^2 \frac{L}{2} \|\nabla f_{i_k}(w^k)\|^2.$$

• Let's take the expectation with respect to i_k assuming $p(i_k = i) = 1/n$,

$$\mathbb{E}[f(w^{k+1})] \leq \mathbb{E}[f(w^k) - \alpha_k \nabla f(w^k)^\top \nabla f_{i_k}(w^k) + \alpha_k^2 \frac{L}{2} \|\nabla f_{i_k}(w^k)\|^2]$$
$$= f(w^k) - \alpha_k \nabla f(w^k)^\top \mathbb{E}[\nabla f_{i_k}(w^k)] + \alpha_k^2 \frac{L}{2} \mathbb{E}[\|\nabla f_{i_k}(w^k)\|^2],$$

where the second line uses linearity of expectation (and α_k not depending on i_k). • We know that $\mathbb{E}[\nabla f_{i_k}(w^k)] = \nabla f(w^k)$ (unbiased) so this gives

$$\mathbb{E}[f(w^{k+1})] \le f(w^k) - \alpha_k \underbrace{\|\nabla f(w^k)\|^2}_{\text{good}} + \alpha_k^2 \underbrace{\frac{L}{2} \mathbb{E}[\|\nabla f_{i_k}(w^k)\|^2]}_{\text{bad}}.$$

• So a progress bound for stochastic gradient is

$$\mathbb{E}[f(w^{k+1})] \leq f(w^k) - \alpha_k \underbrace{\|\nabla f(w^k)\|^2}_{\text{good}} + \alpha_k^2 \underbrace{\frac{L}{2} \mathbb{E}[\|\nabla f_{i_k}(w^k)\|^2]}_{\text{bad}}.$$

 $\bullet\,$ "Good" term looks like usual measure of progress: big gradient \rightarrow big progress.

- "Bad" term is the problem: less progress if gradients are very different.
 - And now choosing $\alpha_k = 1/L$ might not be small enough.
 - But we can control badness: if α_k is small then $\alpha_k >> \alpha_k^2$.
- Step-size α_k controls how fast we move towards solution.
- And squared step-size α_k^2 controls how much variance moves us away.
 - This term will destroy linear convergence.

Stochastic Gradient Convergence Assumptions

• We're going to analyze stochastic gradient rate under these assumptions:

- *f* is bounded below (not necessarily convex).
- ∇f is *L*-Lipschitz continuous.
- $\mathbb{E}[\|\nabla f_i(w)\|^2] \leq \sigma^2$ for some constant σ^2 and all w ("variance" is bounded).
 - This bounds the worst-case effect of the "bad term".
- Possible to relax noise bound to more-realistic $\mathbb{E}[\|\nabla f_i(w^k) \nabla f(w^k)\|^2] \leq \sigma^2$.
 - Just get some extra terms in the result.
- Possible to show similar results for non-smooth functions.
 - Need something stronger than "bounded below" ("weakly convexity" or "tame").
 - 2018: first result that applied to ReLU neural networks.

• Let's use the "variance" bound inside previous bound,

$$\mathbb{E}[f(w^{k+1})] \le f(w^k) - \alpha_k \|\nabla f(w^k)\|^2 + \alpha_k^2 \frac{L}{2} \mathbb{E}[\|\nabla f_{i_k}(w^k)\|^2] \\ \le f(w^k) - \alpha_k \|\nabla f(w^k)\|^2 + \alpha_k^2 \frac{L\sigma^2}{2}$$

• As before, re-arrange to get the gradient norm on the left side,

$$\|\alpha_k\| \nabla f(w^k)\|^2 \le f(w^k) - \mathbb{E}[f(w^{k+1})] + \alpha_k^2 \frac{L\sigma^2}{2}.$$

• Sum this up (and use iterated expectation) to get

$$\sum_{k=1}^{t} \alpha_{k-1} \mathbb{E} \|\nabla f(w^{k-1})\|^2 \le \sum_{k=1}^{t} [\mathbb{E} f(w^{k-1}) - \mathbb{E} f(w^k)] + \sum_{k=1}^{t} \alpha_{k-1}^2 \frac{L\sigma^2}{2}.$$

• The bound from the previous slide:

$$\sum_{k=1}^{t} \alpha_{k-1} \mathbb{E}\underbrace{\|\nabla f(w^{k-1})\|^2}_{\text{bound by min}} \leq \sum_{k=1}^{t} \underbrace{[\mathbb{E}f(w^{k-1}) - \mathbb{E}f(w^k)]}_{\text{telescope}} + \sum_{k=1}^{t} \alpha_{k-1}^2 \underbrace{\frac{L\sigma^2}{2}}_{\text{no } k}$$

