
SGD Convergence Rate Practical Issues

First-Order Optimization Algorithms for Machine Learning
Stochastic Subgradient

Mark Schmidt

University of British Columbia

Summer 2020



SGD Convergence Rate Practical Issues

Last time: Stochastic Gradient Descent

We discussed minimizing finite sums,

f(w) =
1

n

n∑
i=1

fi(w),

when n is very large.

We discussed the stochastic gradient method,

wk+1 = wk − αk∇fik(wk),

where ik is chosen uniformly from{1, 2, . . . , n}.

Iterations are n-times cheaper than gradient descent.
But convergence rate is much slower than gradient descent.

And tricks like momentum/Newton/adaptive do not close the gap.



SGD Convergence Rate Practical Issues

Stochastic vs. Deterministic for Non-Smooth

The story changes for non-smooth problems.

Consider the binary support vector machine (SVM) objective:

f(w) =

n∑
i=1

max{0, 1− yi(w>xi)}+
λ

2
‖w‖2.

Rates for subgradient methods for non-smooth objectives:

Assumption Deterministic Stochastic

Convex O(1/ε2) O(1/ε2)
Strongly O(1/ε) O(1/ε)

So for non-smooth problems (without nice structure as in proximal-gradient):

Deterministic methods are not faster than stochastic method.
So use stochastic subgradient (iterations are n times faster).



SGD Convergence Rate Practical Issues

Subgradient Method

The basic subgradient method:

wk+1 = wk − αkgk,

for some gk ∈ ∂f(wk).

Decreases distance to solution for small enough αk (for convex f).

The basic stochastic subgradient method:

wk+1 = wk − αkgik ,

for some gik ∈ ∂fik(wk) for some random ik ∈ {1, 2, . . . , n}.

Stochastic subgradient is n times faster with similar convergence properties.

Decreases expected distance to solution for small enough αk (for convex f).



SGD Convergence Rate Practical Issues

Convergence Rate of Stochastic Gradient Method

We’ll first show progress bound for stochastic gradient assuming ∇f is Lipschitz.

We’ll come back to the non-smooth case.

Recall the the descent lemma applied to wk+1 and wk,

f(wk+1) ≤ f(wk) +∇f(wk)>(wk+1 − wk) +
L

2
‖wk+1 − wk‖2.

Plugging in stochastic gradient iteration (wk+1 − wk) = −αk∇fik(wk) gives

f(wk+1) ≤ f(wk)− αk∇f(wk)>∇fik(wk) + α2
k

L

2
‖∇fik(wk)‖2.



SGD Convergence Rate Practical Issues

Convergence Rate of Stochastic Gradient Method

So far any choice of αk and ik we have

f(wk+1) ≤ f(wk)− αk∇f(wk)>∇fik(wk) + α2
k

L

2
‖∇fik(wk)‖2.

Let’s take the expectation with respect to ik assuming p(ik = i) = 1/n,

E[f(wk+1)] ≤ E[f(wk)− αk∇f(wk)>∇fik(wk) + α2
k

L

2
‖∇fik(wk)‖2]

= f(wk)− αk∇f(wk)>E[∇fik(wk)] + α2
k

L

2
E[‖∇fik(wk)‖2],

where the second line uses linearity of expectation (and αk not depending on ik).

We know that E[∇fik(wk)] = ∇f(wk) (unbiased) so this gives

E[f(wk+1)] ≤ f(wk)− αk‖∇f(wk)‖2︸ ︷︷ ︸
good

+ α2
k

L

2
E[‖∇fik(wk)‖2]︸ ︷︷ ︸

bad

.



SGD Convergence Rate Practical Issues

Convergence Rate of Stochastic Gradient Method

So a progress bound for stochastic gradient is

E[f(wk+1)] ≤ f(wk)− αk‖∇f(wk)‖2︸ ︷︷ ︸
good

+ α2
k

L

2
E[‖∇fik(wk)‖2]︸ ︷︷ ︸

bad

.

