CPSC 540: Machine Learning Gaussians

Mark Schmidt

University of British Columbia

Winter 2020

Last Time: Density Estimation

• We started discussing density estimation:

- What is probability (or PDF) of [1 0 1 1]?
 - With model you do inference: test likelihood, sample, conditionals,...
- We disucssed product of independent distributions:
 - Just model each column independently (as Bernoulli or categorical).
 - Maybe with Laplace smoothing.
- We discussed general discrete distribution
 - Have one parameter for each of the k^d possible vectors.
 - Not limited in complexity like "product of independent" but leads to overfitting.

Univariate Gaussian

- Consider the case of a continuous variable $x \in \mathbb{R}$:
 - Grades, amounts, velocities, temperatures, and so on.

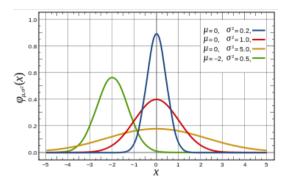
$$X = \begin{bmatrix} 0.53 \\ 1.83 \\ -2.26 \\ 0.86 \end{bmatrix}.$$

- Even with 1 variable there are many possible distributions.
- Most common is the Gaussian (or "normal") distribution:

$$p(x^i \mid \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x^i - \mu)^2}{2\sigma^2}\right) \quad \text{or} \quad x^i \sim \mathcal{N}(\mu, \sigma^2),$$

for mean $\mu \in \mathbb{R}$ and standard deviation $\sigma > 0$ (or variance σ^2).

Univariate Gaussian



https://en.wikipedia.org/wiki/Gaussian_function

- Mean parameter μ controls location of center of density.
- Variance parameter σ^2 controls how spread out density is.

Univariate Gaussian

- Why use the Gaussian distribution?
 - Data might actually follow Gaussian.
 - Good justification if true, but usually false.
 - Central limit theorem: mean estimators converge in distribution to a Gaussian.
 - Bad justification: doesn't imply data distribution converges to Gaussian.
 - Distribution with maximum entropy that fits mean and variance of data (bonus).
 - "Makes the least assumptions" while matching mean and variance of data.
 - But for complicated problems, just matching mean and variance isn't enough.
 - Closed-form maximum likelihood estimate (MLE).
 - MLE for the mean is the mean of the data ("sample mean" or "empirical mean").
 - MLE for the variance is the variance of the data ("sample variance").
 - A lot of other nice properties that make computation/theory easy.

Univariate Gaussian (MLE for Mean)

• Gaussian likelihood for an example x^i is

$$p(x^i \mid \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x^i - \mu)^2}{2\sigma^2}\right).$$

ullet So the negative log-likelihood for n IID examples is

$$-\log p(X \mid \mu, \sigma^2) = -\sum_{i=1}^n \log p(x^i \mid \mu, \sigma^2) = \frac{1}{2\sigma^2} \sum_{i=1}^n (x^i - \mu)^2 + n \log(\sigma) + \text{const.}$$

ullet Setting derivative with respect to μ to 0 gives MLE of

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x^{i}$$
 (for any $\sigma > 0$),

so the MLE is the mean of the samples.

Univariate Gaussian (MLE for Variance)

ullet Gaussian likelihood for an example x^i is

$$p(x^i \mid \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x^i - \mu)^2}{2\sigma^2}\right).$$

ullet So the negative log-likelihood for n IID examples is

$$-\log p(X \mid \mu, \sigma^2) = -\sum_{i=1}^n \log p(x^i \mid \mu, \sigma^2) = \frac{1}{2\sigma^2} \sum_{i=1}^n (x^i - \mu)^2 + n \log(\sigma) + \text{const.}$$

• Plugging in $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x^{i}$ and setting derivative with respect to σ to zero gives

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x^i - \hat{\mu})^2$$
, (variance of the samples)

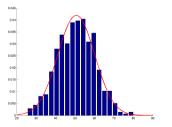
unless all x^i are equal (then NLL is not bounded below and MLE doesn't exist).

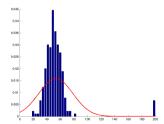
Alternatives to Univariate Gaussian

- Why not the Gaussian distribution?
 - Negative log-likelihood is a quadratic function of μ ,

$$-\log p(X \mid \mu, \sigma^2) = \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x^i - \mu)^2 + n \log(\sigma) + \text{const.}$$

so as with least squares the Gaussian is not robust to outliers.

