Faster Algorithms for Deep Learning?

Mark Schmidt
University of British Columbia

Motivation: Faster Deep Learning?

2006: PhD student Mark goes to CIFAR "deep learning" workshop.

- People seem very excited about this.
 - But they are using the (slow) "SGD" algorithm from 1952.
 - "I will have a huge impact if I can develop a faster algorithm".

Stochastic Gradient Descent (SGD)

For most ML models, we fit parameters by minimizing an expectation:

$$\min_{x} \left\{ \mathbb{E} \left[f_i(x) \right] \right\}$$

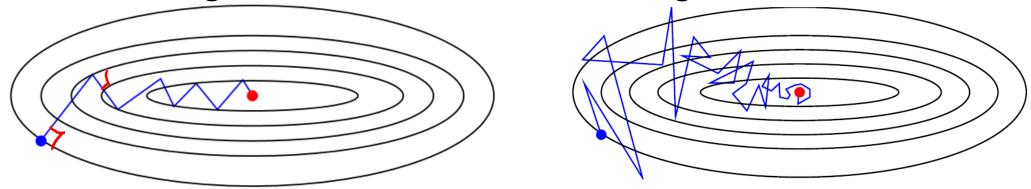
- Function 'f_i' measures how well we fit a training example 'i'.
- Fitting a least squares, logistic regression, neural networks, and so on.
- Among most common algorithms is stochastic gradient descent (SGD):

$$\chi^{k+1} = \chi^{k} - \alpha_{k} g(\chi^{k})$$

- The iterate x^k is our guess of the parameters on iteration 'k'.
- The step size α_k is how far we move on iteration 'k'.
- The direction $g(x_k)$ is an unbiased estimate of the gradient of the expectation.
 - Usually, you get this from taking the gradient of a randomly-chosen example or mini-batch.

Stochastic Gradient Descent (SGD)

Deterministic gradient descent vs. stochastic gradient descent:

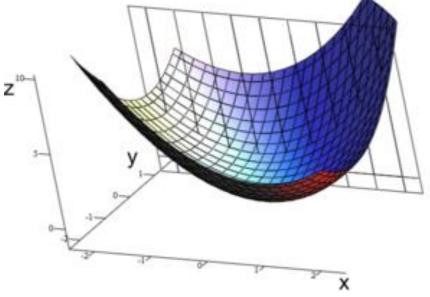


- Advantage of SGD: iteration cost of O(1) in number of examples.
 - If you have one billion examples, it's 1 billion times faster than gradient descent.
 - Variations of it (often) work for training deep neural networks.
- Disadvantages due to the variance in the gradient approximation:
 - May need a huge number of iterations.
 - May be sensitive to the exact choice of step size.
 - Not obvious when to stop.

Digression: Convex Functions

Classic work on this problem focuses on convex functions:

- Where local optima are global optima.



- The (possibly-flawed) reasoning for focusing on convex objectives:
 - It's easier to prove things!
 - "If it doesn't work for convex, it won't work for non-convex."
 - Deep learning objectives are convex near solutions.
 - We did not have ways to analyze SGD for non-convex functions at the time.

Impossibility of Faster Methods

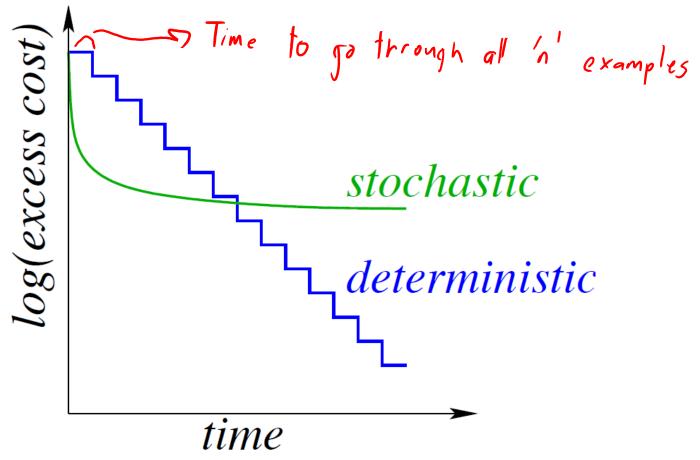
- How many iterations of SGD do we need to minimize a convex function?
- Convergence rate result from (basically) the 1950s:
 - Assume function is "strongly-smooth and strongly-convex".
 - Assume variance of the gradient estimates is bounded.
 - To reach an accuracy of ε, SGD needs O(1/ε) iterations.
- Deterministic gradient descent only needs $O(\log(1/\epsilon))$.
 - "Exponential" vs. "polynomial" number of iterations.
- No method based on unbiased gradients can be faster than $O(1/\epsilon)$.
 - Even if you have a one-dimensional problem (under the assumptions above).
 - Second-derivatives or "acceleration" do not help (no faster "stochastic Newton").
 - The lower bound comes from the variance, not the "condition number".