“Good” term looks like usual measure of progress: big gradient → big progress.

“Bad” term is the problem: less progress if gradients are very different.

And now choosing αk = 1/L might not be small enough.
But we can control badness: if αk is small then αk >> α2

k.

Step-size αk controls how fast we move towards solution.

And squared step-size α2
k controls how much variance moves us away.

This term will destroy linear convergence.



SGD Convergence Rate Practical Issues

Stochastic Gradient Convergence Assumptions

We’re going to analyze stochastic gradient rate under these assumptions:

f is bounded below (not necessarily convex).
∇f is L-Lipschitz continuous.
E[‖∇fi(w)‖2] ≤ σ2 for some constant σ2 and all w (“variance” is bounded).

This bounds the worst-case effect of the “bad term”.

Possible to relax noise bound to more-realistic E[‖∇fi(wk)−∇f(wk)‖2] ≤ σ2.

Just get some extra terms in the result.

Possible to show similar results for non-smooth functions.

Need something stronger than “bounded below” (“weakly convexity” or “tame”).
2018: first result that applied to ReLU neural networks.



SGD Convergence Rate Practical Issues

Convergence Rate of Stochastic Gradient Method

Let’s use the “variance” bound inside previous bound,

E[f(wk+1)] ≤ f(wk)− αk‖∇f(wk)‖2 + α2
k

L

2
E[‖∇fik(wk)‖2]

≤ f(wk)− αk‖∇f(wk)‖2 + α2
k

Lσ2

2

As before, re-arrange to get the gradient norm on the left side,

αk‖∇f(wk)‖2 ≤ f(wk)− E[f(wk+1)] + α2
k

Lσ2

2
.

Sum this up (and use iterated expectation) to get

t∑
k=1

αk−1E‖∇f(wk−1)‖2 ≤
t∑

k=1

[Ef(wk−1)− Ef(wk)] +

t∑
k=1

α2
k−1

Lσ2

2
.



SGD Convergence Rate Practical Issues

Convergence Rate of Stochastic Gradient Method

The bound from the previous slide:

t∑
k=1

αk−1E‖∇f(wk−1)‖2︸ ︷︷ ︸
bound by min

≤
t∑

k=1

[Ef(wk−1)− Ef(wk)︸ ︷︷ ︸
telescope

] +

t∑
k=1

α2
k−1

Lσ2

2︸︷︷︸
no k

.

Applying the above operations gives

min
k=0,1,...,t−1

{E‖∇f(wk)‖2}
t−1∑
k=0

αk ≤ f(w0)− Ef(wt) +
Lσ2

2

t−1∑
k=0

α2
k.

Using Ef(wk) ≥ f∗ and dividing both sides by
∑

k αk−1 gives

min
k=0,1,...,t−1

{E‖∇f(wk)‖2} ≤ f(w0)− f∗∑t−1
k=0 αk

+
Lσ2

2

∑t−1
k=0 α

2
k∑t−1

k=0 αk
.



SGD Convergence Rate Practical Issues

Convergence Rate of Stochastic Gradient Method
The final bound (bonus slides show how you can avoid min using random iterate):

min
k=0,1,...,t−1

{E‖∇f(wk)‖2} ≤ f(w0)− f∗∑t−1
k=0 αk

+
Lσ2

2

∑t−1
k=0 α

2
k∑t−1

k=0 αk
.

If σ2 = 0, then we could use a constant step-size and would get a O(1/t) rate.
Same as regular gradient descent (though σ2 = 0 doesn’t really make sense).

But due to stochasticity, convergence rate is determined by
∑

k α
2
k/
∑

k αk.

Classic decreasing step-sizes: set αk = α/k for some α.
Gives

∑
k αk = O(log(t)) and

∑
k α

2
k = O(1), so error at t is O(1/ log(t)).

Bigger decreasing step-sizes: set αk = α/
√
k for some α.

Gives
∑

k αk = O(
√
k) and

∑
k α

2
k = O(log(k)), so error at t is O(log(t)/

√
t).