Applying the above operations gives

$$\min_{k=0,1,\dots,t-1} \{ \mathbb{E} \| \nabla f(w^k) \|^2 \} \sum_{k=0}^{t-1} \alpha_k \le f(w^0) - \mathbb{E} f(w^t) + \frac{L\sigma^2}{2} \sum_{k=0}^{t-1} \alpha_k^2.$$

 $\bullet~ {\rm Using}~ {\mathbb E} f(w^k) \geq f^*$ and dividing both sides by $\sum_k \alpha_{k-1}$ gives

$$\min_{k=0,1,\dots,t-1} \{ \mathbb{E} \| \nabla f(w^k) \|^2 \} \le \frac{f(w^0) - f^*}{\sum_{k=0}^{t-1} \alpha_k} + \frac{L\sigma^2}{2} \frac{\sum_{k=0}^{t-1} \alpha_k^2}{\sum_{k=0}^{t-1} \alpha_k}.$$

• The final bound (bonus slides show how you can avoid min using random iterate):

$$\min_{k=0,1,\dots,t-1} \{ \mathbb{E} \| \nabla f(w^k) \|^2 \} \le \frac{f(w^0) - f^*}{\sum_{k=0}^{t-1} \alpha_k} + \frac{L\sigma^2}{2} \frac{\sum_{k=0}^{t-1} \alpha_k^2}{\sum_{k=0}^{t-1} \alpha_k}$$

- If $\sigma^2 = 0$, then we could use a constant step-size and would get a O(1/t) rate. • Same as regular gradient descent (though $\sigma^2 = 0$ doesn't really make sense).
- But due to stochasticity, convergence rate is determined by $\sum_k \alpha_k^2 / \sum_k \alpha_k$.
- Classic decreasing step-sizes: set $\alpha_k = \alpha/k$ for some α .
 - Gives $\sum_k \alpha_k = O(\log(t))$ and $\sum_k \alpha_k^2 = O(1)$, so error at t is $O(1/\log(t))$.
- Bigger decreasing step-sizes: set $\alpha_k = \alpha/\sqrt{k}$ for some α .
 - Gives $\sum_k \alpha_k = O(\sqrt{k})$ and $\sum_k \alpha_k^2 = O(\log(k))$, so error at t is $O(\log(t)/\sqrt{t})$.

• Constant step-sizes: set $\alpha_k = \alpha$ for some α .

• Gives $\sum_{k} \alpha_{k} = k\alpha$ and $\sum_{k} \alpha_{k}^{2} = k\alpha^{2}$, so error at t is $O(1/\alpha t) + O(\alpha)$.

SGD Convergence Rate

Practical Issues

Outline

SGD Convergence Rate

Convergence of Stochastic [Sub]Gradient under Strong Convexity

- You can get faster rates if f is strongly-convex:
 - With decreasing $\alpha_k = 1/\mu k$ you get O(1/t) for t iterations (but not linear).
 - But be careful, if you over-estimate μ rate can be much worse.
 - Also, initial steps are huge (this approach only seems to work for binary SVMs).
 - With constant $\alpha_k = \alpha < 1/2\mu$ you get $O(\rho(\alpha)^k) + O(\alpha)$ for t iterations.
 - Linear convergence up to some accuracy proportional to α for sufficiently small α .
- For non-smooth strongly-convex f you get similar results:
 - Setting $\alpha_k = 1/\mu k$ gives $O(\log(t)/t)$.
 - Can improve to O(1/t) by using averaging of the last t/2 values of w^k .
 - Setting $\alpha_k = \alpha < 1/2\mu$ still gives $\mathbb{E}[\|w^k w^*\|^2] = O(\rho(\alpha)^k) + O(\alpha).$
 - Looks like linear convergence if far from solution (or gradients are similar).
 - No progress if close to solution or have high variance in gradients.

Stochastic Subradient with Constant Step Size

• Expected distance with constant step-size and strong convexity (see bonus):

$$\mathbb{E}[\|w^k - w^*\|^2] \le (1 - 2\alpha\mu)^k \|w^0 - w^*\|^2 + \frac{\alpha\sigma^2}{2\mu},$$

• First term looks like linear convergence, but second term does not go to zero.