The Assumptions

- In order to go faster than $O(1/\epsilon)$, we need stronger assumptions.
 - Otherwise, the lower bound says it's impossible.

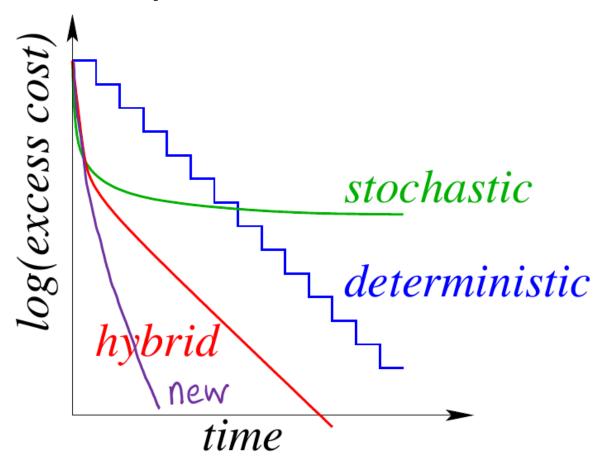
- We explored two possible stronger assumptions to get $O(\log(1/\epsilon))$:
 - 1. Assume you only have a finite training set.
 - Usually don't have infinite data, so design an algorithm that exploits this.
 - 2. Cheat by finding stronger assumptions where plain SGD would go fast.
 - Could explain practical success, and might suggest new methods.

Finite Data Assumption: Deterministic vs. Stochastic



- Gradient descent makes consistent progress with slow iterations.
- Stochastic gradient has fast iterations but decreasing progress.

Finite Data Assumption: Deterministic vs. Stochastic



- You can design hybrids (initialize with SGD, or increase batch sizes).
- Variance reduction methods can be even faster than hybrids.

Variance-Reduction: SAG and SVRG

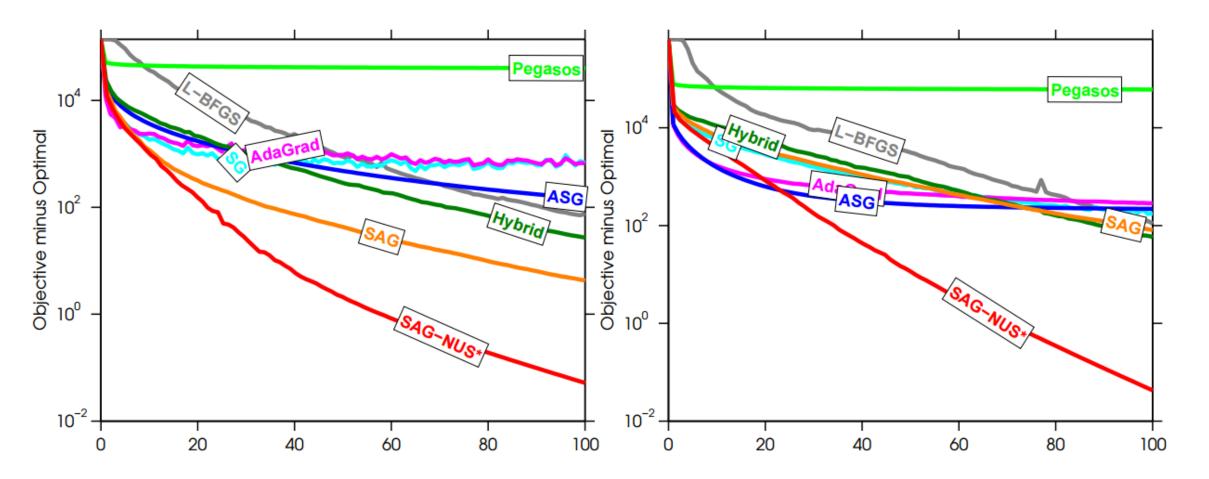
- Variance reduction methods for finite training sets:
 - Method with cost of stochastic gradient, progress of full gradient.
 - $O(log(1/\epsilon))$ iterations to reach accuracy ϵ with O(1) iteration cost.
 - Key idea: design an estimator of the gradient whose variance goes to zero.
- First general method in 2012: stochastic average gradient (SAG).
 - Keeps a memory of previous gradient value for each example.
- Memory-free method: stochastic variance-reduced gradient (SVRG):

