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Variational Inference

Monte Carlo vs. Variational Inference
Two main strategies for approximate inference:

1 Monte Carlo methods:
Approximate p with empirical distribution over samples,

p(x) ≈ 1

n

n∑
i=1

I[xi = x].

Turns inference into sampling.

2 Variational methods:
Approximate p with “closest” distribution q from a tractable family,

p(x) ≈ q(x).

E.g., Gaussian, independent Bernoulli, or tree UGM.
(or mixtures of these simple distributions)

Turns inference into optimization.
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Variational Inference Illustration

Approximate non-Gaussian p by a Gaussian q:

Approximate loopy UGM by independent distribution or tree-structed UGM:

Variational methods try to find simple distribution q that is closest to target p.
This isn’t consistent like MCMC, but can be very fast.
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Laplace Approximation

A classic variational method is the Laplace approximation.
1 Find an x that maximizes p(x),

x∗ ∈ argmin
x
{− log p(x)}.

2 Computer second-order Taylor expansion of f(x) = − log p(x) at x∗.

− log p(x) ≈ f(x∗) +∇f(x∗)︸ ︷︷ ︸
0

T
(x− x∗) + 1

2
(x− x∗)T∇2f(x∗)(x− x∗).

3 Find Gaussian distribution q where − log q(x) has same Taylor expansion at x∗.

− log q(x) = f(x∗) +
1

2
(x− x∗)∇2f(x∗)(x− x∗),

so q follows a N (x∗,∇2f(x∗)−1) distribution.

This is the same approximation used by Newton’s method in optimization.
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Laplace Approximation
So Laplace approximation replaces complicated p(x) with Gaussian q(x).

Centered at mode and agreeing with 1st/2nd-derivatives of log-likelihood:

Now you only need to compute Gaussian integrals (linear algebra for many f).
Very fast: just solve an optimization (compared to super-slow MCMC).
Bad approximation if posterior is heavy-tailed, multi-modal, skewed, etc.

It might not even give you the “best” Gaussian approximation:
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Kullback-Leibler (KL) Divergence

How do we define “closeness” between a distribution p and q?

A common measure is Kullback-Leibler (KL) divergence between p and q:

KL(p || q) =
∑
x

p(x) log
p(x)

q(x)
.

Replace sum with integral for continuous families of q distributions.

Also called information gain: “information lost when p is approximated by q”.
If p and q are the same, we have KL(p || q) = 0 (no information lost).
Otherwise, KL(p || q) grows as it becomes hard to predict p from q.

Unfortunately, this requires summing/integrating over p.
The problem we are trying to solve.
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Minimizing Reverse KL Divergence
Instead of using KL, most variational methods minimize reverse KL,

KL(q || p) =
∑
x

q(x) log
q(x)

p(x)
=
∑
x

q(x) log
q(x)

p̃(x)
Z.

which just swaps all p and q values in the definition (KL is not commutative).
Not intuitive: “how much information is lost when we approximate q by p”.

But, reverse KL only needs unnormalized distribution p̃,

KL(q || p) =
∑
x

q(x) log q(x)−
∑
x

q(x) log p̃(x) +
∑
x

q(x) log(Z)

=
∑
x

q(x) log
q(x)

p̃(x)
+ log(Z)︸ ︷︷ ︸

const. in q

.

By non-negativiy of KL this also gives a lower bound on log(Z).
Called the ELBO (“evidence lower bound”).
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Coordinate Optimization: Mean Field Approximation

This “variational lower bound” still seems difficult to work with.

But with appropriate q we can do coordinate optimization.

Consider minimizing reverse KL with independent q,

q(x) =

d∏
j=1

qj(xj),

where we choose q to be conjugate (usually discrete or Gaussian).

If we fix q−j and optimize the functional qj we obtain (see Murphy’s book)

qj(xj) ∝ exp
(
Eq−j

[log p̃(x)]
)
,

which we can use to update qj for a particular j.
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Coordinate Optimization: Mean Field Approximation

Each iteration we choose a j and set q based on mean (of neighbours),

qj(xj) ∝ exp
(
Eq−j [log p̃(x)]

)
.

This improves the (non-convex) reverse KL on each iteration.

Applying this update is called:

Mean field method (graphical models).
Variational Bayes (Bayesian inference).
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3 Coordinate-Wise Algorithms

ICM is a coordinate-wise method for approximate decoding:

Choose a coordinate i to update.
Maximize xi keeping other variables fixed.

Gibbs sampling is a coordinate-wise method for approximate sampling:

Choose a coordinate i to update.
Sample xi keeping other variables fixed.

