CPSC 540: Machine Learning Metropolis-Hastings

Mark Schmidt

University of British Columbia

Winter 2020

Last Time: Approximate Inference

- We've discussed approximate inference in two settings:
 - **1** Inference in graphical models (sum over x values).

$$E[f(x \mid w)] = \sum_{x} f(x)p(x \mid w)dx.$$

Inference in Bayesian models (integrate over posterior values).

$$E[f(\theta)] = \int_{\theta} f(\theta) p(\theta \mid x) d\theta.$$

- Our previous approach was Monte Carlo methods.
 - Gibbs sampling (special case of MCMC).
- Inverse transform can be used for conjugate models.
- Rejection sampling or importance sampling for non-conjugate.
 - Can be used to model whole distribution, or to model conditionals in Gibbs.

Limitations of Simple Monte Carlo Methods

- The basic ingredients of our previous sampling methods:
 - Sampling in low dimensions: Inverse CDF, rejection sampling, importance sampling.
 - Sampling in higher dimensions: ancestral sampling, Gibbs sampling.
- These work well in low dimensions or for posteriors with analytic properties.
- But we want to solve high-dimensional integration problems in other settings:
 - Deep belief networks and Boltzmann machines.
 - Bayesian graphical models and Bayesian neural networks.
 - Hierarchical Bayesian models.
- Our previous methods tend not to work in complex situations:
 - Inverse CDF may not be available.
 - Conditionals needed for ancestral/Gibbs sampling may be hard to compute.
 - Rejection sampling tends to reject almost all samples.
 - Importance sampling tends to give almost zero weight to all samples.

Dependent-Sample Monte Carlo Methods

- We want an algorithm whose samples get better over time.
- Two main strategies for generating dependent samples:
 - Sequential Monte Carlo:
 - Importance sampling where proposal q_t changes over time from simple to posterior.
 - AKA sequential importance sampling, annealed importance sampling, particle filter.
 - "Particle Filter Explained without Equations": https://www.youtube.com/watch?v=aUkBa1zMKv4
 - Markov chain Monte Carlo (MCMC).
 - Design Markov chain whose stationary distribution is the posterior.
- These are the main tools to sample from high-dimensional distributions.

Markov Chain Monte Carlo

- We've previously discussed Markov chain Monte Carlo (MCMC).
 - **1** Based on generating samples from a Markov chain q.
 - **2** Designed so stationary distribution π of q is target distribution p.
- If we run the chain long enough, it gives us samples from p.
- Gibbs sampling is an example of an MCMC method.
 - Sample x_j conditioned on all other variables x_{-j} .
- Note that before we were sampling states according to a UGM, in Bayesian models we're sampling parameters according to the posterior.
 - But we use the same methods for both tasks.

Limitations of Gibbs Sampling

- Gibbs sampling is nice because it has no parameters:
 - You just need to decide on the blocks and figure out the conditionals.
- But it isn't always ideal:
 - Samples can be very correlated: slow progress.
 - Conditionals may not have a nice form:
 - If Markov blanket is not conjugate, need rejection sampling (or numerical CDF).
- Generalization that can address these is Metropolis-Hastings:
 - Oldest algorithm among the "10 Best of the 20th Century".

Warm-Up to Metropolis-Hastings: "Stupid MCMC"

- Consider finding the expected value of a fair di:
 - For a 6-sided di, the expected value is 3.5.
- Consider the following "stupid MCMC" algorithm:
 - Start with some initial value, like "4".
 - At each step, roll the di and generate a random number u:
 - If u < 0.5, "accept" the roll and take the roll as the next sample.
 - Othewise, "reject" the roll and take the old value ("4") as the next sample.

Warm-Up to Metropolis-Hastings: "Stupid MCMC"

• Example:

- Start with "4", so record "4".
- Roll a "6" and generate 0.234, so record "6".
- Roll a "3" and generate 0.612, so record "6".
- Roll a "2" and generate 0.523, so record "6".
- Roll a "3" and generate 0.125, so record "3".

• So our samples are 4,6,6,6,3,...

- If you run this long enough, you will spend 1/6 of the time on each number.
- So the dependent samples from this Markov chain could be used within Monte Carlo.
- It is "stupid" since you should just accept every sample (they are IID samples).
 It works but it is twice as slow

A Simple Example of Metropolis-Hastings

- Consider a loaded di that rolls a 6 half the time (all others equally likely).
 - So p(x=6) = 1/2 and $p(x=1) = p(x=2) = \cdots = p(x=5) = 1/10$.
- Consider the following "less stupid" MCMC algorithm:
 - At each step, we start with an old state x.
 - Generate a random number x uniformly between 1 and 6 (roll a fair di), and generate a random number u in the interval [0, 1].
 - "Accept" this roll if

$$u < \frac{p(\hat{x})}{p(x)}.$$

- So if we roll $\hat{x} = 6$, we accept it: u < 1 ("always move to higher probability").
- If x = 2 and roll $\hat{x} = 1$, accept it: u < 1 ("always move to same probability").
- If x = 6 and roll $\hat{x} = 1$, we accept it with probability 1/5.
 - We prefer high probability states, but sometimes move to low probability states.
- This has right probabilities as the stationary distribution (not yet obvious).
 And accepts most samples.

