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Properties of Multivariate Gaussian Mixture Models

Last Time: Multivariate Gaussian

Bivariate Normal

http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html
P P y J

e The multivariate normal/Gaussian distribution models PDF of vector z* as

p(a’ | p, %) = ileXP< x
(2m)z %)z 2
where ;1 € R? and ¥ € R¥*? and ¥~ 0.

@ Density for a linear transformation of a product of independent Gaussians.
@ Diagonal ¥ implies independence between variables.


http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html

Example: Multivariate Gaussians on Digits

@ Recall the task of density estimation with handwritten images of digits:

' = vec

@ Let's treat this as a continuous density estimation problem.



Example: Multivariate Gaussians on Digits

@ MLE of parameters using independent Gaussians (diagonal X):

o Mean y; (left) and variance o7 (right) for each feature.

@ Samples generate from this model:

@ Because ¥ is diagonal, doesn't model dependencies between pixels.



Example: Multivariate Gaussians on Digits

@ MLE of parameters using multivariate Gaussians (dense X):

o 4 is the same, the d x d matrix X is degenerate (need to zoom in to see anything).

@ Captures some pairwise dependencies between pixels, but not expressive enough.

@ Samples generate from this model:
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Graphical LASSO on Digits

e MAP estimate of precision matrix © with regularizer ATr(©) (with A = 1/n).

@ Sparsity pattern using this “L1-regularization of the trace”:

@ Doesn't yield a sparse matrix (only zeroes are with pixels near the boundary).



Graphical LASSO on Digits

@ Sparsity pattern if we instead use the graphical LASSO:
o MAP estimate of precision matrix © with regularizer A||©]; (with A = 1/8).

@ The graph represented by this adjacency matrix is (roughly) the 2d image lattice.
o Pixels that are near each other in the image end up being connected by an edge.

o Examples:
@ https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models


https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models

Properties of Multivariate Gaussian Mixture Models

Closedness of Multivariate Gaussian

@ Multivariate Gaussian has nice properties of univariate Gaussian:
o Closed-form MLE for p and X given by sample mean /variance.
o Central limit theorem: mean estimates of random variables converge to Gaussians.
e Maximizes entropy subject to fitting mean and covariance of data.

@ A crucial computational property: Gaussians are closed under many operations.

@ Affine transformation: if p(z) is Gaussian, then p(Az + b) is a Gaussian?.

@ Marginalization: if p(x, z) is Gaussian, then p(x) is Gaussian.
© Conditioning: if p(x, z) is Gaussian, then p(x | z) is Gaussian.
@ Product: if p(x) and p(z) are Gaussian, then p(z)p(z) is proportional to a Gaussian.

@ Most continuous distributions don't have these nice properties.

!Could be degenerate with |X| = 0, dependending on particular A.
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Affine Property: Special Case of Shift

@ Assume that random variable x follows a Gaussian distribution,
z~N(p,X).
@ And consider an shift of the random variable,
z=a+0b.
@ Then random variable z follows a Gaussian distribution
z~N(pn+b,%),

where we've shifted the mean.
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Affine Property: General Case

@ Assume that random variable z follows a Gaussian distribution,
z ~N(pX).
@ And consider an affine transformation of the random variable,
z=Ax+0b.
@ Then random variable z follows a Gaussian distribution
2~ N(Ap+b,ASAT),

although note we might have |[AXAT| = 0.
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Marginalization of Gaussians

o Consider a dataset where we've partitioned the variables into two sets:

T
X = r1 T2 21 X2
T

@ It's common to write multivariate Gaussian for partitioned data as:

v (G 5])

e If | want the marginal distribution p(x), | can use the affine property,

to get that
x~ N (g, Xor)-

Mixture Models
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Mixture Models

Marginalization of Gaussians

@ In a picture, ignoring a subset of the variables gives a Gaussian:

(x)d

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

@ This seems less intuitive if you use rules of probability to marginalize:

p(x) =/;1 /;2 /Zd (QW)% ng: gzz] exp( 1 <[:] 3 [Z:]) E:z gzj]*l ([:] B [ﬁ:D) dzgdzg_q ...dz1.



https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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Conditioning in Gaussians

@ Again consider a partitioned Gaussian,

T by b
(B B =)
@ The conditional probabilities are also Gaussian,
|2~ N(pig |2 S0 2),
where
Pz = be+ 50250 (2 = 12), So )z = Saw — S22 Sea

@ “For any fixed z, the distribution of x is a Gaussian”.

o Notice that if ¥,. = 0 then = and z are independent (uy | ; = fie, Xp |- = Xz).
o We previously saw the special case where X is diagonal (all variables independent).