Mean field is a coordinate-wise method for approximate marginalization:

Choose a coordinate i to update.
Update qi(xi)︸ ︷︷ ︸

for all xi

keeping other variables fixed (qi(xi) approximates pi(xi)).
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3 Coordinate-Wise Algorithms

Consider a pairwise UGM:

p(x1, x2, . . . , xd) ∝

(
d∏
i=1

φi(xi)

) ∏
(i,j)∈E

φij(xi, xj)

 ,

ICM for updating a node i with 2 neighbours (j and k).
1 Compute Mi(xi) = φi(xi)φij(xi, xj)φik(xi, xk) for all xi.
2 Set xi to the largest value of Mi(xi).

Gibbs for updating a node i with 2 neighbours (j and k).
1 Compute Mi(xi) = φi(xi)φij(xi, xj)φik(xi, xk) for all xi.
2 Sample xi proportional to Mi(xi).

Mean field for updating a node i with 2 neighbours (j and k).
1 Compute Mi(xi) = φi(xi) exp

(∑
xj
qj(xj) log φij(xi, xj) +

∑
xk
qk(xk) log φik(xi, xk)

)
.

2 Set qi(xi) proportional to Mi(xi).
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Structure Mean Field

Common variant is structured mean field: q function includes some of the edges.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

Original LDA article proposed a structured mean field approximation.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
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Previously: Belief Propagation

We’ve discussed belief propagation for forest-structured UGMs.
(undirected graphs with no loops, which must be pairwise)

https://www.quora.com/

Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm

Defines “messages” that can be sent along each edge.
Generalizes forward-backward algorithm.

https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
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Loopy Belief Propagation

In pairwise UGM, belief propagation “message” from parent p to child c is gven by

Mpc(xc) ∝
∑
xp

φi(xp)φpc(xp, xc)Mjp(xp)Mkp(xp),

assuming that parent p has parents j and k.
We get marginals by multiplying all incoming messages with local potentials.

Loopy belief propagation: a “hacker” approach to approximate marginals:
Choose an edge ic to update.
Update messages Mic(xc) keeping all other messages fixed.
Repeat until “convergence”.

We approximate marginals by multiplying all incoming messages with local potentials.

Empirically much better than mean field, we’ve spent 20 years figuring out why.
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Discussion of Loopy Belief Propagation
Loopy BP decoding is used for “error correction” in WiFi and Skype.

Called “turbo codes” in information theory.

Loopy BP is not optimizing an objective function.
Convergence of loopy BP is hard to characterize: does not converge in general.

If it converges, loopy BP finds fixed point of “Bethe free energy”:
Instead of “Gibbs mean-field free-energy” for mean field, which lower bounds Z.
Bethe typically gives better approximation than mean field, but not a bound.

Recent works give convex variants that upper bound Z.
Tree-reweighted belief propagation.
Variations that are guaranteed to converge.

Messages only have closed-form update for conjugate models.
Can approximate non-conjugate models using expectation propagation.
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Variational vs. Monte Carlo

Monte Carlo vs. variational methods:

Variational methods are typically more complicated.
Variational methods are not consistent.

q does not converge to p if we run the algorithm forever.

But variational methods often give better approximation for the same time.

Although MCMC is easier to parallelize.

Variational methods typically have similar cost to MAP.

Combinations of variational inference and stochastic methods:

Stochastic variational inference (SVI): use SGD to speed up variational methods.
Variational MCMC: use Metropolis-Hastings where variational q can make proposals.
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Convex Relaxations

I’ve overviewed the “classic” view of variational methods that they minimize KL.

Modern view: write exact inference as constrained convex optimization (bonus).

Based on convex conjugate, writing inference as maximizing entropy with constraints.
Different methods correspond to different function/constraints approximations.
There are also convex relaxations that approximate with linear programs.

For an overview of this and all things variational, see:
people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf

people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf
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Summary

Variational methods approximate p with a simpler distribution q.

Mean field approximation minimizes reverse KL divergence with independent q.

Loopy belief propagation is a heuristic that often works well.

Next time: food-inspired models?
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Variational Inference: Constrained Optimization View

Modern view of variational inference:

Formulate inference problem as constrained optimization.
Approximate the function or constraints to make it easy.
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Exponential Families and Cumulant Function

We will again consider log-linear models:

P (X) =
exp(wTF (X))

Z(w)
,

but view them as exponential family distributions,

P (X) = exp(wTF (X)−A(w)),

where A(w) = log(Z(w)).

Log-partition A(w) is called the cumulant function,

∇A(w) = E[F (X)], ∇2A(w) = V[F (X)],

which implies convexity.
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Convex Conjugate and Entropy

The convex conjugate of a function A is given by

A∗(µ) = sup
w∈W
{µTw −A(w)}.