$$\chi'' = \chi'' - \chi_{\kappa} \left(\nabla f_{i}(x^{\kappa}) - \nabla f_{i}(x^{\kappa}) + \nabla f(x^{\kappa}) \right)$$
(equiate 560)
"control variate" (mean of 0)

• The reference point \tilde{x}_k is typically updated every O(n) iterations.

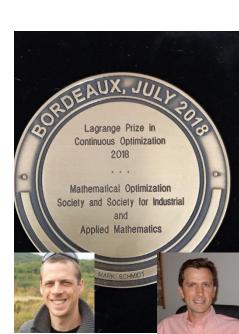
Variance-Reduction: Practical Performance

- Variance reduction has led to faster methods in many settings:
 - Least squares, logistic regression, PCA, cryo-EM, conditional random fields, and so on.



Variance Reduction: 8 Years Later.

- Variance reduction has been taken in a wide variety of directions:
 - Memory-free SAG in some settings (like linear and graphical models).
 - Variants giving faster algorithms for some non-smooth problems.
 - Variants giving faster algorithms for some non-convex problems.
 - Including PCA and problems satisfying the "PL inequality".
 - Momentum-like variants that achieve acceleration.
 - Improved test error bounds compared to SGD.
 - Parallel and distributed versions.
 - SAG won 2018 "Lagrange Prize in Continuous Optimization".
 - Does not seem to help with deep learning.



Back to the Assumptions

• In order to go faster than $O(1/\epsilon)$, we need stronger assumptions.

- We explored two possible stronger assumptions to go faster:
 - 1. Assume you only have a finite training set (SAG and SVRG).
 - Successful for a lot of problems, but not for deep learning.
 - 2. Cheat by finding stronger assumptions where plain SGD would go fast.
 - Could explain practical success, and might suggest new methods.

Strong Growth Condition (SGC)

- What conditions would we need for plain SGD to converge fast?
- Consider the strong growth condition (SGC):

$$\mathbb{E}\left[\|g(x'')\|^2\right] \leq \rho \|\nabla f(x')\|^2$$

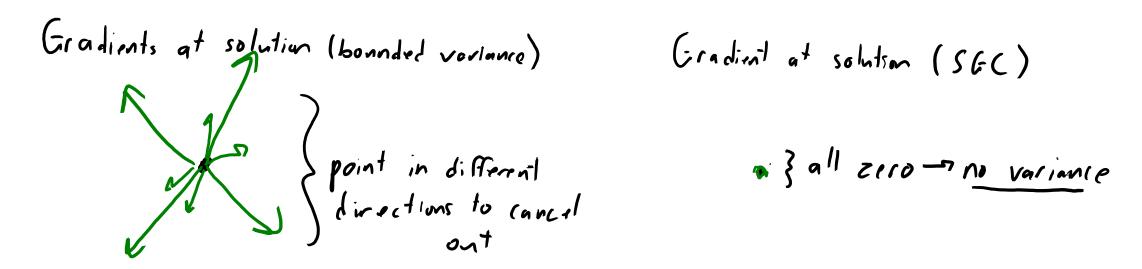
- Used by Tseng and Solodov in the 90s to analyze SGD on neural networks.
 - Under SGC, they showed that SGD converges with a constant step size.
 - This is possible because it implies variance goes to zero at a solution.
- The SGC is a very-strong assumption:
 - Assumes that gradient is zero at the solution for every training example:

$$\nabla f(x^k) = 0 =$$
 every $g(x^k) = 0$

Model is complicated enough to "interpolate" (fit exactly) the data.