Constant step-sizes: set αk = α for some α.
Gives

∑
k αk = kα and

∑
k α

2
k = kα2, so error at t is O(1/αt) +O(α).



SGD Convergence Rate Practical Issues

Outline

1 SGD Convergence Rate

2 Practical Issues



SGD Convergence Rate Practical Issues

Convergence of Stochastic [Sub]Gradient under Strong Convexity

You can get faster rates if f is strongly-convex:
With decreasing αk = 1/µk you get O(1/t) for t iterations (but not linear).

But be careful, if you over-estimate µ rate can be much worse.
Also, initial steps are huge (this approach only seems to work for binary SVMs).

With constant αk = α < 1/2µ you get O(ρ(α)k) +O(α) for t iterations.

Linear convergence up to some accuracy proportional to α for sufficiently small α.

For non-smooth strongly-convex f you get similar results:
Setting αk = 1/µk gives O(log(t)/t).

Can improve to O(1/t) by using averaging of the last t/2 values of wk.

Setting αk = α < 1/2µ still gives E[‖wk − w∗‖2] = O(ρ(α)k) +O(α).

Looks like linear convergence if far from solution (or gradients are similar).
No progress if close to solution or have high variance in gradients.



SGD Convergence Rate Practical Issues

Stochastic Subradient with Constant Step Size

Expected distance with constant step-size and strong convexity (see bonus):

E[‖wk − w∗‖2] ≤ (1− 2αµ)k‖w0 − w∗‖2 +
ασ2

2µ
,

First term looks like linear convergence, but second term does not go to zero.



SGD Convergence Rate Practical Issues

Stochastic Subradient with Constant Step Size

Expected distance with constant step-size and strong convexity (see bonus):

E[‖wk − w∗‖2] ≤ (1− 2αµ)k‖w0 − w∗‖2 +
ασ2

2µ
,

First term looks like linear convergence, but second term does not go to zero.



SGD Convergence Rate Practical Issues

Stochastic Subradient with Constant Step Size

Expected distance with constant step-size and strong convexity (see bonus):

E[‖wk − w∗‖2] ≤ (1− 2αµ)k‖w0 − w∗‖2 +
ασ2

2µ
,

First term looks like linear convergence, but second term does not go to zero.

Theory justifies “divide the step-size in half if it looks like it’s stalled” heuristic.
Halving α divides radius of the ball around w∗ in half (similar for non-convex).



SGD Convergence Rate Practical Issues

Stochastic Subradient with Constant Step Size

If ∇f is also Lipschitz we can show

E[f(wk)− f(w∗)] ≤ (1− 2αµ)k(f(w0)− f(w∗)) +
Lασ2

4µ
.



SGD Convergence Rate Practical Issues

Stochastic Subradient with Constant Step Size

If ∇f is also Lipschitz we can show

E[f(wk)− f(w∗)] ≤ (1− 2αµ)k(f(w0)− f(w∗)) +
Lασ2

4µ
.



SGD Convergence Rate Practical Issues

Digression: Sparse Features

For many datasets, our feature vectors xi are very sparse:
“CPSC” “Expedia” “vicodin” <recipient name> . . .

1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 1 0 1 . . .
1 0 1 1 . . .

Consider case where d is huge but each row xi has at most z non-zeroes:

The O(d) cost of stochastic subgradient might be too high.
We can often modify stochastic subgradient to have O(z) cost.

See bonus slides for details on this issue, and how to handle regularization.

Various forms of “lazy updates” to deal with non-sparse gradient of regularizer.



SGD Convergence Rate Practical Issues

Early Stopping

It’s hard to decide when to stop stochastic gradient.
Common heuristic is “early stopping”:

Every m iterations, stop and compute the validation error.
Stop if the validation error starts increasing.

http://cs231n.github.io/neural-networks-3

This can be viewed as a form regularization (“stop overfitting before it happens”).

http://cs231n.github.io/neural-networks-3


SGD Convergence Rate Practical Issues

Stochastic Nesterov/Newton Methods?

