CPSC 540: Machine Learning

How Much Data? Winter 2020

Admin

- Registration forms:
 - I will sign them at the end of class (need to submit prereq form first).
- Website/Piazza:
 - http://www.cs.ubc.ca/~schmidtm/Courses/540-W20
 - https://piazza.com/ubc.ca/winterterm22019/cpsc540
- Tutorials: start today after class (no need to formally register).
- Assignment 1 due Friday of next week.
 - Gradescope submission instructions coming soon.
 - Prereq form submitted separately with assignment.

Last Time: Strict/Strong Convexity

- We discussed 3 levels of convexity, and their implications:
 - Convexity: all stationary points are global minimum (may be none or ∞).
 - Strict convexity: there is at most one stationary point (may be 0 or 1).
 - Strong convexity: there is exactly one stationary point (for closed domain).
- For twice-differentiable functions ("C²"), related to Hessian:
 - Convexity: Hessian eigenvalues are non-negative everywhere. $\nabla^2 f(\omega) \not\geq 0$

 $\nabla^2 f(w) > D$

 $\nabla^2 f(w) \not\geq \mu I$

- Strict convexity: eigenvalues are positive everywhere.
- Strong convexity: eigenvalues are at least $\mu > 0$ everywhere.

The Question I Hate the Most...

• How much data do we need?

- A difficult if not impossible question to answer.
- My usual answer: "more is better".
 - With the warning: "as long as the quality doesn't suffer".
- Another popular answer: "ten times the number of features".

A Discrete Sanity Check: Coupon Collecting

- Assume we have a categorical variable with 50 possible values:
 - {Alabama, Alaska, Arizona, Arkansas,...}.
- Assume each category has probability of 1/50 of being chosen:
 - How many examples do we need to see before we expect to see them all?
- Expected value is ~225.
- Coupon collector problem: O(n log n) in general.
 - Gotta Catch'em all!
- Obvious sanity check, is need more samples than categories:
 - Situation is worse if they don't have equal probabilities.
 - Typically want to see categories more than once to learn anything.

The Question I Hate the Most...

- Let's assume you have a new supervised learning application.
 But you have no data.
- You have some way to collect IID samples.
 - So you have to decide how much data to collect.
- Since it's supervised learning, our goal is to minimize a test error:

$$\hat{f}(w) = \mathbb{E}[f_i(w)]$$
 "test error"

- Expected loss over IID examples from the test distribution.
- Here, $f_i(w)$ could be the squared error or some other loss.

Usual Approach: Collect Data then Optimize

• We want to minimize the test error (which we cannot compute):

$$\hat{f}(w) = \mathbb{E}[f_i(w)]$$
 "test error"

• We approximate this with training error over 'n' IID samples:

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$$
 "train error"

- And we need to decide how large 'n' should be.
- But first, let's quickly review stochastic gradient descent (SGD).
 Among most common approaches for minimizing the training erorr.

1-Slide Review of Stochastic Gradient Descent (SGD)

• To optimize training error, could use stochastic gradient descent:

$$w^{k+1} = w^k - \alpha_k \nabla f_{i_k}(w^k)$$

- This generates a sequence of iterates w^0 , w^1 , w^2 ,...
- We have a sequence of step sizes α_k .
- Each iteration 'k' chooses uses a random training example i_k .
 - Based on an unbiased estimate of the gradient of the training error (uniform i_{k}):

$$\mathbb{E}\left[\nabla f_{i}(u)\right] = \sum_{j=1}^{n} \rho(i) \nabla f_{i}(u) = \sum_{j=1}^{n} (f_{i}) \nabla f_{i}(u) = \frac{1}{n} \sum_{j=1}^{n} \nabla f_{i}(u) = \nabla f(u)$$

Reak Kar - Converges to a stationary point (under reasonable assumptions) if:

• Typical choices: $\alpha_k = O(1/k)$ or $\alpha_k = O(1/\sqrt{k})$ which is more robust.

SGD Speed of Convergence (Training Error)

- "How much data" can be related to "how fast does SGD converge"?
- Assumptions:
 - 'f' is strongly-convex: $\nabla^2 f(w) \not\in u I$
 - 'f' is strongly-smooth: $LI \& \nabla^2 f(w)$
 - "Variance" of gradients is bounded: $\frac{1}{2} \sum_{i=1}^{2} ||\nabla f_i(w) \nabla f(w)||^2 \leq \sigma^2$
- Under these assumptions (and suitable α_k):

 $- E[f(w^k)] - f^* = O(1/k)$, where f* is training error of the global optimum.

- Implies we need $k=O(1/\epsilon)$ iterations to have $f(w^k) - f^* \le \epsilon$.