Strong Growth Condition (SGC)

Interpolation changes behaviour of gradients at solution:



• Under SGC, don't need step size to go to zero to counter variance.

Strong Growth Condition (SGC)

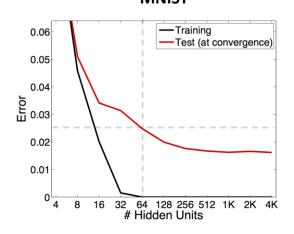
- SGD with constant step-size under SGC requires O(log(1/eps)) iterations.
 - In this setting there is no need to use variance reduction (it would be slower).
 - 2013: we wrote a 5-page paper showing this in 1 day and put in on arXiv.

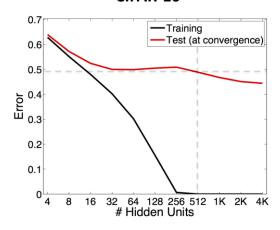
Moved on with life, "this assumption is clearly ridiculous".

You would probably excessively overfit if this was true anyways?

Interpolation and Deep Learning?

- 2014: Adam optimizer.
 - Became wildly-popular for training deep models.
 - Poor performance for optimizing some convex functions.
- Several groups observed that deep networks can drive error to 0.





- Without excessive overfitting.
- Maybe interpolation isn't such a ridiculous assumption?

Over-Parameterization and Interpolation

- Ma, Bassily, and Belkin [ICML, 2018]:
 - Show that SGD under interpolation has linear convergence rate.
 - Provided theoretical justification (and limits) for "linear scaling rule".
 - Discussed connection between interpolation and over-parameterization.

"Over-parameterization":

- You have so many parameters that you can drive the loss to 0.
- True for many modern deep neural networks.
- Also true for linear models with a sufficiently-expressive basis.
 - You can make it true by making model more complicated (more features = fast SGD).
 - Several groups explored implicit regularization of SGD (may not ridiculously ovefit).

Back to the SGC?

- Connection to 2013: assumptions of Ma et al. imply the SGC.
 - Maybe the SGC assumption is relevant in applications?

- Does SGC/interpolation explain SGD behaviour for deep learning?
 - Would explain why variance reduction does not help.
 - Would explain success of Adam and constant step size regimes.
- Suggests opportunities to develop better deep learning algorithms.
 - We have "fast", "faster", "painless", and "furious" algorithms under SGC.

"Fast" SGD under the SGC (AI/Stats 2019)

- Previous analyses under the SGC assumed convexity.
- We showed the following non-convex result for plain-old SGD:

Theorem 3 (Non-Convex). Under L-smoothness, if f satisfies SGC with constant ρ , then SGD with a constant step-size $\eta = \frac{1}{\rho L}$ attains the following convergence rate:

$$\min_{i=0,1,...k-1} \mathbb{E}\left[\|\nabla f(w_i)\|^2 \right] \le \left(\frac{2\rho L}{k} \right) \left[f(w_0) - f^* \right].$$

- We analyze norm of gradient due to non-convexity.
- This is faster than all previous general non-convex stochastic results.
 - Even for fancier methods.
 - Gives justification for things like constant step-size regimes and Adam.
 - Bassily et al. [2018] later gave a result under "PL inequality".
 - Much faster but this assumption is much stronger (implies all minima are global minima).

"Faster" SGD under the SGC (AI/Stats 2019)

- Sutskever, Martens, Dahl, Hinton [2013]:
 - Nesterov acceleration improves practical performance in some settings.
 - Acceleration is closely-related to momentum, which also helps in practice.
- Existing stochastic analyses only achieved partial acceleration.

