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Last Time: Approximate Inference

@ We've discussed approximate inference in two settings:
@ Inference in graphical models (sum over z values).

flx | w)] Zf p(z | w)dz

@ Inference in Bayesian models (integrate over posterior values).
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@ Our previous approach was Monte Carlo methods.
o Gibbs sampling (special case of MCMC).
@ Inverse transform can be used for conjugate models.
@ Rejection sampling or importance sampling for non-conjugate.
o Can be used to model whole distribution, or to model conditionals in Gibbs.



Limitations of Simple Monte Carlo Methods

The basic ingredients of our previous sampling methods:
e Sampling in low dimensions: Inverse CDF, rejection sampling, importance sampling.
e Sampling in higher dimensions: ancestral sampling, Gibbs sampling.

These work well in low dimensions or for posteriors with analytic properties.

But we want to solve high-dimensional integration problems in other settings:
e Deep belief networks and Boltzmann machines.
e Bayesian graphical models and Bayesian neural networks.
e Hierarchical Bayesian models.

Our previous methods tend not to work in complex situations:

Inverse CDF may not be available.

Conditionals needed for ancestral /Gibbs sampling may be hard to compute.
Rejection sampling tends to reject almost all samples.

Importance sampling tends to give almost zero weight to all samples.



Dependent-Sample Monte Carlo Methods

@ We want an algorithm whose samples get better over time.

@ Two main strategies for generating dependent samples:
e Sequential Monte Carlo:

o Importance sampling where proposal ¢: changes over time from simple to posterior.

o AKA sequential importance sampling, annealed importance sampling, particle filter.

e “Particle Filter Explained without Equations”:
https://www.youtube.com/watch?v=aUkBalzMKv4

e Markov chain Monte Carlo (MCMC).

@ Design Markov chain whose stationary distribution is the posterior.

@ These are the main tools to sample from high-dimensional distributions.


https://www.youtube.com/watch?v=aUkBa1zMKv4

Markov Chain Monte Carlo

e We've previously discussed Markov chain Monte Carlo (MCMC).

@ Based on generating samples from a Markov chain g¢.
@ Designed so stationary distribution 7 of ¢ is target distribution p.

o If we run the chain long enough, it gives us samples from p.

@ Gibbs sampling is an example of an MCMC method.
e Sample z; conditioned on all other variables z_;.

@ Note that before we were sampling states according to a UGM,
in Bayesian models we're sampling parameters according to the posterior.

e But we use the same methods for both tasks.



Limitations of Gibbs Sampling

@ Gibbs sampling is nice because it has no parameters:
@ You just need to decide on the blocks and figure out the conditionals.

@ But it isn't always ideal:

e Samples can be very correlated: slow progress.
e Conditionals may not have a nice form:

o If Markov blanket is not conjugate, need rejection sampling (or numerical CDF).

@ Generalization that can address these is Metropolis-Hastings:
e Oldest algorithm among the “10 Best of the 20th Century”.



Warm-Up to Metropolis-Hastings: “Stupid MCMC"

o Consider finding the expected value of a fair di:
e For a 6-sided di, the expected value is 3.5.

@ Consider the following “stupid MCMC" algorithm:
e Start with some initial value, like “4".

o At each step, roll the di and generate a random number wu:

o If u < 0.5, “accept” the roll and take the roll as the next sample.

o Othewise, “reject” the roll and take the old value (“4") as the next sample.



Warm-Up to Metropolis-Hastings: “Stupid MCMC"

@ Example:

Start with “4”, so record “4".

Roll a “6" and generate 0.234, so record “6".
Roll a “3" and generate 0.612, so record “6".
Roll a “2" and generate 0.523, so record “6".
Roll a “3" and generate 0.125, so record “3".

@ So our samples are 4,6,6,6,3,. ..

o If you run this long enough, you will spend 1/6 of the time on each number.
e So the dependent samples from this Markov chain could be used within Monte Carlo.

@ It is “stupid” since you should just accept every sample (they are [ID samples).
e It works but it is twice as slow.



A Simple Example of Metropolis-Hastings

o Consider a loaded di that rolls a 6 half the time (all others equally likely).
e Sop(r=6)=1/2and p(x =1) =p(x =2)=---=p(x =5) =1/10.