Stochastic Subradient with Constant Step Size

• Expected distance with constant step-size and strong convexity (see bonus):

$$\mathbb{E}[\|w^k - w^*\|^2] \le (1 - 2\alpha\mu)^k \|w^0 - w^*\|^2 + \frac{\alpha\sigma^2}{2\mu},$$

• First term looks like linear convergence, but second term does not go to zero.

Stochastic Subradient with Constant Step Size

• Expected distance with constant step-size and strong convexity (see bonus):

$$\mathbb{E}[\|w^k - w^*\|^2] \le (1 - 2\alpha\mu)^k \|w^0 - w^*\|^2 + \frac{\alpha\sigma^2}{2\mu},$$

• First term looks like linear convergence, but second term does not go to zero.

Theory justifies "divide the step-size in half if it looks like it's stalled" heuristic.
Halving α divides radius of the ball around w* in half (similar for non-convex).

Practical Issues

Stochastic Subradient with Constant Step Size

• If ∇f is also Lipschitz we can show

$$\mathbb{E}[f(w^k) - f(w^*)] \le (1 - 2\alpha\mu)^k (f(w^0) - f(w^*)) + \frac{L\alpha\sigma^2}{4\mu}.$$

Practical Issues

Stochastic Subradient with Constant Step Size

• If ∇f is also Lipschitz we can show

$$\mathbb{E}[f(w^k) - f(w^*)] \le (1 - 2\alpha\mu)^k (f(w^0) - f(w^*)) + \frac{L\alpha\sigma^2}{4\mu}.$$

Digression: Sparse Features

)	For many	datasets, our	feature vect	ors x^{*} are very sparse	
	"CPSC"	"Expedia"	"vicodin"	<recipient name=""></recipient>	
	1	0	0	0	
	0	1	0	0	
	0	0	1	0	
	0	1	0	1	
	1	0	1	1	
	-	0	T	T	

- Consider case where d is huge but each row x^i has at most z non-zeroes:
 - The O(d) cost of stochastic subgradient might be too high.
 - We can often modify stochastic subgradient to have ${\cal O}(z)$ cost.
- See bonus slides for details on this issue, and how to handle regularization.
 - Various forms of "lazy updates" to deal with non-sparse gradient of regularizer.

Early Stopping

- It's hard to decide when to stop stochastic gradient.
- Common heuristic is "early stopping":
 - Every m iterations, stop and compute the validation error.
 - Stop if the validation error starts increasing.

http://cs231n.github.io/neural-networks-3

• This can be viewed as a form regularization ("stop overfitting before it happens").

Stochastic Nesterov/Newton Methods?

- Should we use Nesterov/Newton-like stochastic methods?
 - These do not improve the $O(1/\epsilon)$ convergence rate.
- In fact, there is a negative result due to Polyak and Ruppert:
 - Classic result is that scaling by $\nabla^2 f(w^*)$ gives optimal asymptotic rate.
 - You can get same rate without Hessian, by just averaging the later iterations:

$$\bar{w}^t = \frac{1}{t-k} \sum_{k'=k}^t w^{k'},$$

- Practical averaging strategies:
 - Could weight all iterations equally.
 - Could ignore first half of the iterations then weight equally.
 - Could weight proportional to k.

Stochastic Nesterov/Newton Methods?

- Some positive results regarding stochastic Nesterov/Newton:
 - Nesterov/Newton can improve dependence on L and $\mu.$
 - May be faster if condition number L/μ is large and noise σ^2 is small.
 - Two-phase Newton-like method achieves $O(1/\epsilon)$ without strong-convexity.
 - AdaGrad method,

$$w^{k+1} = w^k + \alpha D^{-1}g_{i_k}, \quad \text{with diagonal } D_{jj} = \sqrt{\delta + \sum_{k'=0}^k (\nabla_j f_{i_{k'}}(w^{k'}))^2},$$

improves "regret" but not optimization error (we'll cover regret later).

- Some heuristic extensions of AdaGrad:
 - RMSprop: variant of AdaGrad where step-size does not go to zero.
 - Adam: variant where momentum is added.
 - These methods act more like a constant step-size, and do not converge in general.

