SGD Convergence Rate Practical Issues

First-Order Optimization Algorithms for Machine Learning
Stochastic Subgradient

Mark Schmidt

University of British Columbia

Summer 2020

SGD Convergence Rate Practical Issues

Last time: Stochastic Gradient Descent

@ We discussed minimizing finite sums,
1 n
Fw) = = fiw)
i=1

when n is very large.

@ We discussed the stochastic gradient method,
whtt = Wk — oV fi, (w®),

where iy, is chosen uniformly from{1,2,... ,n}.

@ lterations are n-times cheaper than gradient descent.
e But convergence rate is much slower than gradient descent.
@ And tricks like momentum/Newton/adaptive do not close the gap.

SGD Convergence Rate Practical Issues

Stochastic vs. Deterministic for Non-Smooth

The story changes for non-smooth problems.

Consider the binary support vector machine (SVM) objective:

n
A
flw) = z;max{O, 1 —yi(w'zi)} + 2wl
1=
@ Rates for subgradient methods for non-smooth objectives:

Assumption ‘ Deterministic ‘ Stochastic
Convex O(1/€%) O(1/€?)
Strongly O(1/e) O(1/e)

@ So for non-smooth problems (without nice structure as in proximal-gradient):

e Deterministic methods are not faster than stochastic method.
e So use stochastic subgradient (iterations are n times faster).

SGD Convergence Rate Practical Issues

Subgradient Method

@ The basic subgradient method:

k+1 _ Kk
w =W — gk,

for some gj, € Of (w").

Decreases distance to solution for small enough «y; (for convex f).

The basic stochastic subgradient method:

k+1 k
W' = w — QkGiy

for some g;, € Of;, (w*) for some random iy, € {1,2,...,n}.

Stochastic subgradient is n times faster with similar convergence properties.

Decreases expected distance to solution for small enough a4, (for convex f).

SGD Convergence Rate Practical Issues

Convergence Rate of Stochastic Gradient Method

o We'll first show progress bound for stochastic gradient assuming V f is Lipschitz.
o We'll come back to the non-smooth case.

@ Recall the the descent lemma applied to w**! and w*,

Pt < f(h) + V@b T @ - wh)

o Plugging in stochastic gradient iteration (w**! — wk) = —, V fi, (w*) gives

FRY) € F) = 0V S H) TV fy (08) + 0 SV f, ()2

SGD Convergence Rate Practical Issues

Convergence Rate of Stochastic Gradient Method
@ So far any choice of oy, and i; we have
L
Fh) < fh) = anV (") 'V fi (wF) + 0f [V i (w1
@ Let's take the expectation with respect to ix assuming p(ip = i) = 1/n,
L
E[f(w*)] <E[f(w") = axV f (") Vi (") + o [V fir (w")|]

= F(*) — 0V () TE(V £y ()] + o ZEIV i ()),

where the second line uses linearity of expectation (and «yj not depending on iy).
o We know that E[V f;, (w")] = V f(w") (unbiased) so this gives

E[f (w*)] < f(w") — ap|[Vf(w")]* + aigE[HVﬁk (w")I?).
—_—

good

bad

SGD Convergence Rate Practical Issues

Convergence Rate of Stochastic Gradient Method

@ So a progress bound for stochastic gradient is
k+1 k kyp2 2 L kyp2
E[f(w™)] < f(") = ap|[V(W) + o SE[IV fir (wT)I].
————
good bad

@ “Good" term looks like usual measure of progress: big gradient — big progress.
@ "Bad” term is the problem: less progress if gradients are very different.

e And now choosing o = 1/L might not be small enough.

o But we can control badness: if oy, is small then oy, >> .
@ Step-size o controls how fast we move towards solution.
@ And squared step-size ai controls how much variance moves us away.

e This term will destroy linear convergence.

SGD Convergence Rate

Stochastic Gradient Convergence Assumptions

@ We're going to analyze stochastic gradient rate under these assumptions:

o f is bounded below (not necessarily convex).
e Vf is L-Lipschitz continuous.
o E[|Vf;(w)]|?] < o? for some constant o2 and all w (“variance” is bounded).

o This bounds the worst-case effect of the “bad term”.

o Possible to relax noise bound to more-realistic E[||V f;(w*) — V f(w")|?] < o2.
e Just get some extra terms in the result.