Training Error vs. Testing Error

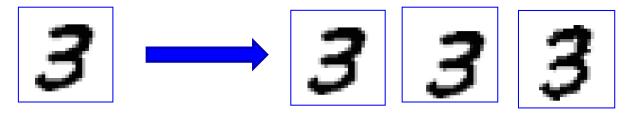
- We don't care about training error, we want to minimize test error.
 - And our goal was to decide how many examples 'n' to collect.
- We considered SGD on collected data (Approach 1):
 - Choose a random training example i_k (among the 'n' training examples).
 - Perform the SGD step.
- Now consider SGD while collecting data (Approach 2):
 - Collect a new random example i_k (IID from the true distribution).
 - Perform the SGD step.
- Approach 1 uses unbiased estimates of training error gradient.
- Approach 2 uses unbiased estimates of test error gradient.

SGD Speed of Convergence (Test Error)

- With Approach 1, train error after 'k' iterations is O(1/k).
- With Approach 2, test error after 'k' iterations is O(1/k).
 - And we are using 1 new example on each iteration.
 - So with 'n' examples, this approach has test error of O(1/n).
 - And we need $n=O(1/\epsilon)$ training examples to get within ϵ of best test error.
- Notice that there is no overfitting.
 - Approach 2 is doing SGD on the test error.
 - It's like doing SGD with $n=\infty$, where train error = test error.

Scenarios where you can use Approach 2

- Here are some scenarios where you effectively have " $n = \infty$ ":
 - A dataset that is so large we cannot even go through it once (Gmail).
 - A function you want to minimize that you can't measure without noise.
 - You want to encourage invariance with a continuous set of transformation:
 - You consider infinite number of translations/rotations instead of a fixed number.



Learning from simulators with random numbers (physics/chem/bio):

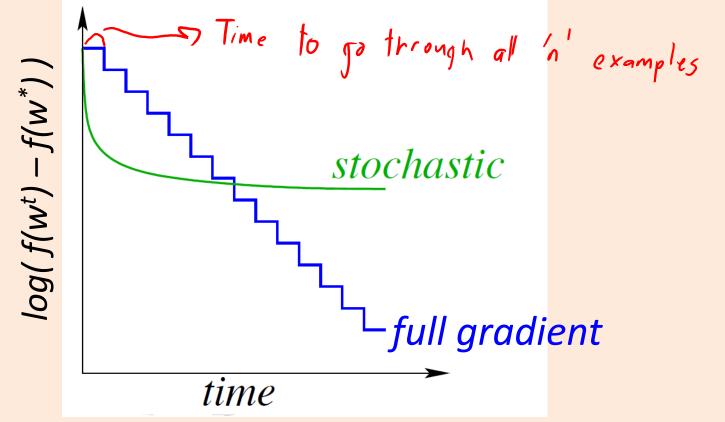
http://kinefold.curie.fr/cgi-bin/form.p

https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php

One-Pass SGD, Multi-Pass, and Caveats

- One-pass SGD:
 - If you already have a training set, you can simulate 'n' steps of Approach 2.
 - Go through your 'n' examples once, doing SGD step on each example.
 - Gets within O(1/n) of optimal test error.
- Under (ugly) assumptions, this "O(1/n) rate with 'n' examples" is unimprovable.
 - Even for methods that go through the dataset more than once or that minimize train error.
- In practice: one-pass SGD often doesn't work well.
 - Doing multiple passes almost always helps.
 - Multiple passes can potentially improve constants in O(1/n) rate.
 - One-pass SGD is also very sensitive to the step-size.
 - Our "loss" might not be the error. For example, 0-1 error is approximated by logistic loss.
 - Some recent works have been exploring assumptions where O(1/n) is improvable.
 - So if you have $n=\infty$, but finite time: may be better to work with large-but-finite dataset.
 - "Optimize better on less data".

Digression: Gradient Descent vs. SGD (Finite Data)



- 2012: methods with cost of stochastic gradient, progress of full gradient.
 - Key idea: if 'n' is finite, build an estimator of gradient whose variance goes to 0.
 - First was stochastic average gradient (SAG), "low-memory" version is SVRG.

A Practical Answer to "How Much Data"?

• Whether we use one-pass or SGD or minimize training error,

E[test error of model fit on training set] – (best test error in class) = O(1/n).

(under reasonable assumptions, and with parametric model)

- You rarely know the constant factor, but this gives some guidelines:
 - Adding more data helps more on small datasets than on large datasets.
 - Going from 10 training examples to 20, difference with best possible error gets cut in half. – If the best possible error is 15% you might go from 20% to 17.5% (this does **not** mean 20% to 10%).
 - Going from 110 training examples to 120, gap only goes down by ~10%.
 - Going from 1M training examples to 1M+10, you won't notice a change.
 - Doubling the data size cuts the error in half:
 - Going from 1M training to 2M training examples, gap gets cut in half.
 - If you double the data size and your test error doesn't improve, more data might not help.