First-Order Optimization Algorithms for Machine Learning

Stochastic Subgradient

Mark Schmidt

University of British Columbia

Summer 2020
Last time: Stochastic Gradient Descent

- We discussed minimizing finite sums,

\[f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w), \]

when \(n \) is very large.

- We discussed the stochastic gradient method,

\[w^{k+1} = w^k - \alpha_k \nabla f_{i_k}(w^k), \]

where \(i_k \) is chosen uniformly from \(\{1, 2, \ldots, n\} \).

- Iterations are \(n \)-times cheaper than gradient descent.
 - But convergence rate is much slower than gradient descent.
 - And tricks like momentum/Newton/adaptive do not close the gap.
Stochastic vs. Deterministic for Non-Smooth

- The story changes for non-smooth problems.
- Consider the binary support vector machine (SVM) objective:

\[
f(w) = \sum_{i=1}^{n} \max\{0, 1 - y_i(w^\top x_i)\} + \frac{\lambda}{2} \|w\|^2.
\]

- Rates for subgradient methods for non-smooth objectives:

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>$O(1/\epsilon^2)$</td>
<td>$O(1/\epsilon^2)$</td>
</tr>
<tr>
<td>Strongly</td>
<td>$O(1/\epsilon)$</td>
<td>$O(1/\epsilon)$</td>
</tr>
</tbody>
</table>

- So for non-smooth problems (without nice structure as in proximal-gradient):
 - Deterministic methods are not faster than stochastic method.
 - So use stochastic subgradient (iterations are n times faster).
Subgradient Method

- The basic subgradient method:

\[w^{k+1} = w^k - \alpha_k g_k, \]

for some \(g_k \in \partial f(w^k) \).

- Decreases distance to solution for small enough \(\alpha_k \) (for convex \(f \)).

- The basic stochastic subgradient method:

\[w^{k+1} = w^k - \alpha_k g_{i_k}, \]

for some \(g_{i_k} \in \partial f_{i_k}(w^k) \) for some random \(i_k \in \{1, 2, \ldots, n\} \).

- Stochastic subgradient is \(n \) times faster with similar convergence properties.

- Decreases expected distance to solution for small enough \(\alpha_k \) (for convex \(f \)).
Convergence Rate of Stochastic Gradient Method

- We’ll first show progress bound for stochastic gradient assuming ∇f is Lipschitz.
 - We’ll come back to the non-smooth case.

- Recall the the descent lemma applied to w^{k+1} and w^k,

\[
f(w^{k+1}) \leq f(w^k) + \nabla f(w^k)^\top (w^{k+1} - w^k) + \frac{L}{2} \|w^{k+1} - w^k\|^2.
\]

- Plugging in stochastic gradient iteration $(w^{k+1} - w^k) = -\alpha_k \nabla f_{i_k}(w^k)$ gives

\[
f(w^{k+1}) \leq f(w^k) - \alpha_k \nabla f(w^k)^\top \nabla f_{i_k}(w^k) + \alpha_k^2 \frac{L}{2} \|\nabla f_{i_k}(w^k)\|^2.
\]
Convergence Rate of Stochastic Gradient Method

So far any choice of α_k and i_k we have

$$f(w^{k+1}) \leq f(w^k) - \alpha_k \nabla f(w^k)^\top \nabla f_i_k(w^k) + \alpha_k \frac{L}{2} \|\nabla f_i_k(w^k)\|^2.$$

Let’s take the expectation with respect to i_k assuming $p(i_k = i) = 1/n$,

$$\mathbb{E}[f(w^{k+1})] \leq \mathbb{E}[f(w^k) - \alpha_k \nabla f(w^k)^\top \nabla f_i_k(w^k) + \alpha_k \frac{L}{2} \|\nabla f_i_k(w^k)\|^2]$$

$$= f(w^k) - \alpha_k \nabla f(w^k)^\top \mathbb{E}[\nabla f_i_k(w^k)] + \alpha_k \frac{L}{2} \mathbb{E}[\|\nabla f_i_k(w^k)\|^2],$$

where the second line uses linearity of expectation (and α_k not depending on i_k).