@ Possible to show similar results for non-smooth functions.

o Need something stronger than "bounded below” (“weakly convexity” or “tame").
e 2018: first result that applied to ReLU neural networks.

SGD Convergence Rate Practical Issues

Convergence Rate of Stochastic Gradient Method

@ Let's use the “variance” bound inside previous bound,

E[7 ()] < F(u*) — gl V()| + af TE]|V fi, (1)
0.2
< Jw) — x| V)| + af 7T

@ As before, re-arrange to get the gradient norm on the left side,

2
o[V 7) < Flw) ~ Bl ()] + 0f 7T

@ Sum this up (and use iterated expectation) to get

t t 2

Zak BV ()2 < SIS Ef(w’“)H;ai_lL;

k=1

SGD Convergence Rate Practical Issues

Convergence Rate of Stochastic Gradient Method

@ The bound from the previous slide:

t
Zak BV H)? < Z -f—Zozk 1 ot
k=1 bound by min k=1 telescope m/
@ Applying the above operations gives
J
_min {E[Vf(w")] }Zak < f’) —Ef(w') + =) ai.
ot k=0

o Using Ef(w”*) > f* and dividing both sides by >, ax_1 gives

2 fw U) I Ek Oak
i B[V f(w M7y < ST o2 YT

SGD Convergence Rate Practical Issues

Convergence Rate of Stochastic Gradient Method

The final bound (bonus slides show how you can avoid min using random iterate):

lhvd 2\ f(w O) I LU?Zk Oak
_ B[V f(w DIPY < += :
01t >z o
e If 02 = 0, then we could use a constant step-size and would get a O(1/t) rate.
o Same as regular gradient descent (though 02 = 0 doesn't really make sense).

But due to stochasticity, convergence rate is determined by >, ozz/ > g Ok

Classic decreasing step-sizes: set ay, = «/k for some a.
o Gives Y, a; = O(log(t)) and 3", a7 = O(1), so error at ¢t is O(1/log(t)).

Bigger decreasing step-sizes: set ay = a/v/k for some a.
o Gives 3, ax = O(Vk) and 3, af = O(log(k)), so error at t is O(log(t)/+/1).

o Constant step-sizes: set o, = « for some a.
o Gives 3, a, = kacand 3, o2 = ka?, so error at t is O(1/at) + O(«).

Outline

@ SGD Convergence Rate

© Practical Issues

Practical Issues

Convergence of Stochastic [Sub]Gradient under Strong Convexity

@ You can get faster rates if f is strongly-convex:
o With decreasing ay, = 1/pk you get O(1/t) for t iterations (but not linear).

@ But be careful, if you over-estimate p rate can be much worse.
o Also, initial steps are huge (this approach only seems to work for binary SVMs).

o With constant a; = o < 1/2p you get O(p(a)*) + O(«) for ¢ iterations.
o Linear convergence up to some accuracy proportional to « for sufficiently small «.

@ For non-smooth strongly-convex f you get similar results:
o Setting ap, = 1/uk gives O(log(t)/t).
e Can improve to O(1/t) by using averaging of the last /2 values of w".

o Setting oy, = a < 1/2p still gives E[[|w* — w*||?] = O(p(a)*) + O(a).
o Looks like linear convergence if far from solution (or gradients are similar).
@ No progress if close to solution or have high variance in gradients.

Practical Issues

Stochastic Subradient with Constant Step Size

@ Expected distance with constant step-size and strong convexity (see bonus):
2
Efw* —w*|*] < (1 - 2ap)" [0 — w*|* + ——,

@ First term looks like linear convergence, but second term does not go to zero.

%
W

Practical Issues

Stochastic Subradient with Constant Step Size

@ Expected distance with constant step-size and strong convexity (see bonus):

2
Efw* —w*|*] < (1 - 2ap)" [0 — w*|* + ——,

o

<

1

Q\

SGD Convergence Rate Practical Issues

Stochastic Subradient with Constant Step Size
@ Expected distance with constant step-size and strong convexity (see bonus):
ao?
20
@ First term looks like linear convergence, but second term does not go to zero.

o
%
7

l////

Efw* — w|") < (1 - 2ap)*|lw’® — w*|* +

4l
0 V (N

@ Theory justifies “divide the step-size in half if it looks like it's stalled” heuristic.
o Halving « divides radius of the ball around w* in half (similar for non-convex).

