CPSC 540: Machine Learning Variational Inference

Mark Schmidt

University of British Columbia

Winter 2020

Monte Carlo vs. Variational Inference

Two main strategies for approximate inference:

- Monte Carlo methods:
 - ullet Approximate p with empirical distribution over samples,

$$p(x) \approx \frac{1}{n} \sum_{i=1}^{n} \mathcal{I}[x^i = x].$$

- Turns inference into sampling.
- Variational methods:
 - ullet Approximate p with "closest" distribution q from a tractable family,

$$p(x) \approx q(x)$$
.

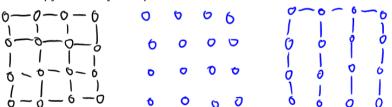
- E.g., Gaussian, independent Bernoulli, or tree UGM.
 - (or mixtures of these simple distributions)

• Turns inference into optimization.

Variational Inference Illustration

• Approximate non-Gaussian p by a Gaussian q:

• Approximate loopy UGM by independent distribution or tree-structed UGM:



- ullet Variational methods try to find simple distribution q that is closest to target p.
 - This isn't consistent like MCMC, but can be very fast.

Laplace Approximation

- A classic variational method is the Laplace approximation.
 - Find an x that maximizes p(x),

$$x^* \in \operatorname*{argmin}_x \{-\log p(x)\}.$$

2 Computer second-order Taylor expansion of $f(x) = -\log p(x)$ at x^* .

$$-\log p(x) \approx f(x^*) + \underbrace{\nabla f(x^*)}_{0}^{T} (x - x^*) + \frac{1}{2} (x - x^*)^{T} \nabla^2 f(x^*) (x - x^*).$$

1 Find Gaussian distribution q where $-\log q(x)$ has same Taylor expansion at x^* .

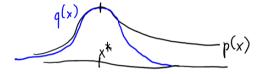
$$-\log q(x) = f(x^*) + \frac{1}{2}(x - x^*)\nabla^2 f(x^*)(x - x^*),$$

so q follows a $\mathcal{N}(x^*, \nabla^2 f(x^*)^{-1})$ distribution.

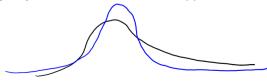
• This is the same approximation used by Newton's method in optimization.

Laplace Approximation

- So Laplace approximation replaces complicated p(x) with Gaussian q(x).
 - Centered at mode and agreeing with 1st/2nd-derivatives of log-likelihood:



- ullet Now you only need to compute Gaussian integrals (linear algebra for many f).
 - Very fast: just solve an optimization (compared to super-slow MCMC).
 - Bad approximation if posterior is heavy-tailed, multi-modal, skewed, etc.
- It might not even give you the "best" Gaussian approximation:



Kullback-Leibler (KL) Divergence

- How do we define "closeness" between a distribution p and q?
- A common measure is Kullback-Leibler (KL) divergence between p and q:

$$\mathsf{KL}(p \mid\mid q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}.$$

- Replace sum with integral for continuous families of q distributions.
- Also called information gain: "information lost when p is approximated by q".
 - If p and q are the same, we have KL(p || q) = 0 (no information lost).
 - Otherwise, $KL(p \mid\mid q)$ grows as it becomes hard to predict p from q.
- Unfortunately, this requires summing/integrating over p.
 - The problem we are trying to solve.

Minimizing Reverse KL Divergence

• Instead of using KL, most variational methods minimize reverse KL,

$$\mathsf{KL}(q \mid\mid p) = \sum_{x} q(x) \log \frac{q(x)}{p(x)} = \sum_{x} q(x) \log \frac{q(x)}{\tilde{p}(x)} Z.$$

which just swaps all p and q values in the definition (KL is not commutative).

- Not intuitive: "how much information is lost when we approximate q by p".
- But, reverse KL only needs unnormalized distribution \tilde{p} ,

$$\begin{split} \mathsf{KL}(q \mid\mid p) &= \sum_{x} q(x) \log q(x) - \sum_{x} q(x) \log \tilde{p}(x) + \sum_{x} q(x) \log(Z) \\ &= \sum_{x} q(x) \log \frac{q(x)}{\tilde{p}(x)} + \underbrace{\log(Z)}_{\text{const. in } g}. \end{split}$$

- By non-negativiy of KL this also gives a lower bound on log(Z).
 - Called the ELBO ("evidence lower bound").