Should we use Nesterov/Newton-like stochastic methods?

These do not improve the O(1/ε) convergence rate.

In fact, there is a negative result due to Polyak and Ruppert:

Classic result is that scaling by ∇2f(w∗) gives optimal asymptotic rate.
You can get same rate without Hessian, by just averaging the later iterations:

w̄t =
1

t− k

t∑
k′=k

wk′
,

Practical averaging strategies:

Could weight all iterations equally.
Could ignore first half of the iterations then weight equally.
Could weight proportional to k.



SGD Convergence Rate Practical Issues

Stochastic Nesterov/Newton Methods?

Some positive results regarding stochastic Nesterov/Newton:
Nesterov/Newton can improve dependence on L and µ.

May be faster ifcondition number L/µ is large and noise σ2 is small.

Two-phase Newton-like method achieves O(1/ε) without strong-convexity.

AdaGrad method,

wk+1 = wk + αD−1gik , with diagonal Djj =

√√√√δ +

k∑
k′=0

(∇jfik′ (wk′))2,

improves “regret” but not optimization error (we’ll cover regret later).

Some heuristic extensions of AdaGrad:
RMSprop: variant of AdaGrad where step-size does not go to zero.
Adam: variant where momentum is added.
These methods act more like a constant step-size, and do not converge in general.



SGD Convergence Rate Practical Issues

Active-Set Identification and Regularized Dual Averaging

You can perform a proximal stochastic sub-gradient iteration,

wk+
1
2 = wk − αkgik

wk+1 = argmin
v∈Rd

{
1

2
‖v − wk+

1
2 ‖2 + αkr(v)

}
.

Does not converge faster than SGD and does not identify active set.
Smoothness does not help in the general stochastic setting.
With L1-regularization, all wk

j become non-zero infinitely-often.

Variant with the active set property (but same rate) is regularized dual averaging,

wk+
1
2 = w0 − αk

k

k∑
t=1

git

wk+1 = argmin
v∈Rd

{
1

2
‖v − wk+

1
2 ‖2 + αkr(v)

}
.



SGD Convergence Rate Practical Issues

Summary

Stochastic gradient convergence rate:
Decreasing step-size: subgradient slowly converges to exact solution.

Same rate as deterministic subgradient but n-times cheaper iterations.

Practical aspects of stochastic gradient methods:

Constant step-size: subgradient quickly converges to approximate solution.
Sparse datasets, early stopping, iterate averaging.
Negative and positive results regarding second-order methods.
Does not identify active set, but gradient averaging can fix this.

Next time: new stochastic methods with linear convergence rates..



SGD Convergence Rate Practical Issues

Random Iterate for Non-Convex Rate not depending on Min

The bound we had earlier, but dividing both sides by
∑t

k=0 αk,∑t
k=1 αk−1E‖∇f(wk−1)‖2∑t−1

k=0 αk
≤
∑t

k=1[Ef(wk−1)− Ef(wk)] +
∑t

k=1 α
2
k−1

Lσ2

2∑t−1
k=0 αk

Now choose k̂ ∈ {0, 1, . . . , t− 1} according to p(k̂) = αk/
∑t−1

i=0 αi.

Notice that LHS above is expectation with respect to k̂ of E‖∇f(wk̂)‖2,

E‖∇f(wk̂)‖2 ≤ f(w0)− f∗∑t−1
k=0 αk

+
Lσ2

2

∑t−1
k=0 α

2
k∑t−1

k=0 αk
.

So choosing an iterate in this way avoids needing to know the min.

Notice that RHS is the same.