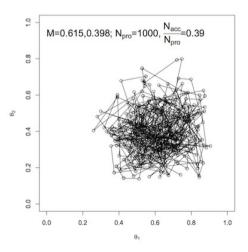
Metropolis Algorithm

- The Metropolis algorithm for sampling from a continuous target p(x):
 - On each iteration add zero-mean Gaussian noise to x^t to give proposal \hat{x}^t .
 - Generate u uniformly between 0 and 1.
 - "Accept" the sample and set $x^{t+1} = \hat{x}^t$ if

$$u \leq \frac{\tilde{p}(\hat{x}^t)}{\tilde{p}(x^t)}, \quad rac{(extsf{probability of proposed})}{(extsf{probability of current})}$$

- Otherwise "reject" the sample and use x^t again as the next sample x^{t+1} .
- A random walk, but sometimes rejecting steps that decrease probability:
 - A valid MCMC algorithm on continuous densities, but convergence may be slow.
 - You can implement this even if you don't know normalizing constant.

Metropolis Algorithm in Action



```
Pseudo-code:
eps = randn(d,1)
xhat = x + eps
u = rand()
if u < ( p(xhat) / p(x) )
set x = xhat
otherwise
keep x
```

Metropolis Algorithm Analysis

• Markov chain with transitions $q_{ss'} = q(x^t = s' \mid x^{t-1} = s)$ is reversible if

$$\pi(s)q_{ss'} = \pi(s')q_{s's},$$

for some distribution π (this condition is called detailed balance).

- Assuming we reach stationary, reversibility implies π is stationary distribution.
 - By summing reversibility condition over all s values we get

$$\begin{split} \sum_{s} \pi(s) q_{ss'} &= \sum_{s} \pi(s') q_{s's} \\ \sum_{s} \pi(s) q_{ss'} &= \pi(s') \underbrace{\sum_{s} q_{s's}}_{=1} \\ \sum_{s} \pi(s) q_{ss'} &= \pi(s') \end{split} \tag{stationary condition}. \end{split}$$

• Metropolis is reversible with $\pi = p$ (bonus slide) so p is stationary distribution.

Metropolis-Hastings

- Gibbs and Metropolis are special cases of Metropolis-Hastings.
 - Uses a proposal distribution $q(\hat{x} \mid x)$, giving probability of proposing \hat{x} at x.
 - In Metropolis, q is a zero-mean Gaussian.
- Metropolis-Hastings accepts a proposed \hat{x}^t if

$$u \leq \frac{\tilde{p}(\hat{x}^t)q(x^t \mid \hat{x}^t)}{\tilde{p}(x^t)q(\hat{x}^t \mid x^t)},$$

where extra terms ensure reversibility for asymmetric q:

- E.g., if you are more likely to propose to go from x^t to \hat{x}^t than the reverse.
- This again works under very weak conditions, such as $q(\hat{x}^t \mid x^t) > 0$.
 - But you can make performance much better/worse with an appropriate q.

Metropolis-Hastings Example: Rolling Dice with Coins

- Suppose we want to sample from a fair 6-sided di.
 - p(x=1) = p(x=2) = p(x=3) = p(x=4) = p(x=5) = p(x=6) = 1/6.
 - But don't have a di or a computer and can only flip coins.
- Consider the following random walk on the numbers 1-6:
 - If x = 1, always propose 2.
 - If x = 2, 50% of the time propose 1 and 50% of the time propose 3.
 - If x = 3, 50% of the time propose 2 and 50% of the time propose 4.
 - If x = 4, 50% of the time propose 3 and 50% of the time propose 5.
 - If x = 5, 50% of the time propose 4 and 50% of the time propose 6.
 - If x = 6, always propose 5.
- "Flip a coin: go up if it's heads and go down it it's tails".
 - The PageRank "random surfer" applied to this graph:

Metropolis-Hastings Example: Rolling Dice with Coins

- "Roll a di with a coin" by using random walk as transitions q in Metropolis-Hastings to:
 - $q(\hat{x}=2 \mid x=1) = 1$, $q(\hat{x}=1 \mid x=2) = \frac{1}{2}$, $q(\hat{x}=2 \mid x=3) = 1/2, \dots$
 - If x is in the "middle" (2-5), we'll always accept the random walk.