Active-Set Identification and Regularized Dual Averaging

• You can perform a proximal stochastic sub-gradient iteration,

$$w^{k+\frac{1}{2}} = w^{k} - \alpha_{k} g_{i_{k}}$$
$$w^{k+1} = \underset{v \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ \frac{1}{2} \|v - w^{k+\frac{1}{2}}\|^{2} + \alpha_{k} r(v) \right\}$$

- Does not converge faster than SGD and does not identify active set.
 - Smoothness does not help in the general stochastic setting.
 - With L1-regularization, all w_i^k become non-zero infinitely-often.
- Variant with the active set property (but same rate) is regularized dual averaging,

$$w^{k+\frac{1}{2}} = w^{0} - \frac{\alpha_{k}}{k} \sum_{t=1}^{k} g_{i_{t}}$$
$$w^{k+1} = \underset{v \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ \frac{1}{2} \|v - w^{k+\frac{1}{2}}\|^{2} + \alpha_{k} r(v) \right\}$$

Summary

- Stochastic gradient convergence rate:
 - Decreasing step-size: subgradient slowly converges to exact solution.
 - Same rate as deterministic subgradient but *n*-times cheaper iterations.
- Practical aspects of stochastic gradient methods:
 - Constant step-size: subgradient quickly converges to approximate solution.
 - Sparse datasets, early stopping, iterate averaging.
 - Negative and positive results regarding second-order methods.
 - Does not identify active set, but gradient averaging can fix this.
- Next time: new stochastic methods with linear convergence rates..

Random Iterate for Non-Convex Rate not depending on Min

• The bound we had earlier, but dividing both sides by $\sum_{k=0}^{t} \alpha_k$,

$$\frac{\sum_{k=1}^{t} \alpha_{k-1} \mathbb{E} \|\nabla f(w^{k-1})\|^2}{\sum_{k=0}^{t-1} \alpha_k} \le \frac{\sum_{k=1}^{t} [\mathbb{E} f(w^{k-1}) - \mathbb{E} f(w^k)] + \sum_{k=1}^{t} \alpha_{k-1}^2 \frac{L\sigma^2}{2}}{\sum_{k=0}^{t-1} \alpha_k}$$

• Now choose $\hat{k} \in \{0, 1, \dots, t-1\}$ according to $p(\hat{k}) = \alpha_k / \sum_{i=0}^{t-1} \alpha_i$.

• Notice that LHS above is expectation with respect to \hat{k} of $\mathbb{E} \| \nabla f(w^{\hat{k}}) \|^2$,

$$\mathbb{E} \|\nabla f(w^{\hat{k}})\|^{2} \leq \frac{f(w^{0}) - f^{*}}{\sum_{k=0}^{t-1} \alpha_{k}} + \frac{L\sigma^{2}}{2} \frac{\sum_{k=0}^{t-1} \alpha_{k}^{2}}{\sum_{k=0}^{t-1} \alpha_{k}}$$

- So choosing an iterate in this way avoids needing to know the min.
 - Notice that RHS is the same.

• The basic stochastic subgradient method (for random i_t and $g_{i_t} \in \partial f_{i_t}(x^t)$):

$$x^{t+1} = x^t - \alpha g_{i_t},$$

- We can't use descent lemma because f is non-differentiable.
- $\bullet\,$ Since function value may not decrease, we analyze distance to $x^*:$

$$\begin{aligned} x^{t} - x^{*} \|^{2} &= \| (x^{t-1} - \alpha_{t} g_{i_{t}}) - x^{*} \|^{2} \\ &= \| (x^{t-1} - x^{*}) - \alpha_{t} g_{i_{t}} \|^{2} \\ &= \| x^{t-1} - x^{*} \|^{2} - 2\alpha_{t} g_{i_{t}}^{\top} (x^{t-1} - x^{*}) + \alpha_{t}^{2} \| g_{i_{t}} \|^{2} \end{aligned}$$

• Take expectation with respect to i_t :

$$\begin{split} \mathbb{E}[\|x^{t} - x^{*}\|^{2}] &= \mathbb{E}[\|x^{t-1} - x^{*}\|] - 2\alpha_{t}\mathbb{E}[g_{i_{t}}^{\top}(x^{t-1} - x^{*})] + \alpha_{t}^{2}\mathbb{E}[\|g_{i_{t}}\|^{2}] \\ &= \underbrace{\|x^{t-1} - x^{*}\|^{2}}_{\text{old distance}} - 2\alpha_{t}\underbrace{g_{t}^{\top}(x^{t-1} - x^{*})}_{\text{expected progress}} + \alpha_{t}^{2}\underbrace{\mathbb{E}[\|g_{i_{t}}\|^{2}]}_{\text{"variance"}}. \end{split}$$

where g_t is a subgradient of f at w^k (expected progress is positive by convexity).