Coordinate Optimization: Mean Field Approximation

- This "variational lower bound" still seems difficult to work with.
 - \bullet But with appropriate q we can do coordinate optimization.
- Consider minimizing reverse KL with independent q,

$$q(x) = \prod_{j=1}^{d} q_j(x_j),$$

where we choose q to be conjugate (usually discrete or Gaussian).

ullet If we fix q_{-j} and optimize the functional q_j we obtain (see Murphy's book)

$$q_j(x_j) \propto \exp\left(\mathbb{E}_{q_{-j}}[\log \tilde{p}(x)]\right),$$

which we can use to update q_i for a particular j.

Coordinate Optimization: Mean Field Approximation

ullet Each iteration we choose a j and set q based on mean (of neighbours),

$$q_j(x_j) \propto \exp\left(\mathbb{E}_{q_{-j}}[\log \tilde{p}(x)]\right).$$

- This improves the (non-convex) reverse KL on each iteration.
- Applying this update is called:
 - Mean field method (graphical models).
 - Variational Bayes (Bayesian inference).

3 Coordinate-Wise Algorithms

- ICM is a coordinate-wise method for approximate decoding:
 - Choose a coordinate *i* to update.
 - Maximize x_i keeping other variables fixed.
- Gibbs sampling is a coordinate-wise method for approximate sampling:
 - Choose a coordinate i to update.
 - Sample x_i keeping other variables fixed.
- Mean field is a coordinate-wise method for approximate marginalization:
 - Choose a coordinate *i* to update.
 - Update $q_i(x_i)$ keeping other variables fixed $(q_i(x_i) \text{ approximates } p_i(x_i))$.

3 Coordinate-Wise Algorithms

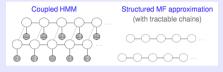
Consider a pairwise UGM:

$$p(x_1, x_2, \dots, x_d) \propto \left(\prod_{i=1}^d \phi_i(x_i)\right) \left(\prod_{(i,j)\in E} \phi_{ij}(x_i, x_j)\right),$$

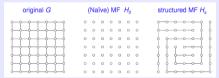
- ICM for updating a node i with 2 neighbours (j and k).
 - ① Compute $M_i(x_i) = \phi_i(x_i)\phi_{ij}(x_i, x_j)\phi_{ik}(x_i, x_k)$ for all x_i .
 - ② Set x_i to the largest value of $M_i(x_i)$.
- Gibbs for updating a node i with 2 neighbours (j and k).
 - ① Compute $M_i(x_i) = \phi_i(x_i)\phi_{ii}(x_i, x_i)\phi_{ik}(x_i, x_k)$ for all x_i .
 - ② Sample x_i proportional to $M_i(x_i)$.
- Mean field for updating a node i with 2 neighbours (j and k).
 - ① Compute $M_i(x_i) = \phi_i(x_i) \exp\left(\sum_{x_i} q_j(x_j) \log \phi_{ij}(x_i, x_j) + \sum_{x_i} q_k(x_k) \log \phi_{ik}(x_i, x_k)\right)$.
 - 2 Set $q_i(x_i)$ proportional to $M_i(x_i)$.

Structure Mean Field

Common variant is structured mean field: q function includes some of the edges.



http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf



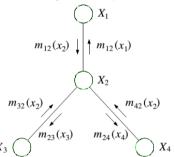
http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

Original LDA article proposed a structured mean field approximation.

Previously: Belief Propagation

• We've discussed belief propagation for forest-structured UGMs.

(undirected graphs with no loops, which must be pairwise)



https://www.quora.com/

Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-decomposition-tree-

- Defines "messages" that can be sent along each edge.
 - Generalizes forward-backward algorithm.

Loopy Belief Propagation

• In pairwise UGM, belief propagation "message" from parent p to child c is given by

$$M_{pc}(x_c) \propto \sum_{x_p} \phi_i(x_p) \phi_{pc}(x_p, x_c) M_{jp}(x_p) M_{kp}(x_p),$$

assuming that parent p has parents j and k.

- We get marginals by multiplying all incoming messages with local potentials.
- Loopy belief propagation: a "hacker" approach to approximate marginals:
 - Choose an edge *ic* to update.
 - Update messages $M_{ic}(x_c)$ keeping all other messages fixed.
 - Repeat until "convergence".
 - We approximate marginals by multiplying all incoming messages with local potentials.
- Empirically much better than mean field, we've spent 20 years figuring out why.