We know that $\mathbb{E}[\nabla f_i_k(w^k)] = \nabla f(w^k)$ (unbiased) so this gives

$$\mathbb{E}[f(w^{k+1})] \leq f(w^k) - \alpha_k \|\nabla f(w^k)\|^2 + \alpha_k \frac{L}{2} \mathbb{E}[\|\nabla f_i_k(w^k)\|^2].$$
So a progress bound for stochastic gradient is

\[
\mathbb{E}[f(w^{k+1})] \leq f(w^k) - \alpha_k \|\nabla f(w^k)\|^2 + \alpha_k^2 \frac{L}{2} \mathbb{E}[\|\nabla f_{i_k}(w^k)\|^2].
\]

“Good” term looks like usual measure of progress: big gradient \(\rightarrow\) big progress.

“Bad” term is the problem: less progress if gradients are very different.
 - And now choosing \(\alpha_k = 1/L\) might not be small enough.
 - But we can control badness: if \(\alpha_k\) is small then \(\alpha_k >> \alpha_k^2\).

Step-size \(\alpha_k\) controls how fast we move towards solution.
And squared step-size \(\alpha_k^2\) controls how much variance moves us away.
 - This term will destroy linear convergence.
Stochastic Gradient Convergence Assumptions

- We're going to analyze stochastic gradient rate under these assumptions:
 - f is bounded below (not necessarily convex).
 - ∇f is L-Lipschitz continuous.
 - $\mathbb{E}[\|\nabla f_i(w)\|^2] \leq \sigma^2$ for some constant σ^2 and all w (“variance” is bounded).
 - This bounds the worst-case effect of the “bad term”.

- Possible to relax noise bound to more-realistic $\mathbb{E}[\|\nabla f_i(w^k) - \nabla f(w^k)\|^2] \leq \sigma^2$.
 - Just get some extra terms in the result.

- Possible to show similar results for non-smooth functions.
 - Need something stronger than “bounded below” (“weakly convexity” or “tame”).
Convergence Rate of Stochastic Gradient Method

- Let’s use the “variance” bound inside previous bound,

\[\mathbb{E}[f(w^{k+1})] \leq f(w^k) - \alpha_k \|\nabla f(w^k)\|^2 + \alpha_k^2 \frac{L}{2} \mathbb{E}[\|\nabla f_{i_k}(w^k)\|^2] \]

\[\leq f(w^k) - \alpha_k \|\nabla f(w^k)\|^2 + \alpha_k^2 \frac{L\sigma^2}{2} \]

- As before, re-arrange to get the gradient norm on the left side,

\[\alpha_k \|\nabla f(w^k)\|^2 \leq f(w^k) - \mathbb{E}[f(w^{k+1})] + \alpha_k^2 \frac{L\sigma^2}{2}. \]

- Sum this up (and use iterated expectation) to get

\[\sum_{k=1}^{t} \alpha_{k-1} \mathbb{E}[\|\nabla f(w^{k-1})\|^2] \leq \sum_{k=1}^{t} [\mathbb{E} f(w^{k-1}) - \mathbb{E} f(w^k)] + \sum_{k=1}^{t} \alpha_{k-1}^2 \frac{L\sigma^2}{2}. \]
Convergence Rate of Stochastic Gradient Method

- The bound from the previous slide:
 \[
 \sum_{k=1}^{t} \alpha_{k-1} \mathbb{E} \left\| \nabla f(w_{k-1}) \right\|^2 \leq \sum_{k=1}^{t} \left[\mathbb{E} f(w_{k-1}) - \mathbb{E} f(w_k) \right] + \sum_{k=1}^{t} \alpha_{k-1}^2 \frac{L\sigma^2}{2}.
 \]

- Applying the above operations gives
 \[
 \min_{k=0,1,\ldots,t-1} \left\{ \mathbb{E} \left\| \nabla f(w_k) \right\|^2 \right\} \sum_{k=0}^{t-1} \alpha_k \leq f(w_0) - \mathbb{E} f(w^t) + \frac{L\sigma^2}{2} \sum_{k=0}^{t-1} \alpha_k^2.
 \]