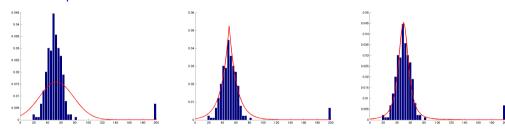




- This is a histogram of the x^i values, and the red line is the estimated density.
- We say Gaussian is "light-tailed": assumes most data is close to mean.

Alternatives to Univariate Gaussian

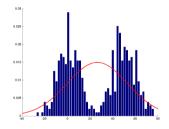
• Robust: Laplace distribution or student's t-distribution



• "Heavy-tailed": has non-trivial probability that data is far from mean.

Alternatives to Univariate Gaussian

Gaussian distribution is unimodal.



- Laplace and student t are also unimodal so don't fix this issue.
 - Next time we'll discuss "mixture models" that address this.

Outline

1 Unvariate Gaussian

Multivariate Gaussian

Product of Independent Gaussians

ullet If we have d variables, we could make each follow an independent Gaussian,

$$x_j^i \sim \mathcal{N}(\mu_j, \sigma_j^2),$$

• In this case the joint density can be written in matrix notation as

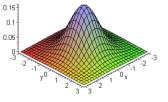
$$\begin{split} \prod_{j=1}^d p(x_j^i \mid \mu_j, \sigma_j^2) &\propto \prod_{j=1}^d \exp\left(-\frac{(x_j^i - \mu_j)^2}{2\sigma_j^2}\right) \\ &= \exp\left(-\frac{1}{2}\sum_{j=1}^d \frac{1}{\sigma_j^2}(x_j^i - \mu_j)^2\right) \\ &= \exp\left(-\frac{1}{2}(x^i - \mu)^T \Sigma^{-1}(x - \mu)\right) \qquad \text{(matrix notation)} \end{split}$$

where $\mu = (\mu_1, \mu_2, \dots, \mu_d)$ and Σ is a diagonal matrix with diagonal elements σ_i^2 .

• Distributions with this form are a special case of the multivariate Gaussian.

Multivariate Gaussian Distribution

ullet A d>1 generalization of unvariate Gaussian is the multivariate normal/Gaussian,



http://personal.kenvon.edu/hartlaub/MellonProject/Bivariate2.html

- This maintains many of the nice properties of univariate Gaussians.
 - Closed-form intuitive MLE, many analytic properties, maximum entropy property.

Multivariate Gaussian Distribution

• The probability density for the multivariate Gaussian is given by

$$p(x^{i} \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x^{i} - \mu)^{T} \Sigma^{-1} (x^{i} - \mu)\right), \quad \text{ or } x^{i} \sim \mathcal{N}(\mu, \Sigma),$$

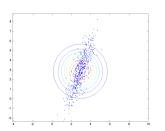
where $\mu \in \mathbb{R}^d$, $\Sigma \in \mathbb{R}^{d \times d}$ and $\Sigma \succ 0$, and $|\Sigma|$ is the determinant.

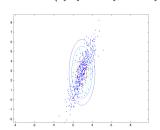
- Where does this wonky formula come from?
 - Consider a product of independent Gaussians, $z_i^i \sim \mathcal{N}(0,1)$.
 - Then perform a linear transformation, $x^i = Az^i + \mu$.
 - If we define $\Sigma = AA^T$, multivariate Gaussian is PDF of transformed variables.
 - Derivation in bonus slides.
- If $|\Sigma| = 0$ we say the Gaussian is degenerate (bonus).
 - Transformed variables x^i don't span the full space.

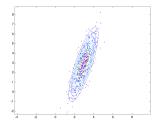
Product of Independent Gaussians

- The effect of a diagonal Σ on the multivariate Gaussian:
 - If $\Sigma = \alpha I$ the level curves are circles: 1 parameter.
 - If $\Sigma = D$ (diagonal) then axis-aligned ellipses: d parameters.
 - We saw that this is equivalent to using a product of independent Gaussians.
 - If Σ is dense they do not need to be axis-aligned: d(d+1)/2 parameters.

(by symmetry, we only need upper-triangular part of Σ)







• Diagonal Σ assumes features are independent, dense Σ models dependencies.