Practical Issues

SGD Convergence Rate

Stochastic Subradient with Constant Step Size

e If Vf is also Lipschitz we can show

Lao?

E[f(w") = f(w")] < (1 = 2ap)*(f (w°) — f(w")) + 1

bt ewnlic hehavines
Zu withn Olo) of optind {7
T T T T = Afwcorver Tonctions
(ondir erlra o8semplins)

ifecafion

SGD Convergence Rate Practical Issues

Stochastic Subradient with Constant Step Size

e If Vf is also Lipschitz we can show

Lao?

4p

E[f(w") = f(w")] < (1 = 2ap)*(f (w°) — f(w")) +

A Ole) rogior !5 aho
T cd i b

Practical Issues

Digression: Sparse Features

o For many datasets, our feature vectors x* are Very sparse:
“CPSC" ‘“Expedia” ‘“vicodin” <recipient name>

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1
1 0 1 1

e Consider case where d is huge but each row z* has at most z non-zeroes:

e The O(d) cost of stochastic subgradient might be too high.
e We can often modify stochastic subgradient to have O(z) cost.

@ See bonus slides for details on this issue, and how to handle regularization.
e Various forms of “lazy updates” to deal with non-sparse gradient of regularizer.

SGD Convergence Rate Practical Issues

Early Stopping

@ It's hard to decide when to stop stochastic gradient.

@ Common heuristic is “early stopping”:
o Every m iterations, stop and compute the validation error.
e Stop if the validation error starts increasing.

accuracy training accurac

validation accuracy:
little overfitting

validation accuracy: strong overfitting

epoch

http://cs231n.github.io/neural-networks-3

@ This can be viewed as a form regularization (“stop overfitting before it happens”).

http://cs231n.github.io/neural-networks-3

Practical Issues

Stochastic Nesterov/Newton Methods?

@ Should we use Nesterov/Newton-like stochastic methods?
o These do not improve the O(1/¢€) convergence rate.

@ In fact, there is a negative result due to Polyak and Ruppert:

o Classic result is that scaling by V2 f(w*) gives optimal asymptotic rate.
e You can get same rate without Hessian, by just averaging the later iterations:

t

1 !

=i k

=g L v
k'=k

@ Practical averaging strategies:
e Could weight all iterations equally.
o Could ignore first half of the iterations then weight equally.
o Could weight proportional to k.

Practical Issues

Stochastic Nesterov/Newton Methods?

@ Some positive results regarding stochastic Nesterov/Newton:
o Nesterov/Newton can improve dependence on L and p.
o May be faster ifcondition number L/u is large and noise o2 is small.
o Two-phase Newton-like method achieves O(1/€) without strong-convexity.

o AdaGrad method,

k
wh ! = wk + aD71g;,, with diagonal Dj; = , |5 + Z (V; fi,, (wk"))2,
k'=0

improves “regret” but not optimization error (we'll cover regret later).

e Some heuristic extensions of AdaGrad:
@ RMSprop: variant of AdaGrad where step-size does not go to zero.
@ Adam: variant where momentum is added.
@ These methods act more like a constant step-size, and do not converge in general.

Practical Issues

Active-Set Identification and Regularized Dual Averaging

@ You can perform a proximal stochastic sub-gradient iteration,

k k
+2 =W’ — 0G;,

1
w* ! = argmin {Hv - wa’%H2 + akr(v)} .
vER 2

@ Does not converge faster than SGD and does not identify active set.
e Smoothness does not help in the general stochastic setting.
e With L1-regularization, all wf become non-zero infinitely-often.

@ Variant with the active set property (but same rate) is regularized dual averaging,

1
Wt = 0 Zg“

1
whtl = argmin {Hv — wh |2 + akr(v)} :
veR4 2

Practical Issues

Summary

@ Stochastic gradient convergence rate:
o Decreasing step-size: subgradient slowly converges to exact solution.

@ Same rate as deterministic subgradient but n-times cheaper iterations.