Properties of Multivariate Gaussian Mixture Models

Product of Gaussian Densities
e If ©1 = I and 5 = I then product of PDFs has ¥ = 17 and 1 = ’“J“"?
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Product of Gaussian Densities

o Let fi(x) and fa(z) be Gaussian PDFs defined on variables x.

@ The product of the PDFs fi(x)fo(x) is proportional to a Gaussian density,
o With (u1,%1) as parameters of fi and (ug, X2) for fa:
covariance of ¥ = (7' + 25 h)7h

mean of yu = EZl_lul + 222_1u2,

although this density may not be normalized (may not integrate to 1 over all x).
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Product of Gaussian Densities

e So if we can write a probability as p(x) o< fi(z) f2(x) for 2 Gaussians,
then p is a Gaussian with known mean/covariance.

@ Example of a Gaussian likelihood p(x! | 11, %) and Gaussian prior p(u | 10, X0).
o Posterior for p will be Gaussian:
Pl ] @', 3, po, Do) o p(a’ |, i, B)p(pe | o, o)
=p(p |2, 2)p(p | po,¥0)  (symmetry of 2" and )

= (some Gaussian).

e Non-example of p(z2 | x1) being Gaussian and p(z1 | x2) being Gaussian.

o Product p(xs | z1)p(z1 | £2) may not be a proper distribution.
o Although we saw it will be a Gaussian if they are independent.

@ "Product of Gaussian densities” will be used later in Gaussian Markov chains.
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Properties of Multivariate Gaussians

@ A multivariate Gaussian “cheat sheet” is here:

@ https://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf

@ For a careful discussion of Gaussians, see the playlist here:
@ https://www.youtube.com/watch?v=TCOZAX3DA88&t=2s&1ist=PL17567A1A3F5DB5E4&index=34


https://www.youtube.com/watch?v=TC0ZAX3DA88&t=2s&list=PL17567A1A3F5DB5E4&index=34

Properties of Multivariate Gaussian Mixture Models

Problems with Multivariate Gaussian

@ Why not the multivariate Gaussian distribution?
e Still not robust, may want to consider multivariate Laplace or multivariate T.

Gaussian (nll = 6.220) Multivariate T (estimated dof) (nll = 4.836)
251 r

200

e These require numerical optimization to compute MLE/MAP.
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Problems with Multivariate Gaussian

@ Why not the multivariate Gaussian distribution?
e Still not robust, may want to consider multivariate Laplace of multivariate T.
o Still unimodal, which often leads to very poor fit.

Gaussian (nll = 7.100)

20 L L L T |
20 -15 10 5 [ 5 10
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@ Properties of Multivariate Gaussian

e Mixture Models



Mixture Models

1 Gaussian for Multi-Modal Data

@ Major drawback of Gaussian is that it's uni-modal.
o It gives a terrible fit to data like this:

0.03

@ If Gaussians are all we know, how can we fit this data?



Mixture Models

2 Gaussians for Multi-Modal Data

@ We can fit this data by using two Gaussians

0.03

0.025

0.015}

0.005

@ Half the samples are from Gaussian 1, half are from Gaussian 2.



Mixture Models

Mixture of Gaussians
@ Our probability density in this example is given by

) 1 . 1 :
p(z | pa, po, X1, 82) = 5 p(z’ | p1, X1) +5 p(z' | p2, X2) ,

PDF of Gaussian 1 PDF of Gaussian 2

o We need the (1/2) factors so it still integrates to 1.

0.03
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Mixture of Gaussians

o If data comes from one Gaussian more often than the other, we could use

P(«Tl | M1, 12, 217 227771772) =T p(‘rl | M1, Zl) +772 p(‘rl | H2, 22) )
PDF of Gaussian 1 PDF of Gaussian 2

where 1 and w5 are non-negative and sum to 1.
e 7 represents “probability that we take a sample from Gaussian 1".
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Mixture of Gaussians

@ In general we might have a mixture of &£ Gaussians with different weights.

k
p(x ’ ,U,,E,Tr) = Zﬂ'c p(:IZ ‘ Mc;zc) )
————

e=1 PDF of Gaussian ¢

o Where 7 is a categorical variable (the 7, are non-negative and sum to 1).
o We can use it to model complicated densities with Gaussians (like RBFs).

@ “Universal approximator”: can model any continuous density on compact set.



