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Admin

• Registration forms:

– I will sign them at the end of class (need to submit prereq form first).

• Website/Piazza:

– http://www.cs.ubc.ca/~schmidtm/Courses/540-W20

– https://piazza.com/ubc.ca/winterterm22019/cpsc540

• Tutorials: start today after class (no need to formally register).

• Assignment 1 due Friday of next week.

– Gradescope submission instructions coming soon.

– Prereq form submitted separately with assignment.



Last Time: Strict/Strong Convexity

• We discussed 3 levels of convexity, and their implications:

– Convexity: all stationary points are global minimum (may be none or ∞).

– Strict convexity: there is at most one stationary point (may be 0 or 1).

– Strong convexity: there is exactly one stationary point (for closed domain).

• For twice-differentiable functions (“C2”), related to Hessian:

– Convexity: Hessian eigenvalues are non-negative everywhere.

– Strict convexity: eigenvalues are positive everywhere.

– Strong convexity: eigenvalues are at least 𝜇 > 0 everywhere.



The Question I Hate the Most…

• How much data do we need?

• A difficult if not impossible question to answer.

• My usual answer: “more is better”.

– With the warning: “as long as the quality doesn’t suffer”.

• Another popular answer: “ten times the number of features”.



A Discrete Sanity Check: Coupon Collecting

• Assume we have a categorical variable with 50 possible values:

– {Alabama, Alaska, Arizona, Arkansas,…}.

• Assume each category has probability of 1/50 of being chosen:

– How many examples do we need to see before we expect to see them all?

• Expected value is ~225.

• Coupon collector problem: O(n log n) in general.

– Gotta Catch’em all!

• Obvious sanity check, is need more samples than categories:

– Situation is worse if they don’t have equal probabilities.

– Typically want to see categories more than once to learn anything.

http://datagenetics.com/blog/april32016/index.html


The Question I Hate the Most…

• Let’s assume you have a new supervised learning application.

– But you have no data.

• You have some way to collect IID samples.

– So you have to decide how much data to collect.

• Since it’s supervised learning, our goal is to minimize a test error:

– Expected loss over IID examples from the test distribution.

– Here, fi(w) could be the squared error or some other loss.



Usual Approach: Collect Data then Optimize

• We want to minimize the test error (which we cannot compute):

• We approximate this with training error over ‘n’ IID samples:

• And we need to decide how large ‘n’ should be.

• But first, let’s quickly review stochastic gradient descent (SGD).
– Among most common approaches for minimizing the training erorr.



1-Slide Review of Stochastic Gradient Descent (SGD)

• To optimize training error, could use stochastic gradient descent:

– This generates a sequence of iterates w0, w1, w2,…

– We have a sequence of step sizes 𝛼𝑘.

– Each iteration ‘k’ chooses uses a random training example ik.

• Based on an unbiased estimate of the gradient of the training error (uniform ik):

– Converges to a stationary point (under reasonable assumptions) if:

• Typical choices: 𝛼𝑘= O(1/k) or 𝛼𝑘= O(1/√𝑘) which is more robust.



SGD Speed of Convergence (Training Error)

• “How much data” can be related to “how fast does SGD converge”?

• Assumptions:

– ‘f’ is strongly-convex:

– ‘f’ is strongly-smooth:

– “Variance” of gradients is bounded:

• Under these assumptions (and suitable 𝛼𝑘):

– E[f(wk)] – f* = O(1/k), where f* is training error of the global optimum.

– Implies we need k=O(1/𝜖) iterations to have f(wk) – f* ≤ 𝜖. 



Training Error vs. Testing Error

• We don’t care about training error, we want to minimize test error.
– And our goal was to decide how many examples ‘n’ to collect.

• We considered SGD on collected data (Approach 1):
– Choose a random training example ik (among the ‘n’ training examples).
– Perform the SGD step.

• Now consider SGD while collecting data (Approach 2):
– Collect a new random example ik (IID from the true distribution).
– Perform the SGD step.

• Approach 1 uses unbiased estimates of training error gradient.
• Approach 2 uses unbiased estimates of test error gradient.



SGD Speed of Convergence (Test Error)

• With Approach 1, train error after ‘k’ iterations is O(1/k).

• With Approach 2, test error after ‘k’ iterations is O(1/k).

– And we are using 1 new example on each iteration.

– So with ‘n’ examples, this approach has test error of O(1/n).

– And we need n=O(1/𝜖) training examples to get within 𝜖 of best test error.

• Notice that there is no overfitting.

– Approach 2 is doing SGD on the test error.

– It’s like doing SGD with n=∞, where train error = test error.



Scenarios where you can use Approach 2

• Here are some scenarios where you effectively have “n = ∞”:

– A dataset that is so large we cannot even go through it once (Gmail).

– A function you want to minimize that you can’t measure without noise.

– You want to encourage invariance with a continuous set of transformation:

• You consider infinite number of translations/rotations instead of a fixed number.

– Learning from simulators with random numbers (physics/chem/bio):

http://kinefold.curie.fr/cgi-bin/form.pl
https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php



One-Pass SGD, Multi-Pass, and Caveats
• One-pass SGD:

– If you already have a training set, you can simulate ‘n’ steps of Approach 2.
– Go through your ‘n’ examples once, doing SGD step on each example.

• Gets within O(1/n) of optimal test error.

• Under (ugly) assumptions, this “O(1/n) rate with ‘n’ examples” is unimprovable.
– Even for methods that go through the dataset more than once or that minimize train error.

• In practice: one-pass SGD often doesn’t work well.
– Doing multiple passes almost always helps.
– Multiple passes can potentially improve constants in O(1/n) rate.
– One-pass SGD is also very sensitive to the step-size.
– Our “loss” might not be the error. For example, 0-1 error is approximated by logistic loss.
– Some recent works have been exploring assumptions where O(1/n) is improvable.
– So if you have n=∞, but finite time: may be better to work with large-but-finite dataset.

• “Optimize better on less data”.



Digression: Gradient Descent vs. SGD (Finite Data)

• 2012: methods with cost of stochastic gradient, progress of full gradient.
– Key idea: if ‘n’ is finite, build an estimator of gradient whose variance goes to 0.

– First was stochastic average gradient (SAG), “low-memory” version is SVRG.
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A Practical Answer to “How Much Data”?

• Whether we use one-pass or SGD or minimize training error,

E[test error of model fit on training set] – (best test error in class) = O(1/n).

(under reasonable assumptions, and with parametric model)

• You rarely know the constant factor, but this gives some guidelines:
– Adding more data helps more on small datasets than on large datasets.

• Going from 10 training examples to 20, difference with best possible error gets cut in half.
– If the best possible error is 15% you might go from 20% to 17.5% (this does not mean 20% to 10%).

• Going from 110 training examples to 120, gap only goes down by ~10%.
• Going from 1M training examples to 1M+10, you won’t notice a change.

– Doubling the data size cuts the error in half:
• Going from 1M training to 2M training examples, gap gets cut in half.
• If you double the data size and your test error doesn’t improve, more data might not help.


