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Stochastic Processes and Non-Parametric Bayes

@ A stochastic process is an infinite collection of random variables {x%}.

@ Non-parametric Bayesian methods use priors defined on stochastic processes:

o Allows extremely-flexible prior, and posterior complexity grows with data size.
e Typically set up so that samples from posterior are finite-sized.

@ The two most common priors are Gaussian processes and Dirichlet processes:

o Gaussian processes define prior on space of functions (universal approximators).
o Dirichlet processes define prior on space of probabilities (without fixing dimension).



Gaussian Processes

@ Recall the partitioned form of a multivariate Gaussian
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and in this case the marginal p(z) is a N (pz, Xzz) Gaussian.

@ Generalization of this to infinite set of variables is Gaussian processes (GPs):
e Any finite set from collection follows a Gaussian distribution.



Gaussian Processes

To date kriging has been used in a variety of disciplines, including the following:
« Environmental sciencelS!
» Hydrogealogy/®1718]
« Mining!®110]
« Natural resources!! 1112]
« Remote sensingl’3]
« Real estate appraisall! 4115 N
and many others.
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Gaussian Processes

@ GPs are specified by a mean function m and covariance function k,

m(z) =E[f(2)], k(z,2') =E[(f(z) — m(2))(f(2') — m(z"))"].
@ Any finite sample f(z) from a GP follows a N (m(z), k(x,x)) distribution.
o Analogous to partitioned Gaussian where m(z) = p, and k(z,x) = Z,,.
o We write that
f(z) ~ GP(m(z), k(z,2")),

@ As an example, we could have a zero-mean and linear covariance GP,

m(x) =0, k(z,2')=azTa.



Regression Models as Gaussian Processes

@ As an example, predictions made by linear regression with Gaussian prior

fl@) =w" ¢(z), w~N(O,5),
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are a Gaussian process with mean function

E[f(2)] = Elw” ¢(2)] = Elu]" é(z) = 0.
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and covariance function



Gaussian Process Model Selection

@ We can view a Gaussian process as a prior distribution over smooth functions.
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@ Most common choice of covariance is Gaussian RBF.
e Though “Matérn” kernel often works better.

@ Is this related to using RBF kernels or the RBFs as the bases?
e Yes, this is Bayesian linear regression plus the kernel trick.



Gaussian Process Model Selection

@ So why do we care?

o We can get estimate of uncertainty in the prediction.
o We can use marginal likelihood to learn the kernel/covariance.

@ Write kernel in terms of parameters, use empirical Bayes to learn kernel.

@ Hierarchical approach: put a hyper-prior of types of kernels.

@ Application: Bayesian optimization of non-convex functions:

o Gradient descent is based on a Gaussian (quadratic) approximation of f.
o Bayesian optimization is based on a Gaussian process approximation of f.

o Can approximate non-convex functions.



Dirichlet Process

@ Recall the basic mixture model:

k
pa|0)=> mep(x | b)
c=1

@ Non-parametric Bayesian methods allow us to consider infinite mixture model,

p(x|0)= Zﬂcpa:w

@ Common choice for prior on 7 values is Dirichlet process:
e Also called “Chinese restaurant process” and “stick-breaking process”.
e For finite datasets, only a fixed number of clusters have m. # 0.
e But don't need to pick number of clusters, grows with data size.



Dirichlet Process

@ Gibbs sampling in Dirichlet process mixture model in action:
https://www.youtube.com/watch?v=0Vh7qZY9sPs

@ We could alternately put a prior on k:
o “Reversible-jump” MCMC can be used to sample from models of different sizes.
e AKA *“trans-dimensional” MCMC.

@ There a variety of interesting variations on Dirichlet processes
o Beta process (“Indian buffet process”).
e Hierarchical Dirichlet process.
e Polya trees.
o Infinite hidden Markov models.


https://www.youtube.com/watch?v=0Vh7qZY9sPs

Bayesian Hierarchical Clustering

@ Hierarchical clustering of {0,2,4} digits using classic and Bayesian method:

Average Linkage Hierarchical Clustering
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Hbtps/ w2 stat duke. edu/-kneller/bhenenpat (Y-AXIS represents distance between clusters)


http://www2.stat.duke.edu/~kheller/bhcnew.pdf

Bayesian Hierarchical Clustering

@ Hierarchical clustering of newgroups using classic and Bayesian method:

4 Newsgroups Average Linkage Clustering 4 Newsgroups Bayesian Hierarchical Clustering

Bbtp/un. stat duke. edu/kheller /onenenpat (Y-aXIS represents distance between clusters)


http://www2.stat.duke.edu/~kheller/bhcnew.pdf
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Summary

Non-Parametric Bayes use stochastic processes to model infinite spaces.
Gaussian processes are priors over continuous functions.
Dirichlet processes are priors over probability mass functions.

Next time: new generative deep learning methods.