Convergence Rate of Stochastic Subgradient

• Our expected distance given x^{t-1} is

$$\mathbb{E}[\|x^t - x^*\|^2] = \underbrace{\|x^{t-1} - x^*\|^2}_{\text{old distance}} - 2\alpha_t \underbrace{g_t^\top(x^{t-1} - x^*)}_{\text{expected progress}} + \alpha_t^2 \underbrace{\mathbb{E}[\|g_{i_t}\|^2]}_{\text{"variance"}}.$$

• It follows from strong-convexity that (next slide),

$$g_t^{\top}(x^{t-1} - x^*) \ge \mu \|x^{t-1} - x^*\|^2,$$

which gives (assuming variance is bounded by constant σ^2):

$$\mathbb{E}[\|x^{t} - x^{*}\|^{2}] \leq \|x^{t-1} - x^{*}\|^{2} - 2\alpha_{t}\mu\|x^{t-1} - x^{*}\|^{2} + \alpha_{t}^{2}\sigma^{2}$$
$$= (1 - 2\alpha_{t}\mu)\|x^{t-1} - x^{*}\|^{2} + \alpha_{t}^{2}\sigma^{2}.$$

• With constant $\alpha_k = \alpha$ (with $\alpha < 2/\mu$) and applying recursively we get (with work)

$$\mathbb{E}[\|w^k - w^*\|^2] \le (1 - 2\alpha\mu)^k \|w^0 - w^*\|^2 + \frac{\alpha\sigma^2}{2\mu},$$

where second term bounds a geometric series.

Strong-Convexity Inequalities for Non-Differentiable f

- A "first-order" relationship between subgradient and strong-convexity:
 - $\bullet~$ If f is $\mu\text{-strongly convex then for all }x$ and y we have

$$f(y) \ge f(x) + f'(y)^{\top}(y-x) + \frac{\mu}{2} \|y-x\|^2,$$

for $f'(y) \in \partial f(x)$.

- The first-order definition of strong-convexity, but with subgradient replacing gradient.
- Reversing \boldsymbol{y} and \boldsymbol{x} we can write

$$f(x) \ge f(y) + f'(x)^{\top}(x-y) + \frac{\mu}{2} ||x-y||^2,$$

for $f'(x) \in \partial f(x)$.

• Adding the above together gives

$$(f'(y) - f'(x))^{\top}(y - x)) \ge \mu ||y - x||^2.$$

• Applying this with $y = x^{t-1}$ and subgradient g_t and $x = x^*$ (which has $f'(x^*) = 0$ for some subgradient) gives

$$(g_t - 0)^{\top} (x^{t-1} - x^*) \ge \mu ||x^{t-1} - x^*||^2.$$

Convergence Rate of Stochastic Subgradient

• For full details of analyzing stochastic gradient under strong convexity, see:

- Constant α_k: http://circle.ubc.ca/bitstream/handle/2429/50358/ stochasticGradientConstant.pdf.
- Decreasing α_k : http://arxiv.org/pdf/1212.2002v2.pdf.
- For both cases under PL, see Theorem 4 here:
 - https://arxiv.org/pdf/1608.04636v2.pdf

Operations on Sparse Vectors

• Consider a vector $g \in \mathbb{R}^d$ with at most z non-zeroes:

$$g^T = \begin{bmatrix} 0 & 0 & 0 & 1 & 2 & 0 & -0.5 & 0 & 0 \end{bmatrix}.$$

If z << d, we can store the vector using O(z) storage instead of O(d):
Just store the non-zero values:

$$g_{\text{value}}^T = \begin{bmatrix} 1 & 2 & -0.5 \end{bmatrix}.$$

• Store index of each non-zero ("pointer"):

$$g_{\mathsf{point}}^T = \begin{bmatrix} 4 & 5 & 7 \end{bmatrix}.$$

- With this representation, we can do standard vector operations in O(z):
 - Compute αg in O(z) by setting $g_{\text{value}} = \alpha g_{\text{value}}$.
 - Compute $w^T g$ in O(z) by multiplying g_{value} by w at positions g_{point} .

• Consider optimizing the hinge-loss,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \, \frac{1}{n} \sum_{i=1}^n \max\{0, 1-y^i(w^T x^i)\},$$

when d is huge but each x^i has at most z non-zeroes.