- Using \(\mathbb{E} f(w_k) \geq f^* \) and dividing both sides by \(\sum_k \alpha_{k-1} \) gives
 \[
 \min_{k=0,1,\ldots,t-1} \left\{ \mathbb{E} \left\| \nabla f(w_k) \right\|^2 \right\} \leq \frac{f(w_0) - f^*}{\sum_{k=0}^{t-1} \alpha_k} + \frac{L\sigma^2}{2} \sum_{k=0}^{t-1} \frac{\alpha_k^2}{\sum_{k=0}^{t-1} \alpha_k}.
 \]
Convergence Rate of Stochastic Gradient Method

- The final bound (bonus slides show how you can avoid min using random iterate):
 \[
 \min_{k=0,1,...,t-1} \{ \mathbb{E} \| \nabla f(w^k) \|^2 \} \leq \frac{f(w^0) - f^*}{\sum_{k=0}^{t-1} \alpha_k} + \frac{L\sigma^2}{2} \frac{\sum_{k=0}^{t-1} \alpha_k^2}{\sum_{k=0}^{t-1} \alpha_k}.
 \]

- If \(\sigma^2 = 0 \), then we could use a constant step-size and would get a \(O(1/t) \) rate.
 - Same as regular gradient descent (though \(\sigma^2 = 0 \) doesn’t really make sense).
 - But due to stochasticity, convergence rate is determined by \(\sum_k \alpha_k^2 / \sum_k \alpha_k \).

- **Classic decreasing step-sizes**: set \(\alpha_k = \alpha/k \) for some \(\alpha \).
 - Gives \(\sum_k \alpha_k = O(\log(t)) \) and \(\sum_k \alpha_k^2 = O(1) \), so error at \(t \) is \(O(1/\log(t)) \).

- **Bigger decreasing step-sizes**: set \(\alpha_k = \alpha/\sqrt{k} \) for some \(\alpha \).
 - Gives \(\sum_k \alpha_k = O(\sqrt{k}) \) and \(\sum_k \alpha_k^2 = O(\log(k)) \), so error at \(t \) is \(O(\log(t)/\sqrt{t}) \).

- **Constant step-sizes**: set \(\alpha_k = \alpha \) for some \(\alpha \).
 - Gives \(\sum_k \alpha_k = k\alpha \) and \(\sum_k \alpha_k^2 = k\alpha^2 \), so error at \(t \) is \(O(1/\alpha t) + O(\alpha) \).
Outline

1. SGD Convergence Rate
2. Practical Issues
Convergence of Stochastic [Sub]Gradient under Strong Convexity

- You can get faster rates if f is strongly-convex:
 - With decreasing $\alpha_k = 1/\mu k$ you get $O(1/t)$ for t iterations (but not linear).
 - But be careful, if you over-estimate μ rate can be much worse.
 - Also, initial steps are huge (this approach only seems to work for binary SVMs).
 - With constant $\alpha_k = \alpha < 1/2\mu$ you get $O(\rho(\alpha)^k) + O(\alpha)$ for t iterations.
 - Linear convergence up to some accuracy proportional to α for sufficiently small α.

- For non-smooth strongly-convex f you get similar results:
 - Setting $\alpha_k = 1/\mu k$ gives $O(\log(t)/t)$.
 - Can improve to $O(1/t)$ by using averaging of the last $t/2$ values of w^k.
 - Setting $\alpha_k = \alpha < 1/2\mu$ still gives $E[\|w^k - w^*\|^2] = O(\rho(\alpha)^k) + O(\alpha)$.
 - Looks like linear convergence if far from solution (or gradients are similar).
 - No progress if close to solution or have high variance in gradients.
Stochastic Subgradient with Constant Step Size

- Expected distance with constant step-size and strong convexity (see bonus):

\[\mathbb{E}[\|w^k - w^*\|^2] \leq (1 - 2\alpha \mu)^k \|w^0 - w^*\|^2 + \frac{\alpha \sigma^2}{2\mu}, \]

- First term looks like **linear convergence**, but second term does **not go to zero**.
Stochastic Subgradient with Constant Step Size

- Expected distance with constant step-size and strong convexity (see bonus):

\[\mathbb{E}[\|w^k - w^*\|^2] \leq (1 - 2\alpha \mu)^k \|w^0 - w^*\|^2 + \frac{\alpha \sigma^2}{2\mu} , \]

- First term looks like linear convergence, but second term does not go to zero.
Stochastic Subgradient with Constant Step Size

- Expected distance with constant step-size and strong convexity (see bonus):
 \[
 \mathbb{E}[\|w^k - w^*\|^2] \leq (1 - 2\alpha \mu)^k \|w^0 - w^*\|^2 + \frac{\alpha \sigma^2}{2\mu},
 \]

- First term looks like linear convergence, but second term does not go to zero.