Discussion of Loopy Belief Propagation

- Loopy BP decoding is used for "error correction" in WiFi and Skype.
 - Called "turbo codes" in information theory.
- Loopy BP is not optimizing an objective function.
 - Convergence of loopy BP is hard to characterize: does not converge in general.
- If it converges, loopy BP finds fixed point of "Bethe free energy":
 - Instead of "Gibbs mean-field free-energy" for mean field, which lower bounds Z.
 - Bethe typically gives better approximation than mean field, but not a bound.
- Recent works give convex variants that upper bound Z.
 - Tree-reweighted belief propagation.
 - Variations that are guaranteed to converge.
- Messages only have closed-form update for conjugate models.
 - Can approximate non-conjugate models using expectation propagation.

Variational vs. Monte Carlo

- Monte Carlo vs. variational methods:
 - Variational methods are typically more complicated.
 - Variational methods are not consistent.
 - ullet q does not converge to p if we run the algorithm forever.
 - But variational methods often give better approximation for the same time.
 - Although MCMC is easier to parallelize.
 - Variational methods typically have similar cost to MAP.
- Combinations of variational inference and stochastic methods:
 - Stochastic variational inference (SVI): use SGD to speed up variational methods.
 - \bullet Variational MCMC: use Metropolis-Hastings where variational q can make proposals.

Convex Relaxations

- I've overviewed the "classic" view of variational methods that they minimize KL.
- Modern view: write exact inference as constrained convex optimization (bonus).
 - Based on convex conjugate, writing inference as maximizing entropy with constraints.
 - Different methods correspond to different function/constraints approximations.
 - There are also convex relaxations that approximate with linear programs.
- For an overview of this and all things variational, see: people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf

Summary

- ullet Variational methods approximate p with a simpler distribution q.
- ullet Mean field approximation minimizes reverse KL divergence with independent q.
- Loopy belief propagation is a heuristic that often works well.
- Next time: food-inspired models?

Variational Inference: Constrained Optimization View

- Modern view of variational inference:
 - Formulate inference problem as constrained optimization.
 - Approximate the function or constraints to make it easy.

Exponential Families and Cumulant Function

• We will again consider log-linear models:

$$P(X) = \frac{\exp(w^T F(X))}{Z(w)},$$

but view them as exponential family distributions,

$$P(X) = \exp(w^T F(X) - A(w)),$$

where $A(w) = \log(Z(w))$.

ullet Log-partition A(w) is called the cumulant function,

$$\nabla A(w) = \mathbb{E}[F(X)], \quad \nabla^2 A(w) = \mathbb{V}[F(X)],$$

which implies convexity.

Convex Conjugate and Entropy

 \bullet The convex conjugate of a function A is given by

$$A^*(\mu) = \sup_{w \in \mathcal{W}} \{ \mu^T w - A(w) \}.$$

• E.g., if we consider for logistic regression

$$A(w) = \log(1 + \exp(w)),$$

we have that $A^*(\mu)$ satisfies $w = \log(\mu)/\log(1-\mu)$.

• When $0 < \mu < 1$ we have

$$A^*(\mu) = \mu \log(\mu) + (1 - \mu) \log(1 - \mu)$$

= $-H(p_{\mu})$,

negative entropy of binary distribution with mean μ .

• If μ does not satisfy boundary constraint, \sup is ∞ .

Convex Conjugate and Entropy

• More generally, if $A(w) = \log(Z(w))$ then

$$A^*(\mu) = -H(p_\mu),$$

subject to boundary constraints on μ and constraint:

$$\mu = \nabla A(w) = \mathbb{E}[F(X)].$$

- Convex set satisfying these is called marginal polytope \mathcal{M} .
- If A is convex (and LSC), $A^{**} = A$. So we have

$$A(w) = \sup_{\mu \in \mathcal{U}} \{ w^T \mu - A^*(\mu) \}.$$

and when $A(w) = \log(Z(w))$ we have

$$\log(Z(w)) = \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \}.$$

• We've written inference as a convex optimization problem.

Bonus slide: Maximum Likelihood and Maximum Entropy

• The maximum likelihood parameters w satisfy:

$$\begin{aligned} & \min_{w \in \mathbb{R}^d} - w^T F(D) + \log(Z(w)) \\ &= \min_{w \in \mathbb{R}^d} - w^T F(D) + \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \} & \text{(convex conjugate)} \\ &= \min_{w \in \mathbb{R}^d} \sup_{\mu \in \mathcal{M}} \{ -w^T F(D) + w^T \mu + H(p_\mu) \} \\ &= \sup_{\mu \in \mathcal{M}} \{ \min_{w \in \mathbb{R}^d} -w^T F(D) + w^T \mu + H(p_\mu) \} & \text{(convex/concave)} \end{aligned}$$

which is $-\infty$ unless $F(D)=\mu$ (e.g., maximum likelihood w), so we have

$$\min_{w \in \mathbb{R}^d} -w^T F(D) + \log(Z(w))$$
$$= \max_{\mu \in \mathcal{M}} H(p_{\mu}),$$

subject to $F(D) = \mu$.