@ Practical aspects of stochastic gradient methods:
e Constant step-size: subgradient quickly converges to approximate solution.
o Sparse datasets, early stopping, iterate averaging.
o Negative and positive results regarding second-order methods.
o Does not identify active set, but gradient averaging can fix this.

@ Next time: new stochastic methods with linear convergence rates..

Practical Issues

Random Iterate for Non-Convex Rate not depending on Min

@ The bound we had earlier, but dividing both sides by ZZ:O ag,

Sy o BV S EA) ~Bf @) + T 0, B

t—1 = t—1
k=0 %k k=0 %k

o Now choose k € {0,1,...,t — 1} according to p(k) = o,/ ZZ 0 0.
o Notice that LHS above is expectation with respect to k of E||V f(w)||2

v EQSf(O) *+ Zkoak'
[V f(w®)]] S 2 Sl

@ So choosing an iterate in this way avoids needing to know the min.
o Notice that RHS is the same.

Practical Issues

Convergence Rate of Stochastic Subgradient Method

@ The basic stochastic subgradient method (for random i; and g;, € f;, (x!)):

t+1 _ ot A
T = — ag;,,

@ We can't use descent lemma because f is non-differentiable.
@ Since function value may not decrease, we analyze distance to z*:
lz* = 2*|* = |(='" — augi,) — =*||?
= || = 2) — auga|?

_ ||xt71 _‘T*HZ - 2atgi—£(fl?t 1

z*) + o lgi. |1

@ Take expectation with respect to #;:

E[|e* — 2" = E[l2"" — 2*||] - 2uElg;, (27" — 2*)] + o7E[| g5, %]

= a7t —2*|® —2ar g/ (' — 2") a7 Ell|ga|1?]
—_— ~—
old distance expected progress “variance”

where g; is a subgradient of f at w* (expected progress is positive by convexity).

Practical Issues

Convergence Rate of Stochastic Subgradient
o Our expected distance given z!~! is
El|lz* — z*|%] = |l2"" — &*||* —2a; ¢/ (" — 2*) +aF Ell|gi,||] -
~~ SN——
old distance expected progress “variance”

e It follows from strong-convexity that (next slide),
g/ (@t =) 2 plla*t — o,
which gives (assuming variance is bounded by constant o?):
Eflz* — 2*|°] < l2*7" = &*)|* = 2aepala* ™! — ¥ + afo?
= (1 — 2agp)||2"™ — 2*|? + 2o

e With constant o, = o (with o < 2/p) and applying recursively we get (with work)
E[llw® — w*)|?] < (1 - 2ap)*|lw® - w*

where second term bounds a geometric series.

Practical Issues

Strong-Convexity Inequalities for Non-Differentiable f

o A “first-order” relationship between subgradient and strong-convexity:
o If f is u-strongly convex then for all z and y we have

F@) 2 £@) + £ @) (=) + Sly -l

for f'(y) € Of (x).
The first-order definition of strong-convexity, but with subgradient replacing gradient.
Reversing y and = we can write

[@) 2 f@) + 1@ (@ = y) + Sl — yI?,

for f'(z) € Of(x).
Adding the above together gives
(f'(y) = (@) (y = 2)) > ully — =|*.
Applying this with y = 2!~ and subgradient g; and = = z* (which has f/(z*) =0
for some subgradient) gives
(9 —0)" (2"t — %) > plla*=t —z*|%.

Practical Issues

Convergence Rate of Stochastic Subgradient

@ For full details of analyzing stochastic gradient under strong convexity, see:

o Constant ay: http://circle.ubc.ca/bitstream/handle/2429/50358/
stochasticGradientConstant.pdf.
o Decreasing ay;: http://arxiv.org/pdf/1212.2002v2. pdf.

@ For both cases under PL, see Theorem 4 here:
o https://arxiv.org/pdf/1608.04636v2.pdf

http://circle.ubc.ca/bitstream/handle/2429/50358/stochasticGradientConstant.pdf
http://circle.ubc.ca/bitstream/handle/2429/50358/stochasticGradientConstant.pdf
http://arxiv.org/pdf/1212.2002v2.pdf

Practical Issues

Operations on Sparse Vectors
o Consider a vector g € R% with at most z non-zeroes:
g"=[0 00120 —05 0 0 0].

e If z << d, we can store the vector using O(z) storage instead of O(d):
e Just store the non-zero values:

o 1 2 -0.5].