Properties of Multivariate Gaussian

@ Gaussian vs. mixture of 2 Gaussian densities in 2D:

Mixture of Gaussians

20

@ Marginals will also be mixtures of Gaussians.
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Mixture of Gaussians

@ Gaussian vs. Mixture of 4 Gaussians for 2D multi-modal data:

Gaussian (nll = 7.100) Mixture of Gaussian (nll = 5.108)
20 - - } 20
15+ 151
10 10l
sh sk
of ol
3 5E
ot ot
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20 20 L L | . )
20 20 15 10 5 0 5 10



Properties of Multivariate Gaussian Mixture Models

Mixture of Gaussians

@ Gaussian vs. Mixture of 5 Gaussians for 2D multi-modal data:

Gaussian (nll = 7.100) Mixture of Gaussian (nll = 5.050)
20 - - } 20
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Mixture of Gaussians

e Given parameters {7, fic, X}, we can sample from a mixture of Gaussians using:

© Sample cluster ¢ based on prior probabilities 7. (categorical distribution).
@ Sample example = based on mean p. and covariance ..

e We usually fit these models with expectation maximization (EM):

e An optimization method that gives closed-form updates for this model.
e To choose k, we might use domain knowledge or test set likelihood.
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Previously: Independent vs. General Discrete Distributions

@ We previously considered density estimation with discrete variables,

1000
X‘[Oloo}’

and considered two extreme approaches:
e Product of independent Bernoullis:

d
p(a' |0) =[] p(} | 65).
j=1

Easy to fit but strong independence assumption:

e Knowing z; tells you nothing about .

o General discrete distribution: ‘
p(a* | 6) = 0.

No assumptions but hard to fit: _

o Parameter vector 0, for each possible z°.

@ A model in between these two is the mixture of Bernoullis.
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Mixture of Bernoullis

@ Consider a coin flipping scenario where we have two coins:
e Coin 1 has #; = 0.5 (fair) and coin 2 has 63 = 1 (biased).

@ Half the time we flip coin 1, and otherwise we flip coin 2:

p(a' =1]061,05) = mp(a’ =1]61) +mop(z’ =11 6,)
1,1, 46,
= 291+292— 9

@ With one variable this mixture model is not very interesting:
e It's equivalent to flipping one coin with 8 = 0.75.

@ But with multiple variables mixture of Bernoullis can model dependencies...



Properties of Multivariate Gaussian Mixture Models

Mixture of Independent Bernoullis

@ Consider a mixture of independent Bernoullis:

d d

1 1
p(z [ 61,62) = 5 [1pG; 1 615) +5 11 pG; | 625)
j=1 j=1
first set of Bernoullis second set of Bernoulli

@ Conceptually, we now have two sets of coins:
o Half the time we throw the first set, half the time we throw the second set.

o With d =4 we could have §; = [0 0.7 1 1]andf=[1 0.7 0.8 0].
o Half the time we have p(z} = 1) = 1 and half the time it's 0.8.

@ Have we gained anything?
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Mixture of Independent Bernoullis

@ Example from the previous slide: 6, = [O 0.7 1 1] and 0y = [1 0.7 0.8 ()].
@ Here are some samples from this model:
[0 1 1 1]
1 1 1 0
1 0 00
X = 01 1 1
1 1 1 0
0 1 0 1]

Unlike product of Bernoullis, notice that features in samples are not independent.
o In this example knowing z; = 1 tells you that x4 = 0.

This model can capture dependencies: p(zq4 =1 |z1 =1) # p(zq = 1).

0 0.5
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Mixture of Independent Bernoullis

@ General mixture of independent Bernoullis:

Z|@ Zﬂ'cp

where © contains all the model parameters.

@ Mixture of Bernoullis can model dependencies between variables

e Individual mixtures act like clusters of the binary data.
o Knowing cluster of one variable gives information about other variables.

@ With k large enough, mixture of Bernoullis can model any discrete distribution.
o Hopefully with k& << 29,



Mixture Models

Mixture of Independent Bernoullis
o Plotting parameters 6, with 10 mixtures trained on MNIST digits (with “EM"):

(numbers above images are mixture coefficients 7.)

0.12 0.14 0.12 0.06 0.13

117]3]0]3

0.07 0.05 0.15 0.07 0.09

Jlslrjelé

//pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html

http:

@ Remember this is unsupervised: it hasn't been told there are ten digits.
o Density estimation is trying to figure out how the world works.


http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html

Mixture Models

Mixture of Independent Bernoullis
o Plotting parameters 6, with 10 mixtures trained on MNIST digits (with “EM"):

(numbers above images are mixture coefficients 7.)

0.12 0.14 0.12 0.06 0.13

117191013

0.07 0.05 0.15 0.07 0.09

Jl5lr]elé

//pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html

http:

@ You could use this model to “fill in” missing parts of an image:
e By finding likely cluster/mixture, you find likely values for the missing parts.


http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html

Mixture Models

Summary

Properties of multivariate Gaussian:

@ Closed under affine transformations, marginalization, conditioning, and products.
e But unimodal and not robust.

Mixture of Gaussians writes probability as convex comb. of Gaussian densities.
e Can model arbitrary continuous densities.

Mixture of Bernoullis can model dependencies between discrete variables.
e Probability of belonging to mixtures is a soft-clustering of examples.

Next time: dealing with missing data.
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