Method	Regular	Accelerated	Comment
Deterministic	$ ilde{O}(n\kappa)$	$ ilde{O}(n\sqrt{\kappa})$	Unconditional acceleration
SGD + (var < σ^2)	$O\left(\frac{\sigma^2}{\epsilon} + \frac{\kappa}{\epsilon}\right)$	$O\left(\frac{\sigma^2}{\epsilon} + \sqrt{\frac{\kappa}{\epsilon}}\right)$	Faster if $\kappa > \sigma^2$
Variance Reduction	$\tilde{O}(n+\kappa)$	$\tilde{O}(n+\sqrt{n\kappa)}$	Faster if $\kappa > n$
SGC + SGC	$ ilde{O}(\kappa)$	$ ilde{O}(\sqrt{\kappa})$	Unconditional acceleration

- Under SGC we show full acceleration (convex, appropriate parameters).
 - Special cases also shown by Liu and Belkin [2018], Jain et al. [2018]

"Painless" SGD under the SGC (NeurIPS 2019)

- Previous SGC/interpolation results relied on particular step-sizes.
 - Depending on values we don't know, like eigenvalues of Hessian.
- Existing methods to set step-size don't guarantee fast convergence.
 - Meta-learning, heuristics, adaptive, online learning, prob line-search.
- Under SGC, we showed you can can set the step-size as you go.
- Achieved (basically) optimal rate in a variety of settings:

Theorem 1 (Strongly-Convex). Assuming interpolation, L-smoothness and μ strong-convexity of f, and convexity of the f_i , SGD with Armijo line-search with c = 1/2 in Equation 1 achieves the rate:

Theorem 3 (Non-Convex). Assuming the SGC with constant ρ and under L_i -smoothness of f_i 's, SGD with Armijo line-search in Equation 1 with $c = \rho$ L_{max} and setting $\eta_{max} = 1$ achieves the rate:

$$\mathbb{E}\left[\|w_T - w^*\|^2\right] \le \left(\max\left\{\left(1 - \frac{\mu}{L}\right), (1 - \eta_{max} \mu)\right\}\right)^T \|w_0 - w^*\|^2.$$

$$\min_{k=0,\dots,T-1} \mathbb{E} \|\nabla f(w_k)\|^2 \le \frac{\max\left\{\frac{L_{max}}{1-\rho L_{max}}, 2\right\} + 1}{T} \left[f(w_0) - f^*\right].$$

Theorem 2 (Convex). Assuming interpolation and under L_i -smoothness and convexity of f_i 's, SGD with Armijo line-search for all $c \ge 1/2$ in Equation 1 and iterate averaging achieves the rate:

$$\mathbb{E}\left[f(\bar{w}_T) - f(w^*)\right] \le \frac{c \cdot \max\left\{\frac{L_{max}}{2(1-c)}, \frac{1}{\eta_{max}}\right\}}{(2c-1)T} \|w_0 - w^*\|^2.$$

"Painless" SGD under the SGC (NeurIPS 2019)

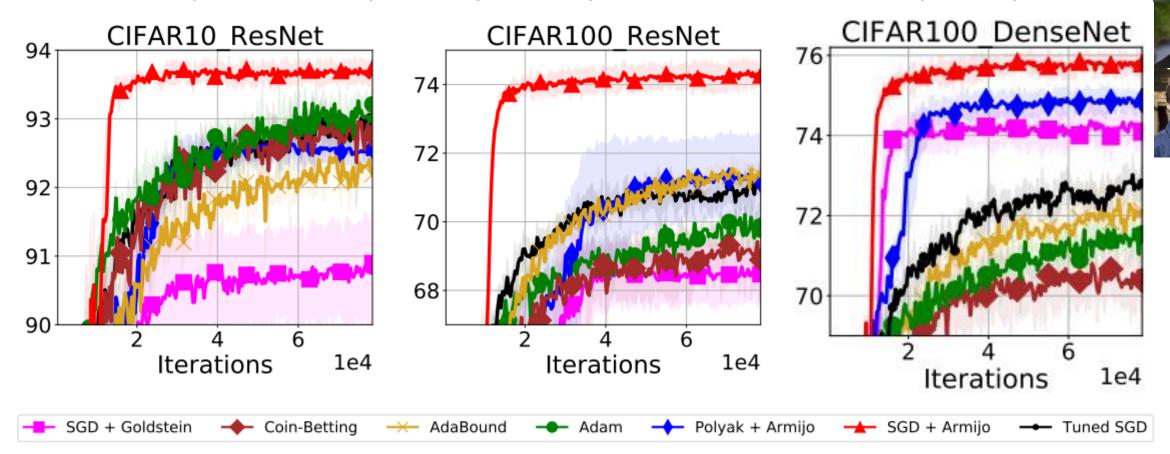
- Key idea: Armijo line-search on the batch.
 - "Backtrack if you don't improve cost on the batch relative to the norm of the batch's gradient."

```
Algorithm 1 SGD+Armijo(f, w_0, \eta_{\max}, b, c, \beta, \gamma, \text{opt})
1: for k = 1, ..., T do
2: i_k \leftarrow \text{sample mini-batch of size } b
3: \eta \leftarrow \text{reset}(\eta, \eta_{\max}, \gamma, b, k, \text{opt})/\beta
4: repeat
5: \eta \leftarrow \beta \cdot \eta
6: w'_k \leftarrow w_k - \eta \nabla f_{ik}(w_k)
7: until f_{ik}(w'_k) \leq f_{ik}(w_k) - c \cdot \eta \|\nabla f_{ik}(w_k)\|^2
8: w_{k+1} \leftarrow w'_k
9: end for
10: return w_{k+1}
```