MLE for Multivariate Gaussian (Mean Vector)

With a multivariate Gaussian we have

$$p(x^{i} \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x^{i} - \mu)^{\top} \Sigma^{-1}(x^{i} - \mu)\right),$$

so up to a constant our negative log-likelihood for n examples x^i is

$$\frac{1}{2} \sum_{i=1}^{n} (x^{i} - \mu)^{\top} \Sigma^{-1} (x^{i} - \mu) + \frac{n}{2} \log |\Sigma|.$$

• This is a strongly-convex quadratic in μ , setting gradient to zero gives

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x^{i},$$

which is the unique solution (strong-convexity is due to $\Sigma \succ 0$).

• MLE for μ is the average along each dimension, and it doesn't depend on Σ .

MLE for Multivariate Gaussians (Covariance Matrix)

• To get MLE for Σ we re-parameterize in terms of precision matrix $\Theta = \Sigma^{-1}$,

$$\frac{1}{2} \sum_{i=1}^{n} (x^{i} - \mu)^{\top} \Sigma^{-1} (x^{i} - \mu) + \frac{n}{2} \log |\Sigma|$$
$$= \frac{1}{2} \sum_{i=1}^{n} (x^{i} - \mu)^{\top} \Theta(x^{i} - \mu) + \frac{n}{2} \log |\Theta^{-1}|$$

• After some tedious linear algebra (in bonus slides) we obtain that this is equal to

$$\frac{n}{2}\mathsf{Tr}(S\Theta) - \frac{n}{2}\log|\Theta|,$$

where:

- S is the empirical covariance of the data, $S = \frac{1}{n} \sum_{i=1}^{n} (x^i \mu)(x^i \mu)^{\top}$.
- Trace operator Tr(A) is the sum of the diagonal elements of A.

MLE for Multivariate Gaussians (Covariance Matrix)

ullet So the NLL in terms of the precision matrix Θ and sample covariance S is

$$f(\Theta) = \frac{n}{2} \text{Tr}(S\Theta) - \frac{n}{2} \log |\Theta|, \text{ with } S = \frac{1}{n} \sum_{i=1}^{n} (x^i - \mu)(x^i - \mu)^\top$$

- Weird-looking but has nice properties:
 - $\operatorname{Tr}(S\Theta)$ is linear function of Θ , with ∇_{Θ} $\operatorname{Tr}(S\Theta) = S$.

(it's the matrix version of an inner-product $s^{\top}\theta$)

• Negative log-determinant is strictly-convex and has $\nabla_{\Theta} \log |\Theta| = \Theta^{-1}$.

(generalizes
$$\nabla \log |x| = 1/x$$
 for for $x > 0$).

• Using these two properties the gradient matrix has a simple form:

$$\nabla f(\Theta) = \frac{n}{2}S - \frac{n}{2}\Theta^{-1}.$$

MLE for Multivariate Gaussians (Covariance Matrix)

ullet Gradient matrix of NLL with respect to Θ is

$$\nabla f(\Theta) = \frac{n}{2}S - \frac{n}{2}\Theta^{-1}.$$

ullet The MLE for a given μ is obtained by setting gradient matrix to zero, giving

$$\Theta = S^{-1}$$
 or $\Sigma = S = \frac{1}{n} \sum_{i=1}^{n} (x^i - \mu)(x^i - \mu)^{\top}$.

- The constraint $\Sigma \succ 0$ means we need positive-definite sample covariance, $S \succ 0$.
 - If S is not invertible. NLL is unbounded below and no MLE exists.
 - This is like requiring "not all values are the same" in univariate Gaussian.
 - In d-dimensions, you need d linearly-independent x^i values.
- For most distributions, the MLEs are not the sample mean and covariance.

MAP Estimation in Multivariate Gaussian (Covariance Matrix)

ullet A classic regularizer for Σ is to add a diagonal matrix to S and use

$$\Sigma = S + \lambda I$$
,

which satisfies $\Sigma \succ 0$ by construction (eigenvalues at least λ).

• This corresponds to a regularizer that penalizes diagonal of the precision,

$$\begin{split} f(\Theta) &= \mathsf{Tr}((S + \lambda I)\Theta) - \log |\Theta| \\ &= \mathsf{Tr}(S\Theta + \lambda \Theta) - \log |\Theta| \\ &= \mathsf{Tr}(S\Theta) - \log |\Theta| + \lambda \mathsf{Tr}(\Theta) \\ &= \mathsf{Tr}(S\Theta) - \log |\Theta| + \lambda \sum_{i=1}^d |\Theta_{jj}|. \end{split}$$

- So this is L1-regularization of diagonals of inverse covariance.
 - But doesn't set to exactly zero as it must be positive-definite.