SGD Convergence Rate Practical Issues

Convergence Rate of Stochastic Subgradient Method
The basic stochastic subgradient method (for random it and git ∈ ∂fit(xt)):

xt+1 = xt − αgit ,
We can’t use descent lemma because f is non-differentiable.
Since function value may not decrease, we analyze distance to x∗:

‖xt − x∗‖2 = ‖(xt−1 − αtgit)− x∗‖2

= ‖(xt−1 − x∗)− αtgit‖2

= ‖xt−1 − x∗‖2 − 2αtg
>
it (xt−1 − x∗) + α2

t ‖git‖2.
Take expectation with respect to it:

E[‖xt − x∗‖2] = E[‖xt−1 − x∗‖]− 2αtE[g>it (xt−1 − x∗)] + α2
tE[‖git‖2]

= ‖xt−1 − x∗‖2︸ ︷︷ ︸
old distance

−2αt g
>
t (xt−1 − x∗)︸ ︷︷ ︸
expected progress

+α2
t E[‖git‖2]︸ ︷︷ ︸

“variance”

.

where gt is a subgradient of f at wk (expected progress is positive by convexity).



SGD Convergence Rate Practical Issues

Convergence Rate of Stochastic Subgradient
Our expected distance given xt−1 is

E[‖xt − x∗‖2] = ‖xt−1 − x∗‖2︸ ︷︷ ︸
old distance

−2αt g
>
t (xt−1 − x∗)︸ ︷︷ ︸
expected progress

+α2
t E[‖git‖2]︸ ︷︷ ︸

“variance”

.

It follows from strong-convexity that (next slide),

g>t (xt−1 − x∗) ≥ µ‖xt−1 − x∗‖2,
which gives (assuming variance is bounded by constant σ2):

E[‖xt − x∗‖2] ≤ ‖xt−1 − x∗‖2 − 2αtµ‖xt−1 − x∗‖2 + α2
tσ

2

= (1− 2αtµ)‖xt−1 − x∗‖2 + α2
tσ

2.

With constant αk = α (with α < 2/µ) and applying recursively we get (with work)

E[‖wk − w∗‖2] ≤ (1− 2αµ)k‖w0 − w∗‖2 +
ασ2

2µ
,

where second term bounds a geometric series.



SGD Convergence Rate Practical Issues

Strong-Convexity Inequalities for Non-Differentiable f
A “first-order” relationship between subgradient and strong-convexity:

If f is µ-strongly convex then for all x and y we have

f(y) ≥ f(x) + f ′(y)>(y − x) +
µ

2
‖y − x‖2,

for f ′(y) ∈ ∂f(x).
The first-order definition of strong-convexity, but with subgradient replacing gradient.
Reversing y and x we can write

f(x) ≥ f(y) + f ′(x)>(x− y) +
µ

2
‖x− y‖2,

for f ′(x) ∈ ∂f(x).
Adding the above together gives

(f ′(y)− f ′(x))>(y − x)) ≥ µ‖y − x‖2.
Applying this with y = xt−1 and subgradient gt and x = x∗ (which has f ′(x∗) = 0
for some subgradient) gives

(gt − 0)>(xt−1 − x∗) ≥ µ‖xt−1 − x∗‖2.



SGD Convergence Rate Practical Issues

Convergence Rate of Stochastic Subgradient

For full details of analyzing stochastic gradient under strong convexity, see:

Constant αk: http://circle.ubc.ca/bitstream/handle/2429/50358/

stochasticGradientConstant.pdf.
Decreasing αk: http://arxiv.org/pdf/1212.2002v2.pdf.

For both cases under PL, see Theorem 4 here:

https://arxiv.org/pdf/1608.04636v2.pdf

http://circle.ubc.ca/bitstream/handle/2429/50358/stochasticGradientConstant.pdf
http://circle.ubc.ca/bitstream/handle/2429/50358/stochasticGradientConstant.pdf
http://arxiv.org/pdf/1212.2002v2.pdf


SGD Convergence Rate Practical Issues

Operations on Sparse Vectors

Consider a vector g ∈ Rd with at most z non-zeroes:

gT =
[
0 0 0 1 2 0 −0.5 0 0 0

]
.

If z << d, we can store the vector using O(z) storage instead of O(d):

Just store the non-zero values:

gTvalue =
[
1 2 −0.5

]
.