- Theory justifies “divide the step-size in half if it looks like it’s stalled” heuristic.
 - Halving α divides radius of the ball around w^* in half (similar for non-convex).
Stochastic Subgradient with Constant Step Size

- If ∇f is also Lipschitz we can show

$$\mathbb{E}[f(w^k) - f(w^*)] \leq (1 - 2\alpha \mu)^k (f(w^0) - f(w^*)) + \frac{L\alpha\sigma^2}{4\mu}.$$
If ∇f is also Lipschitz we can show

$$
\mathbb{E}[f(w^k) - f(w^*)] \leq (1 - 2\alpha \mu)^k (f(w^0) - f(w^*)) + \frac{L\alpha \sigma^2}{4\mu}.
$$
Digression: Sparse Features

For many datasets, our feature vectors x^i are very sparse:

<table>
<thead>
<tr>
<th>“CPSC”</th>
<th>“Expedia”</th>
<th>“vicodin”</th>
<th><recipient name></th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>

Consider case where d is huge but each row x^i has at most z non-zeroes:

- The $O(d)$ cost of stochastic subgradient might be too high.
- We can often modify stochastic subgradient to have $O(z)$ cost.

See bonus slides for details on this issue, and how to handle regularization.

Various forms of “lazy updates” to deal with non-sparse gradient of regularizer.
Early Stopping

- It's **hard to decide when to stop** stochastic gradient.
- Common heuristic is "early stopping":
 - Every m iterations, stop and **compute the validation error**.
 - Stop if the validation error starts increasing.

This can be viewed as a form regularization ("stop overfitting before it happens").
Stochastic Nesterov/Newton Methods?

- Should we use Nesterov/Newton-like stochastic methods?
 - These **do not** improve the $O(1/\epsilon)$ convergence rate.

- In fact, there is a **negative result** due to Polyak and Ruppert:
 - Classic result is that scaling by $\nabla^2 f(w^*)$ gives optimal asymptotic rate.
 - You can get same rate without Hessian, by just averaging the later iterations:

$$\bar{w}^t = \frac{1}{t-k} \sum_{k'=k}^{t} w^{k'},$$

- Practical averaging strategies:
 - Could weight all iterations equally.
 - Could ignore first half of the iterations then weight equally.
 - Could weight proportional to k.
Stochastic Nesterov/Newton Methods?

Some positive results regarding stochastic Nesterov/Newton:
- Nesterov/Newton can improve dependence on L and μ.
- May be faster if condition number L/μ is large and noise σ^2 is small.
- Two-phase Newton-like method achieves $O(1/\epsilon)$ without strong-convexity.

AdaGrad method,

$$w^{k+1} = w^k + \alpha D^{-1} g_{ik}, \quad \text{with diagonal } D_{jj} = \sqrt{\delta + \sum_{k'=0}^{k} (\nabla_j f_{ik'}(w^{k'}))^2},$$

improves “regret” but not optimization error (we’ll cover regret later).

Some heuristic extensions of AdaGrad:
- RMSprop: variant of AdaGrad where step-size does not go to zero.
- Adam: variant where momentum is added.
- These methods act more like a constant step-size, and do not converge in general.
Active-Set Identification and Regularized Dual Averaging

You can perform a proximal stochastic sub-gradient iteration,

$$w^{k+\frac{1}{2}} = w^k - \alpha_k g_{i_k}$$

$$w^{k+1} = \arg\min_{v \in \mathbb{R}^d} \left\{ \frac{1}{2} \| v - w^{k+\frac{1}{2}} \|^2 + \alpha_k r(v) \right\}.$$

- Does not converge faster than SGD and does not identify active set.
 - Smoothness does not help in the general stochastic setting.
 - With L1-regularization, all w_j^k become non-zero infinitely-often.