Graphical LASSO

A popular generalization called the graphical LASSO,

$$f(\Theta) = \mathsf{Tr}(S\Theta) - \log|\Theta| + \lambda \|\Theta\|_1.$$

where we are using the element-wise L1-norm.

- Gives sparse off-diagonals in Θ .
 - Can solve very large instances with proximal-Newton and other tricks ("QUIC").
- It's common to draw the non-zeroes in Θ as a graph.
 - Has an interpretation in terms on conditional independence (we'll cover this later).

Summary

- Gaussian distribution is a common distribution with many nice properties.
 - Closed-form MLE.
 - But unimodal and not robust.
- Multivariate Gaussian generalizes univariate Gaussian for multiple variables.
 - Parameterized by mean vector μ and positive-definite covariance Σ .
 - Product of independent Gaussians is equivalent to using a diagonal Σ .
 - Closed-form MLE given by sample mean and covariance.
- Next time: a universal model for continuous densities.

MAP for Univariate Gaussian Mean

- Assume $x^i \sim \mathcal{N}(\mu, \sigma^2)$ and assume $\mu \sim \mathcal{N}(\mu_0, 1)$.
- ullet The MAP estimate of μ under these assumptions can be written as

$$\hat{\mu} = \frac{n}{n + \sigma^2} \bar{x} + \frac{\sigma^2}{n + \sigma^2} \mu_0,$$

where \bar{x} is the sample mean, $\frac{1}{n} \sum_{i=1}^{n} x^{i}$ (which is the MLE).

- The MAP estimate is a convex combination of the MLE and prior mean μ_0 .
 - Regularizer moves us in a straight line away from MLE towards μ_0 .

Maximum Entropy and Gaussian

- Consider trying to find the PDF p(x) that
 - Agrees with the sample mean and sample covariance of the data.
 - Maximizes entropy subject to these constraints,

$$\max_{p} \left\{ -\int_{-\infty}^{\infty} p(x) \log p(x) dx \right\}, \quad \text{subject to } \mathbb{E}[x] = \mu, \ \mathbb{E}[(x - \mu)^2] = \sigma^2.$$

- Solution is the Gaussian with mean μ and variance σ^2 .
 - Beyond fitting mean/variance, Gaussian makes fewest assumptions about the data.
- This is proved using the convex conjugate.
 - Convex conjugate of Gaussian negative log-likelihood is entropy.
 - Same result holds in higher dimensions for multivariate Gaussian.

Multivariate Gaussian from Univariate Gaussians

• Consider a joint distribution that is the product univariate standard normals:

$$p(z^{i}) = \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(z_{j}^{i})^{2}\right)$$
$$= \frac{1}{(2\pi)^{\frac{d}{2}}} \exp\left(\frac{1}{2}\langle z^{i}, z^{i}\rangle\right).$$

- Now define $x^i = Az^i + \mu$ for some (non-singular) matrix A and vector μ .
- The change of variables formula for multivariate probabilities is

$$p(x^i) = p(z^i) \left| \frac{\partial z^i}{\partial x^i} \right|.$$

• Plug in $z^i = A^{-1}(x^i - \mu)$ and $\frac{\partial z^i}{\partial x^i} = A^{-1}...$

Multivariate Gaussian from Univariate Gaussians

This gives

$$p(x^{i} \mid \mu, A) = \frac{1}{(2\pi)^{\frac{d}{2}}} \exp\left(\frac{1}{2} \langle A^{-1}(x^{i} - \mu), A^{-1}(x^{i}\mu) \rangle\right) |\det(A^{-1})|$$
$$= \frac{1}{(2\pi)^{\frac{d}{2}} |\det(A)|} \exp\left(\frac{1}{2} (x^{i} - \mu) A^{-\top} A^{-1} (x^{i} - \mu)\right).$$

• Define $\Sigma = AA^{\top}$ (so $\Sigma^{-1} = A^{-\top}A^{-1}$ and $\det \Sigma = (\det A)^2$) to get

$$p(x^{i} \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x^{i} - \mu)^{\top} \Sigma^{-1}(x^{i} - \mu)\right)$$

• So multivariate Gaussian is an affine transformtation of independent Gaussians.