• If x = 3 and we propose $\hat{x} = 2$, then:

$$u < \frac{p(\hat{x}=2)}{p(x=3)} \frac{q(x=3 \mid \hat{x}=2)}{q(\hat{x}=2 \mid x=3)} = \frac{1/6}{1/6} \frac{1/2}{1/2} = 1.$$

• If x = 2 and we propose $\hat{x} = 1$, then we test u < 2 which is also always true.

• If x is at the end (1 or 6), you accept with probability 1/2:

$$u < \frac{p(\hat{x}=2)}{p(x=1)} \frac{q(x=1 \mid \hat{x}=2)}{q(\hat{x}=2 \mid x=1)} = \frac{1/6}{1/6} \frac{1/2}{1} = \frac{1}{2}.$$

Metropolis-Hastings Example: Rolling Dice with Coins

• So Metropolis-Hastings modifies random walk probabilities:

- If you're at the end (1 or 6), stay there half the time.
- This accounts for the fact that 1 and 6 have only one neighbour.
 - Which means they aren't visited as often by the random walk.
- Could also be viewed as a random surfer in a different graph:

all the berge of the bar

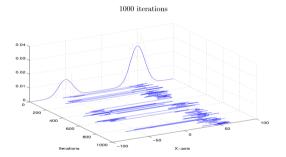
- You can think of Metropolis-Hastings as the modification that "makes the random walk have the right probabilities".
 - For any (reasonable) proposal distribution q.

Metropolis-Hastings

- Simple choices for proposal distribution q:
 - Metropolis originally used random walks: $x^t = x^{t-1} + \epsilon$ for $\epsilon \sim \mathcal{N}(0, \Sigma)$.
 - Hastings originally used independent proposal: $q(x^t \mid x^{t-1}) = q(x^t)$.
 - Gibbs sampling updates single variable based on conditional:
 - $\bullet~$ In this case the acceptance rate is 1 so we never reject.
 - Mixture model for q: e.g., between big and small moves.
 - "Adaptive MCMC": tries to update q as we go: needs to be done carefully.
 - "Particle MCMC": use particle filter to make proposal.
- Unlike rejection sampling, we don't want acceptance rate as high as possible:
 - High acceptance rate may mean we're not moving very much.
 - Low acceptance rate definitely means we're not moving very much.
 - Designing q is an "art".

Mixture Proposal Distribution

Metropolis-Hastings for sampling from mixture of Gaussians:



http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

- With a random walk q we may get stuck in one mode.
- We could have proposal be mixture between random walk and "mode jumping".

Advanced Monte Carlo Methods

- Some other more-powerful MCMC methods:
 - Block Gibbs sampling improves over single-variable Gibb sampling.
 - Collapsed Gibbs sampling (Rao-Blackwellization): integrate out variables that are not of interest.
 - E.g., integrate out hidden states in Bayesian hidden Markov model.
 - E.g., integrate over different components in topic models.
 - Provably decreases variance of sampler (if you can do it, you should do it).
 - Auxiliary-variable sampling: introduce variables to sample bigger blocks:
 - E.g., introduce z variables in mixture models.
 - Also used in Bayesian logistic regression (beginning with Albert and Chib).

Advanced Monte Carlo Methods

• Trans-dimensional MCMC:

- Needed when dimensionality of problem can change on different iterations.
- Most important application is probably Bayesian feature selection.

• Hamiltonian Monte Carlo:

• Faster-converging method based on Hamiltonian dynamics.

• Population MCMC:

- Run multiple MCMC methods, each having different "move" size.
- Large moves do exploration and small moves refine good estimates.
 - With mechanism to exchange samples between chains.

Summary

- Markov chain Monte Carlo generates a sequence of dependent samples:
 - But asymptotically these samples look like they come from the posterior.
- Metropolis-Hastings allows arbitrary "proposals".
 - With good proposals works much better than Gibbs sampling.
- Next time: generating poetry, music, and dance moves.

Metropolis Algorithm Analysis

• Metropolis algorithm has $q_{ss'} > 0$ (sufficient to guarantee stationary distribution is unique and we reach it) and satisfies detailed balance with target distribution p,

$$p(s)q_{ss'} = p(s')q_{s's}.$$

• We can show this by defining transition probabilities

$$q_{ss'} = \min\left\{1, \frac{\tilde{p}(s')}{\tilde{p}(s)}\right\},\,$$

and observing that

$$p(s)q_{ss'} = p(s)\min\left\{1, \frac{\tilde{p}(s')}{\tilde{p}(s)}\right\} = p(s)\min\left\{1, \frac{\frac{1}{Z}\tilde{p}(s')}{\frac{1}{Z}\tilde{p}(s)}\right\}$$
$$= p(s)\min\left\{1, \frac{p(s')}{p(s)}\right\} = \min\left\{p(s), p(s')\right\}$$
$$= p(s')\min\left\{1, \frac{p(s)}{p(s')}\right\} = p(s')q_{s's}.$$