- Backtracking guarantees steps are "not too big".
- With appropriate initialization, guarantees steps are "not too small".
 - Theory says that it's at least as good as the best constant step-size.
- Requires an extra forward pass per iteration, and forward pass for each backtrack.
- We proposed a procedure to propose trial step sizes that works well in practice:
 - Slowly increases the step size, but median number of backtracking steps per iteration is 0.

"Painless" SGD under the SGC (NeurIPS 2019)

- We did a variety of experiments, including training CNNs on standard problems.
 - Better in practice than any fixed step size, adaptive methods, alternative adaptive step sizes.



Discussion: Sensitivity to Assumptions

- To ease some of your anxiety/skepticism:
 - You don't need to run it to the point of interpolating the data, it just needs to be possible.
 - Results can be modified to handle case of being "close" to interpolation.
 - You get an extra term depending on your step-size and how "close" you are.
 - We ran synthetic experiments where we controlled the degree of over-parameterization:
 - If it's over-parameterized, the stochastic line search works great.
 - If it's close to being over-parameterized, it still works really well.
 - If it's far from being over-parameterized, it catastrophically fails.
 - Another group [Berrada, Zisserman, Pawan Kumar] proposed a similar method a few days later.
 - We've compared to a wide variety of existing methods to set the step size.
- To add some anxiety/skepticism:
 - My students said all the neural network experiments were done with batch norm.
 - They had more difficulty getting it to work for LSTMs ("first thing we tried" didn't work here).
 - Some of the line-search results have extra "sneaky" assumptions I would like to remove.

"Furious" SGD under the SGC (AI/Stats 2020)

- The reason "stochastic Newton" can't improve rate is the variance.
- SGC gets rid of the variance, so stochastic Newton makes sense.
- Under SGC:
 - Stochastic Newton gets "linear" convergence with constant batch size.
 - Previous works required finite-sum assumption or exponentially-growing batch size.
 - Stochastic Newton gets "quadratic" with exponentially-growing batch.
 - Previous works required faster-than-exponential growing batch size for "superlinear".
- The paper gives a variety of other results and experiments.
 - Self-concordant analysis, L-BFGS analysis, Hessian-free implementation.

Take-Home Messages

- For under-parameterized models, use variance reduction.
- For over-parameterized models, don't use variance reduction.
- New algorithms and/or analyses for over-parameterized models:
 - "Fast" non-convex convergence rates for plain SGD.
 - "Faster" SGD using acceleration.
 - "Painless" SGD using line-search.
 - "Furious" SGD using second-order information.
- Try out the line-search, we want to make it a black box code.
 - It will helpful to know cases where it does and doesn't work.
- Variance-reduction might still be relevant for deep learning:
 - Reducing Noise in GAN Training with Variance Reduced Extragradient. T. Chavdarova, G. Gidel, F. Fleuret, S. Lacoste-Julien [NeurIPS, 2019].