Degenerate Gaussians

- If $|\Sigma| = 0$, we say the Gaussian is degenerate.
- In this case the PDF only integrates to 1 along a subspace of the original space.
- ullet With d=2 degenerate Gaussians only have non-zero probability along a line (or just one point).

MLE for Multivariate Gaussians (Covariance Matrix)

• To get MLE for Σ we re-parameterize in terms of precision matrix $\Theta = \Sigma^{-1}$,

$$\begin{split} &\frac{1}{2}\sum_{i=1}^n(x^i-\mu)^\top\Sigma^{-1}(x^i-\mu)+\frac{n}{2}\log|\Sigma|\\ &=\frac{1}{2}\sum_{i=1}^n(x^i-\mu)^\top\Theta(x^i-\mu)+\frac{n}{2}\log|\Theta^{-1}| \qquad \text{(ok because }\Sigma\text{ is invertible)}\\ &=\frac{1}{2}\sum_{i=1}^n\operatorname{Tr}\left((x^i-\mu)^\top\Theta(x^i-\mu)\right)+\frac{n}{2}\log|\Theta|^{-1} \qquad (\operatorname{scalar}\ y^\top Ay=\operatorname{Tr}(y^\top Ay))\\ &=\frac{1}{2}\sum_{i=1}^n\operatorname{Tr}((x^i-\mu)(x^i-\mu)^\top\Theta)-\frac{n}{2}\log|\Theta| \qquad (\operatorname{Tr}(ABC)=\operatorname{Tr}(CAB)) \end{split}$$

- Where the trace Tr(A) is the sum of the diagonal elements of A.
 - That Tr(ABC) = Tr(CAB) when dimensions match is the cyclic property of trace.

MLE for Multivariate Gaussians (Covariance Matrix)

• From the last slide we have in terms of precision matrix Θ that

$$= \frac{1}{2} \sum_{i=1}^n \mathsf{Tr}((x^i - \mu)(x^i - \mu)^\top \Theta) - \frac{n}{2} \log |\Theta|$$

• We can exchange the sum and trace (trace is a linear operator) to get,

$$= \frac{1}{2} \operatorname{Tr} \left(\sum_{i=1}^{n} (x^{i} - \mu)(x^{i} - \mu)^{\top} \Theta \right) - \frac{n}{2} \log |\Theta| \qquad \sum_{i} \operatorname{Tr}(A_{i}B) = \operatorname{Tr} \left(\sum_{i} A_{i}B \right)$$

$$= \frac{n}{2} \operatorname{Tr} \left(\left(\underbrace{\frac{1}{n} \sum_{i=1}^{n} (x^{i} - \mu)(x^{i} - \mu)^{\top}}_{\text{comple coveriges (S')}} \right) \Theta \right) - \frac{n}{2} \log |\Theta|. \qquad \left(\sum_{i} A_{i}B \right) = \left(\sum_{i} A_{i} \right) B$$

Positive-Definiteness of Θ and Checking Positive-Definiteness

• If we define centered vectors $\tilde{x}^i = x^i - \mu$ then empirical covariance is

$$S = \frac{1}{n} \sum_{i=1}^{n} (x^{i} - \mu)(x^{i} - \mu)^{\top} = \frac{1}{n} \sum_{i=1}^{n} \tilde{x}^{i} (\tilde{x}^{i})^{\top} = \frac{1}{n} \tilde{X}^{\top} \tilde{X} \succeq 0,$$

so S is positive semi-definite but not positive-definite by construction.

- If data has noise, it will be positive-definite with n large enough.
- For $\Theta \succ 0$, note that for an upper-triangular T we have

$$\log |T| = \log(\mathsf{prod}(\mathsf{eig}(T))) = \log(\mathsf{prod}(\mathsf{diag}(T))) = \mathsf{Tr}(\log(\mathsf{diag}(T))),$$

where we've used Matlab notation.

- So to compute $\log |\Theta|$ for $\Theta \succ 0$, use Cholesky to turn into upper-triangular.
 - Bonus: Cholesky fails if $\Theta \succ 0$ is not true, so it checks positive-definite constraint.