Store index of each non-zero (“pointer”):

gTpoint =
[
4 5 7

]
.

With this representation, we can do standard vector operations in O(z):

Compute αg in O(z) by setting gvalue = αgvalue.
Compute wT g in O(z) by multiplying gvalue by w at positions gpoint.



SGD Convergence Rate Practical Issues

Stochastic Subgradient with Sparse Features

Consider optimizing the hinge-loss,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)},

when d is huge but each xi has at most z non-zeroes.

A stochastic subgradient method could use

wk+1 = wk − αkgik , where gi =

{
−yixi if 1− yi(wTxi) > 0

0 otherwise

Calculating wk+1 is O(z) since these are sparse vector operations.

So stochastic subgradient is fast if z is small even if d is large.
This is how you “train on all e-mails”: each e-mail has a limited number of words.



SGD Convergence Rate Practical Issues

Stochastic Subgradient with Sparse Features

But consider the L2-regularized hinge-loss in the same setting,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

using a stochastic subgradient method,

wk+1 = wk − αkgik − αkλw
k, where gik is same as before.

Problems is that wk could have d non-zeroes:

So adding L2-regularization increases cost from O(z) to O(d)?

There are two standard ways to keep the cost at O(z):

L2-regularization: use a wk = βkvk (scalar times vector) representation.
“Lazy” updates (which work for many regularizers).



SGD Convergence Rate Practical Issues

Stochastic Subgradient with Sparse Features

But consider the L2-regularized hinge-loss in the same setting,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

using a stochastic subgradient method,

wk+1 = wk − αkgik − αkλw
k, where gik is same as before

Problems is that wt could have d non-zeroes:
So adding L2-regularization increases cost from O(z) to O(d)?

To use L2-regularization and keep O(z) cost, re-write iteration as

wt+1 = wt − αtgit − αtλwt

= (1− αtλ)wt︸ ︷︷ ︸
changes scale of wt

− αtgit .︸ ︷︷ ︸
sparse update



SGD Convergence Rate Practical Issues

Stochastic Subgradient with Sparse Features
Let’s write the update as two steps

wt+
1
2 = (1− αtλ)wt, wt+1 = wt+

1
2 − αtgit .

We can implement both steps in O(z) if we re-parameterize as

wt = βtvt,

for some scalar βt and vector vt.
For the first step we can use

βt+
1
2 = (1− αtλ)βt, vt+

1
2 = vt.

which costs O(1).
For the second step we can use

βt+1 = βt+
1
2 , vt+1 = vt+

1
2 − αt

βt+
1
2

git ,

which costs O(z).



SGD Convergence Rate Practical Issues

Lazy Updates for Sparse Features with Dense Regularizers

Consider a feature j that has been zero in the loss for 10 iterations (constant α):

wkj = wk−1j − 0− αλwk−1j

= (1− αλ)wk−1j

= (1− αλ)2wk−2j

...

= (1− αλ)10wk−10j .

So we can apply 10 regularizer gradient steps in O(1).

Lazy updates:
If j is zero in gik , do nothing.
If j is non-zero, apply all the old regularizer updates then do the gradient step.

Requires keeping a “checkpoint” of the last time each variable was updated.



SGD Convergence Rate Practical Issues

Lazy Updates for Sparse Features with Dense Regularizers

Lazy updates that track cumulative effects of simple updates.

Considern stochastic proximal-gradient for L1-regularization:
Soft-threshold operator with constant step-size α applies to each element,

wk+1
j = sign(wk

j ) max{0, |wk
j | − αλ}.

If all that happens to wj for 10 iterations is the proximal operator, we can use

wk+10
j = sign(wk

j ) max{0, |wk
k | − 10αλ}.

Digression: stochastic proximal-gradient methods:
Same convergence rates as basic stochastic gradient method (doesn’t help).
Unlike deterministic proximal-gradient method, does not find final non-zero pattern
in finite time.

Regularized dual averaging is a variant that has this property.


	SGD Convergence Rate
	Practical Issues