Variant with the active set property (but same rate) is regularized dual averaging,

$$w^{k+\frac{1}{2}} = w^0 - \frac{\alpha_k}{k} \sum_{t=1}^{k} g_{i_t}$$

$$w^{k+1} = \arg\min_{v \in \mathbb{R}^d} \left\{ \frac{1}{2} \| v - w^{k+\frac{1}{2}} \|^2 + \alpha_k r(v) \right\}.$$
Summary

- **Stochastic gradient convergence rate:**
 - **Decreasing step-size:** subgradient slowly converges to exact solution.
 - Same rate as deterministic subgradient but n-times cheaper iterations.

- **Practical aspects of stochastic gradient methods:**
 - **Constant step-size:** subgradient quickly converges to approximate solution.
 - Sparse datasets, early stopping, iterate averaging.
 - Negative and positive results regarding second-order methods.
 - Does not identify active set, but gradient averaging can fix this.

- Next time: new stochastic methods with linear convergence rates.
Random Iterate for Non-Convex Rate not depending on Min

- The bound we had earlier, but dividing both sides by $\sum_{k=0}^{t} \alpha_k$,

$$\sum_{k=1}^{t} \alpha_{k-1} \mathbb{E} \| \nabla f(w^{k-1}) \|^2 \leq \sum_{k=1}^{t} [\mathbb{E} f(w^{k-1}) - \mathbb{E} f(w^k)] + \sum_{k=1}^{t} \alpha_{k-1}^2 \frac{L \sigma^2}{2} \sum_{k=0}^{t-1} \alpha_k$$

- Now choose $\hat{k} \in \{0, 1, \ldots, t-1\}$ according to $p(\hat{k}) = \alpha_k / \sum_{i=0}^{t-1} \alpha_i$.

- Notice that LHS above is expectation with respect to \hat{k} of $\mathbb{E} \| \nabla f(w^{\hat{k}}) \|^2$,

$$\mathbb{E} \| \nabla f(w^{\hat{k}}) \|^2 \leq \frac{f(w^0) - f^*}{\sum_{k=0}^{t-1} \alpha_k} + \frac{L \sigma^2}{2} \sum_{k=0}^{t-1} \alpha_k^2 \sum_{k=0}^{t-1} \alpha_k.$$

- So choosing an iterate in this way avoids needing to know the min.
 - Notice that RHS is the same.
Convergence Rate of Stochastic Subgradient Method

- The basic stochastic subgradient method (for random i_t and $g_{it} \in \partial f_{it}(x^t)$):
 \[x^{t+1} = x^t - \alpha g_{it}, \]

- We can't use descent lemma because f is non-differentiable.

- Since function value may not decrease, we analyze distance to x^*:
 \[\|x^t - x^*\|^2 = \|(x^{t-1} - \alpha_t g_{it}) - x^*\|^2 \]
 \[= \|(x^{t-1} - x^*) - \alpha_t g_{it}\|^2 \]
 \[= \|x^{t-1} - x^*\|^2 - 2\alpha_t g_{it}^\top (x^{t-1} - x^*) + \alpha_t^2 \|g_{it}\|^2. \]

- Take expectation with respect to i_t:
 \[\mathbb{E}[\|x^t - x^*\|^2] = \mathbb{E}[\|x^{t-1} - x^*\|] - 2\alpha_t \mathbb{E}[g_{it}^\top (x^{t-1} - x^*)] + \alpha_t^2 \mathbb{E}[\|g_{it}\|^2] \]
 \[= \underbrace{\|x^{t-1} - x^*\|^2}_{\text{old distance}} - 2\alpha_t \underbrace{g_t^\top (x^{t-1} - x^*)}_{\text{expected progress}} + \alpha_t^2 \underbrace{\mathbb{E}[\|g_{it}\|^2]}_{\text{“variance”}}. \]

where g_t is a subgradient of f at w^k (expected progress is positive by convexity).
Convergence Rate of Stochastic Subgradient

- Our expected distance given x^{t-1} is
 \[
 \mathbb{E}[\|x^t - x^*\|^2] = \|x^{t-1} - x^*\|^2 - 2\alpha_t g_t^\top (x^{t-1} - x^*) + \alpha^2_t \mathbb{E}[\|g_t\|^2].
 \]
 old distance expected progress "variance"