E.g., if we consider for logistic regression

A(w) = log(1 + exp(w)),

we have that A∗(µ) satisfies w = log(µ)/ log(1− µ).
When 0 < µ < 1 we have

A∗(µ) = µ log(µ) + (1− µ) log(1− µ)
= −H(pµ),

negative entropy of binary distribution with mean µ.
If µ does not satisfy boundary constraint, sup is ∞.
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Convex Conjugate and Entropy

More generally, if A(w) = log(Z(w)) then

A∗(µ) = −H(pµ),

subject to boundary constraints on µ and constraint:

µ = ∇A(w) = E[F (X)].

Convex set satisfying these is called marginal polytope M.

If A is convex (and LSC), A∗∗ = A. So we have

A(w) = sup
µ∈U
{wTµ−A∗(µ)}.

and when A(w) = log(Z(w)) we have

log(Z(w)) = sup
µ∈M
{wTµ+H(pµ)}.

We’ve written inference as a convex optimization problem.
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Bonus slide: Maximum Likelihood and Maximum Entropy
The maximum likelihood parameters w satisfy:

min
w∈Rd

−wTF (D) + log(Z(w))

= min
w∈Rd

−wTF (D) + sup
µ∈M
{wTµ+H(pµ)} (convex conjugate)

= min
w∈Rd

sup
µ∈M
{−wTF (D) + wTµ+H(pµ)}

= sup
µ∈M
{min
w∈Rd

−wTF (D) + wTµ+H(pµ)} (convex/concave)

which is −∞ unless F (D) = µ (e.g., maximum likelihood w), so we have

min
w∈Rd

−wTF (D) + log(Z(w))

= max
µ∈M

H(pµ),

subject to F (D) = µ.
Maximum likelihood ⇒ maximum entropy + moment constraints.
Converse: MaxEnt + fit feature frequencies ⇒ ML(log-linear).
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Difficulty of Variational Formulation

We wrote inference as a convex optimization:

log(Z) = sup
µ∈M
{wTµ+H(pµ)},

Did this make anything easier?

Computing entropy H(pµ) seems as hard as inference.
Characterizing marginal polytope M becomes hard with loops.

Practical variational methods:

Work with approximation to marginal polytope M.
Work with approximation/bound on entropy A∗.

Notatation trick: we put everything “inside” w to discuss general log-potentials.
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Mean Field Approximation

Mean field approximation assumes

µij,st = µi,sµj,t,

for all edges, which means

p(xi = s, xj = t) = p(xi = s)p(xj = t),

and that variables are independent.

Entropy is simple under mean field approximation:∑
X

p(X) log p(X) =
∑
i

∑
xi

p(xi) log p(xi).

Marginal polytope is also simple:

MF = {µ | µi,s ≥ 0,
∑
s

µi,s = 1, µij,st = µi,sµj,t}.
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Entropy of Mean Field Approximation

Entropy form is from distributive law and probabilities sum to 1:

∑
X

p(X) log p(X) =
∑
X

p(X) log(
∏
i

p(xi))

=
∑
X

p(X)
∑
i

log(p(xi))

=
∑
i

∑
X

p(X) log p(xi)

=
∑
i

∑
X

∏
j

p(xj) log p(xi)

=
∑
i

∑
X

p(xi) log p(xi)
∏
j 6=i

p(xj)

=
∑
i

∑
xi

p(xi) log p(xi)
∑

xj | j 6=i

∏
j 6=i

p(xj)

=
∑
i

∑
xi

p(xi) log p(xi).
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Mean Field as Non-Convex Lower Bound

Since MF ⊆M, yields a lower bound on log(Z):

sup
µ∈MF

{wTµ+H(pµ)} ≤ sup
µ∈M
{wTµ+H(pµ)} = log(Z).

Since MF ⊆M, it is an inner approximation:

Constraints µij,st = µi,sµj,t make it non-convex.

Mean field algorithm is coordinate descent on wTµ+H(pµ) over MF .
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Discussion of Mean Field and Structured MF

Mean field is weird:

Non-convex approximation to a convex problem.
For learning, we want upper bounds on log(Z).

Structured mean field:

Cost of computing entropy is similar to cost of inference.
Use a subgraph where we can perform exact inference.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
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Structured Mean Field with Tree

More edges means better approximation of M and H(pµ):

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

Fixed points of loopy correspond to using “Bethe” approximation of entropy and
“local polytope” approximation of “marginal polytope”.

You can design better variational methods by constructing better approximations.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
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