Maximum likelihood ⇒ maximum entropy + moment constraints

Difficulty of Variational Formulation

We wrote inference as a convex optimization:

$$\log(Z) = \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \},$$

- Did this make anything easier?
 - Computing entropy $H(p_{\mu})$ seems as hard as inference.
 - ullet Characterizing marginal polytope ${\mathcal M}$ becomes hard with loops.
- Practical variational methods:
 - Work with approximation to marginal polytope \mathcal{M} .
 - Work with approximation/bound on entropy A^* .
- ullet Notatation trick: we put everything "inside" w to discuss general log-potentials.

Mean Field Approximation

Mean field approximation assumes

$$\mu_{ij,st} = \mu_{i,s}\mu_{j,t},$$

for all edges, which means

$$p(x_i = s, x_j = t) = p(x_i = s)p(x_j = t),$$

and that variables are independent.

• Entropy is simple under mean field approximation:

$$\sum_{X} p(X) \log p(X) = \sum_{i} \sum_{x_i} p(x_i) \log p(x_i).$$

• Marginal polytope is also simple:

$$\mathcal{M}_F = \{ \mu \mid \mu_{i,s} \ge 0, \sum_s \mu_{i,s} = 1, \ \mu_{ij,st} = \mu_{i,s}\mu_{j,t} \}.$$

Entropy of Mean Field Approximation

• Entropy form is from distributive law and probabilities sum to 1:

$$\begin{split} \sum_{X} p(X) \log p(X) &= \sum_{X} p(X) \log(\prod_{i} p(x_{i})) \\ &= \sum_{X} p(X) \sum_{i} \log(p(x_{i})) \\ &= \sum_{i} \sum_{X} p(X) \log p(x_{i}) \\ &= \sum_{i} \sum_{X} \prod_{j} p(x_{j}) \log p(x_{i}) \\ &= \sum_{i} \sum_{X} p(x_{i}) \log p(x_{i}) \prod_{j \neq i} p(x_{j}) \\ &= \sum_{i} \sum_{x_{i}} p(x_{i}) \log p(x_{i}) \sum_{x_{j} \mid j \neq i} \prod_{j \neq i} p(x_{j}) \\ &= \sum_{i} \sum_{x_{i}} p(x_{i}) \log p(x_{i}). \end{split}$$

Mean Field as Non-Convex Lower Bound

• Since $\mathcal{M}_F \subseteq \mathcal{M}$, yields a lower bound on $\log(Z)$:

$$\sup_{\mu \in \mathcal{M}_F} \{ w^T \mu + H(p_\mu) \} \le \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \} = \log(Z).$$

• Since $\mathcal{M}_F \subseteq \mathcal{M}$, it is an inner approximation:

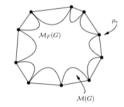
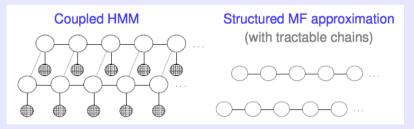


Fig. 5.3 Cartoon illustration of the set $\mathcal{M}_F(G)$ of mean parameters that arise from tractable distributions is a nonconvex inner bound on $\mathcal{M}(G)$, illustrated here is the case of discrete random variables where $\mathcal{M}(G)$ is a polytope. The circles correspond to mean parameters that arise from delta distributions, and belong to both $\mathcal{M}(G)$ and $\mathcal{M}_F(G)$.

- Constraints $\mu_{ij,st} = \mu_{i,s}\mu_{j,t}$ make it non-convex.
- Mean field algorithm is coordinate descent on $w^T \mu + H(p_\mu)$ over \mathcal{M}_F .

Discussion of Mean Field and Structured MF

- Mean field is weird:
 - Non-convex approximation to a convex problem.
 - For learning, we want upper bounds on log(Z).
- Structured mean field:
 - Cost of computing entropy is similar to cost of inference.
 - Use a subgraph where we can perform exact inference.



Structured Mean Field with Tree

• More edges means better approximation of \mathcal{M} and $H(p_{\mu})$:

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

- Fixed points of loopy correspond to using "Bethe" approximation of entropy and "local polytope" approximation of "marginal polytope".
- You can design better variational methods by constructing better approximations.