Gvalue =

e Store index of each non-zero (“pointer”):
ot =14 5 T].

e With this representation, we can do standard vector operations in O(z):
o Compute ag in O(z) by setting gyalue = XGvalue-
o Compute w”g in O(2) by multiplying gyaiwe by w at positions Jpoint-

Practical Issues

Stochastic Subgradient with Sparse Features

o Consider optimizing the hinge-loss,

1 & . .
argmin — Z max{0, 1 — ¢ (w? ")},
weR4 n i=1

when d is huge but each z* has at most z non-zeroes.
@ A stochastic subgradient method could use
—yizt if 1 -y (wTa?) >0

k+1 k

w =w" — aig;,, where g; = {

0 otherwise

o Calculating w**1 is O(z) since these are sparse vector operations.

@ So stochastic subgradient is fast if z is small even if d is large.
e This is how you “train on all e-mails”: each e-mail has a limited number of words.

Practical Issues

Stochastic Subgradient with Sparse Features

@ But consider the L2-regularized hinge-loss in the same setting,

1 ¢ A
en 1 — T, @ Moy l12
A — E max{0, yi(w' ')} + 2||wH)
weR i—1

using a stochastic subgradient method,

k+1 k

w = w" — arg;, — a:k)\wk, where g;, is same as before.

@ Problems is that w" could have d non-zeroes:
o So adding L2-regularization increases cost from O(z) to O(d)?

@ There are two standard ways to keep the cost at O(z):

o L2-regularization: use a w* = ¥v* (scalar times vector) representation.
o “Lazy” updates (which work for many regularizers).

Stochastic Subgradient with Sparse Features

@ But consider the L2-regularized hinge-loss in the same setting,

argmin — Z max{0, 1 — y;(w”

weRd T

using a stochastic subgradient method,

wk+1 k

@ Problems is that w' could have d non-zeroes:
o So adding L2-regularization increases cost from O(z) to O(d)?

@ To use L2-regularization and keep O(z) cost, re-write iteration as

w

t+1

t

(1 — s \)w?
—_————

changes scale of w?

)} + Sl

W' — oG, — a w!

atGi, -
——

sparse update

Practical Issues

=w" — agG;, — ak)\wk, where g;, is same as before

Practical Issues

Stochastic Subgradient with Sparse Features

o Let's write the update as two steps

t+3

t+1 _
=W 2 — 0tG;,-

wits = (1—aNw’, w
(2) if we re-parameterize as
t

w Btvt,

@ We can implement both steps in O

for some scalar 3¢ and vector v'.
@ For the first step we can use
1 1
BTz = (1 —aA)B8, o'tz =t
which costs O(1).
@ For the second step we can use

g+l — Bt+% ot =ttt
b

which costs O(z).

SGD Convergence Rate Practical Issues

Lazy Updates for Sparse Features with Dense Regularizers

o Consider a feature j that has been zero in the loss for 10 iterations (constant «):

kE_ k=1 __ k—1
w; = w; 0 a)\fwj
_ k—1
= (1 - aMw;

=(1- a)\)zw;?_Q

_ 10, k—10
= (1—a)) w; .

@ So we can apply 10 regularizer gradient steps in O(1).

o Lazy updates:

o If j is zero in g;,, do nothing.
e If j is non-zero, apply all the old regularizer updates then do the gradient step.
@ Requires keeping a “checkpoint” of the last time each variable was updated.

Practical Issues

Lazy Updates for Sparse Features with Dense Regularizers

@ Lazy updates that track cumulative effects of simple updates.

@ Considern stochastic proximal-gradient for L1-regularization:
o Soft-threshold operator with constant step-size o applies to each element,

wf'H - sign(wf) max{0, |wf| —a\}.

o If all that happens to w; for 10 iterations is the proximal operator, we can use

k .
wj“O = &gn(wf) max{0, |wf| — 10a\}.

@ Digression: stochastic proximal-gradient methods:

e Same convergence rates as basic stochastic gradient method (doesn't help).
e Unlike deterministic proximal-gradient method, does not find final non-zero pattern
in finite time.
o Regularized dual averaging is a variant that has this property.

	SGD Convergence Rate
	Practical Issues