- It follows from strong-convexity that (next slide),
 \[
 g_t^\top (x^{t-1} - x^*) \geq \mu \|x^{t-1} - x^*\|^2,
 \]
 which gives (assuming variance is bounded by constant σ^2):
 \[
 \mathbb{E}[\|x^t - x^*\|^2] \leq \|x^{t-1} - x^*\|^2 - 2\alpha_t \mu \|x^{t-1} - x^*\|^2 + \alpha^2_t \sigma^2
 = (1 - 2\alpha_t \mu) \|x^{t-1} - x^*\|^2 + \alpha^2_t \sigma^2.
 \]

- With constant $\alpha_k = \alpha$ (with $\alpha < 2/\mu$) and applying recursively we get (with work)
 \[
 \mathbb{E}[\|w^k - w^*\|^2] \leq (1 - 2\alpha \mu)^k \|w^0 - w^*\|^2 + \frac{\alpha \sigma^2}{2\mu},
 \]
 where second term bounds a geometric series.
Strong-Convexity Inequalities for Non-Differentiable f

- A “first-order” relationship between subgradient and strong-convexity:
 - If f is μ-strongly convex then for all x and y we have
 \[
 f(y) \geq f(x) + f'(y)^\top (y - x) + \frac{\mu}{2} \|y - x\|^2,
 \]
 for $f'(y) \in \partial f(x)$.
 - The first-order definition of strong-convexity, but with subgradient replacing gradient.
 - Reversing y and x we can write
 \[
 f(x) \geq f(y) + f'(x)^\top (x - y) + \frac{\mu}{2} \|x - y\|^2,
 \]
 for $f'(x) \in \partial f(x)$.
 - Adding the above together gives
 \[
 (f'(y) - f'(x))^\top (y - x) \geq \mu \|y - x\|^2.
 \]
 - Applying this with $y = x^{t-1}$ and subgradient g_t and $x = x^*$ (which has $f'(x^*) = 0$ for some subgradient) gives
 \[
 (g_t - 0)^\top (x^{t-1} - x^*) \geq \mu \|x^{t-1} - x^*\|^2.
 \]
Convergence Rate of Stochastic Subgradient

- For full details of analyzing stochastic gradient under strong convexity, see:
 - Constant α_k: http://circle.ubc.ca/bitstream/handle/2429/50358/stochasticGradientConstant.pdf.

- For both cases under PL, see Theorem 4 here:
Operations on Sparse Vectors

Consider a vector $g \in \mathbb{R}^d$ with at most z non-zeroes:

$$g^T = [0 \ 0 \ 0 \ 1 \ 2 \ 0 \ -0.5 \ 0 \ 0 \ 0] .$$

If $z << d$, we can store the vector using $O(z)$ storage instead of $O(d)$:

- Just store the non-zero values:
 $$g_{value}^T = [1 \ 2 \ -0.5] .$$

- Store index of each non-zero (“pointer”):
 $$g_{point}^T = [4 \ 5 \ 7] .$$

With this representation, we can do standard vector operations in $O(z)$:

- Compute αg in $O(z)$ by setting $g_{value} = \alpha g_{value}$.
- Compute $w^T g$ in $O(z)$ by multiplying g_{value} by w at positions g_{point}.
Stochastic Subgradient with Sparse Features

- Consider optimizing the hinge-loss,

 \[
 \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y^i (w^T x^i)\},
 \]

 when \(d\) is huge but each \(x^i\) has at most \(z\) non-zeroes.

- A stochastic subgradient method could use

 \[
 w^{k+1} = w^k - \alpha_k g_{i_k}, \quad \text{where } g_i = \begin{cases}
 -y^i x^i & \text{if } 1 - y^i (w^T x^i) > 0 \\
 0 & \text{otherwise}
 \end{cases}
 \]

- Calculating \(w^{k+1}\) is \(O(z)\) since these are sparse vector operations.

- So stochastic subgradient is fast if \(z\) is small even if \(d\) is large.
 - This is how you “train on all e-mails”: each e-mail has a limited number of words.
Stochastic Subgradient with Sparse Features

But consider the **L2-regularized** hinge-loss in the same setting,

$$\arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i (w^T x_i)\} + \frac{\lambda}{2} \|w\|^2,$$

using a stochastic subgradient method,

$$w^{k+1} = w^k - \alpha_k g_{i_k} - \alpha_k \lambda w^k,$$

where g_{i_k} is same as before.