• A stochastic subgradient method could use

$$w^{k+1} = w^k - \alpha_k g_{i_k}, \text{ where } g_i = \begin{cases} -y^i x^i & \text{if } 1 - y^i (w^T x^i) > 0\\ 0 & \text{otherwise} \end{cases}$$

• Calculating w^{k+1} is O(z) since these are sparse vector operations.

- So stochastic subgradient is fast if z is small even if d is large.
 - This is how you "train on all e-mails": each e-mail has a limited number of words.

• But consider the L2-regularized hinge-loss in the same setting,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x^i)\} + \frac{\lambda}{2} \|w\|^2,$$

using a stochastic subgradient method,

$$w^{k+1} = w^k - \alpha_k g_{i_k} - \frac{\alpha_k \lambda w^k}{\lambda w^k}$$
, where g_{i_k} is same as before.

• Problems is that w^k could have d non-zeroes:

- So adding L2-regularization increases cost from O(z) to O(d)?
- There are two standard ways to keep the cost at O(z):
 - L2-regularization: use a $w^k = \beta^k v^k$ (scalar times vector) representation.
 - "Lazy" updates (which work for many regularizers).

• But consider the L2-regularized hinge-loss in the same setting,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y_i(w^T x^i)\} + \frac{\lambda}{2} \|w\|^2,$$

using a stochastic subgradient method,

$$w^{k+1} = w^k - \alpha_k g_{i_k} - \frac{\alpha_k \lambda w^k}{\lambda w^k}$$
, where g_{i_k} is same as before

- Problems is that w^t could have d non-zeroes:
 - So adding L2-regularization increases cost from O(z) to O(d)?
- To use L2-regularization and keep O(z) cost, re-write iteration as

$$w^{t+1} = w^t - \alpha_t g_{i_t} - \alpha_t \lambda w^t$$

= $\underbrace{(1 - \alpha_t \lambda) w^t}_{\text{changes scale of } w^t} - \underbrace{\alpha_t g_{i_t}}_{\text{sparse update}}$

• Let's write the update as two steps

$$w^{t+\frac{1}{2}} = (1 - \alpha_t \lambda) w^t, \quad w^{t+1} = w^{t+\frac{1}{2}} - \alpha_t g_{i_t}.$$

• We can implement both steps in O(z) if we re-parameterize as

 $w^t = \beta^t v^t,$

for some scalar β^t and vector v^t .

• For the first step we can use

$$\beta^{t+\frac{1}{2}} = (1 - \alpha_t \lambda)\beta^t, \quad v^{t+\frac{1}{2}} = v^t.$$

which costs O(1).

• For the second step we can use

$$\beta^{t+1} = \beta^{t+\frac{1}{2}}, \quad v^{t+1} = v^{t+\frac{1}{2}} - \frac{\alpha_t}{\beta^{t+\frac{1}{2}}}g_{i_t},$$

which costs O(z).

Lazy Updates for Sparse Features with Dense Regularizers

• Consider a feature j that has been zero in the loss for 10 iterations (constant α):

$$w_j^k = w_j^{k-1} - 0 - \alpha \lambda w_j^{k-1}$$
$$= (1 - \alpha \lambda) w_j^{k-1}$$
$$= (1 - \alpha \lambda)^2 w_j^{k-2}$$
$$\vdots$$

$$= (1 - \alpha \lambda)^{10} w_j^{k-10}.$$

- So we can apply 10 regularizer gradient steps in O(1).
- Lazy updates:
 - If j is zero in g_{i_k} , do nothing.
 - If j is non-zero, apply all the old regularizer updates then do the gradient step.
 - Requires keeping a "checkpoint" of the last time each variable was updated.

Lazy Updates for Sparse Features with Dense Regularizers

- Lazy updates that track cumulative effects of simple updates.
- Considern stochastic proximal-gradient for L1-regularization:
 - Soft-threshold operator with constant step-size α applies to each element,

$$w_j^{k+1} = \operatorname{sign}(w_j^k) \max\{0, |w_j^k| - \alpha \lambda\}.$$

• If all that happens to w_j for 10 iterations is the proximal operator, we can use

$$w_j^{k+10} = \operatorname{sign}(w_j^k) \max\{0, |w_k^k| - 10\alpha\lambda\}.$$

- Digression: stochastic proximal-gradient methods:
 - Same convergence rates as basic stochastic gradient method (doesn't help).
 - Unlike deterministic proximal-gradient method, does not find final non-zero pattern in finite time.
 - Regularized dual averaging is a variant that has this property.