Problems is that w^k could have d non-zeroes:
- So adding L2-regularization increases cost from $O(z)$ to $O(d)$?

There are two standard ways to keep the cost at $O(z)$:
- L2-regularization: use a $w^k = \beta^k v^k$ (scalar times vector) representation.
- “Lazy” updates (which work for many regularizers).
Stochastic Subgradient with Sparse Features

- But consider the L2-regularized hinge-loss in the same setting,

\[
\arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i (w^T x^i)\} + \frac{\lambda}{2} \|w\|^2,
\]

using a stochastic subgradient method,

\[
w^{k+1} = w^k - \alpha_k g_{i_k} - \alpha_k \lambda w^k,
\]

where \(g_{i_k}\) is same as before.

- Problems is that \(w^t\) could have \(d\) non-zeroes:
 - So adding L2-regularization increases cost from \(O(z)\) to \(O(d)\)?
 - To use L2-regularization and keep \(O(z)\) cost, re-write iteration as

\[
w^{t+1} = w^t - \alpha_t g_{i_t} - \alpha_t \lambda w^t
\]

\[
= \left(1 - \alpha_t \lambda\right) w^t - \alpha_t g_{i_t}.
\]

changes scale of \(w^t\) sparse update
Stochastic Subgradient with Sparse Features

- Let’s write the update as two steps

\[w^{t+\frac{1}{2}} = (1 - \alpha_t \lambda)w^t, \quad w^{t+1} = w^{t+\frac{1}{2}} - \alpha_t g_{i_t}. \]

- We can implement both steps in \(O(z) \) if we re-parameterize as

\[w^t = \beta^t v^t, \]

for some scalar \(\beta^t \) and vector \(v^t \).

- For the first step we can use

\[\beta^{t+\frac{1}{2}} = (1 - \alpha_t \lambda)\beta^t, \quad v^{t+\frac{1}{2}} = v^t. \]

which costs \(O(1) \).

- For the second step we can use

\[\beta^{t+1} = \beta^{t+\frac{1}{2}}, \quad v^{t+1} = v^{t+\frac{1}{2}} - \frac{\alpha_t}{\beta^{t+\frac{1}{2}}} g_{i_t}, \]

which costs \(O(z) \).
Lazy Updates for Sparse Features with Dense Regularizers

- Consider a feature \(j \) that has been zero in the loss for 10 iterations (constant \(\alpha \)):

\[
\begin{align*}
w^k_j &= w^{k-1}_j - 0 - \alpha \lambda w^{k-1}_j \\
 &= (1 - \alpha \lambda) w^{k-1}_j \\
 &= (1 - \alpha \lambda)^2 w^{k-2}_j \\
 &\vdots \\
 &= (1 - \alpha \lambda)^{10} w^{k-10}_j.
\end{align*}
\]

- So we can apply 10 regularizer gradient steps in \(O(1) \).

Lazy updates:
- If \(j \) is zero in \(g_{ik} \), do nothing.
- If \(j \) is non-zero, apply all the old regularizer updates then do the gradient step.
 - Requires keeping a “checkpoint” of the last time each variable was updated.
Lazy Updates for Sparse Features with Dense Regularizers

- Lazy updates that track cumulative effects of simple updates.

- Consider a stochastic proximal-gradient for L1-regularization:
 - Soft-threshold operator with constant step-size α applies to each element,
 \[
 w_{j}^{k+1} = \text{sign}(w_{j}^{k}) \max\{0, |w_{j}^{k}| - \alpha \lambda\}.
 \]
 - If all that happens to w_{j} for 10 iterations is the proximal operator, we can use
 \[
 w_{j}^{k+10} = \text{sign}(w_{j}^{k}) \max\{0, |w_{j}^{k}| - 10 \alpha \lambda\}.
 \]

- Digression: stochastic proximal-gradient methods:
 - Same convergence rates as basic stochastic gradient method (doesn’t help).
 - Unlike deterministic proximal-gradient method, does not find final non-zero pattern in finite time.
 - Regularized dual averaging is a variant that has this property.