@ Consider the following “less stupid” MCMC algorithm:
o At each step, we start with an old state .
o Generate a random number 2 uniformly between 1 and 6 (roll a fair di),
and generate a random number u in the interval [0, 1].
e "Accept” this roll if

e So if we roll & =6, we accept it: u < 1 (“'always move to higher probability").
o If z=2and roll # =1, accept it: u < 1 (“always move to same probability”).
o If x =6 and roll & =1, we accept it with probability 1/5.

@ We prefer high probability states, but sometimes move to low probability states.

@ This has right probabilities as the stationary distribution (not yet obvious).
e And accepts most samples.



Metropolis Algorithm

@ The Metropolis algorithm for sampling from a continuous target p(x):
o On each iteration add zero-mean Gaussian noise to z! to give proposal #?.
o Generate u uniformly between 0 and 1.

o “Accept” the sample and set z't! = &t if

p(2t)  (probability of proposed)
p(zt)”  (probability of current)

u <

o Otherwise “reject” the sample and use ! again as the next sample zf*1.

@ A random walk, but sometimes rejecting steps that decrease probability:
e A valid MCMC algorithm on continuous densities, but convergence may be slow.
e You can implement this even if you don't know normalizing constant.
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Metropolis Algorithm in Action

' N
M=0.615,0.398; N,,,=1000, -***=0.39
Noro

Pseudo-code:
eps = randn(d,1)
xhat = x + eps
u = rand()
if u < ( p(xhat) / p(x) )
set x = xhat
otherwise
keep x
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http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5
http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5

Metropolis Algorithm Analysis

@ Markov chain with transitions ¢,¢ = g(z! = s’ | 2'=! = s) is reversible if

W(S)QSS’ = W(SI)QS’sa

for some distribution 7 (this condition is called detailed balance).

@ Assuming we reach stationary, reversibility implies 7 is stationary distribution.
e By summing reversibility condition over all s values we get

Zﬂ—( )qss' = Z (s l)Qs’s

S
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Z 7(s)qsss = 7(s") (stationary condition).

S

@ Metropolis is reversible with 7 = p (bonus slide) so p is stationary distribution.



Metropolis-Hastings

@ Gibbs and Metropolis are special cases of Metropolis-Hastings.
o Uses a proposal distribution ¢(% | x), giving probability of proposing & at x.
@ In Metropolis, ¢ is a zero-mean Gaussian.

@ Metropolis-Hastings accepts a proposed & if
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where extra terms ensure reversibility for asymmetric ¢:
o E.g., if you are more likely to propose to go from z* to £! than the reverse.

e This again works under very weak conditions, such as ¢(z! | 2t) > 0.
e But you can make performance much better/worse with an appropriate g.



Metropolis-Hastings Example: Rolling Dice with Coins

@ Suppose we want to sample from a fair 6-sided di.

o p(x=1) = p(x=2) = p(x=3) = p(x=4) = p(x=5) = p(x=6) = 1/6.
o But don't have a di or a computer and can only flip coins.

@ Consider the following random walk on the numbers 1-6:

e If x =1, always propose 2.
If x = 2, 50% of the time propose 1 and 50% of the time propose 3.
If x = 3, 50% of the time propose 2 and 50% of the time propose 4.
If z =4, 50% of the time propose 3 and 50% of the time propose 5.
If x =5, 50% of the time propose 4 and 50% of the time propose 6.
If z =6, always propose 5.

@ “Flip a coin: go up if it's heads and go down it it's tails”.
e The PageRank “random surfer” applied to this graph:
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Metropolis-Hastings Example: Rolling Dice with Coins

@ "Roll a di with a coin” by using random walk as transitions ¢ in
Metropolis-Hastings to:

eq@=2z=1)=1q@=1|z=2)=3q@@=2|z=3)=1/2,...
o If z is in the "middle” (2-5), we'll always accept the random walk.

o If x = 3 and we propose & = 2, then:

p(@=2) gz =
p(z =3) (56:

o If x =2 and we propose & = 1, then we test u < 2 which is also always true.

£=2) 1/61/2

v =3) 1612

o If z is at the end (1 or 6), you accept with probability 1/2:

p=2)qlz=1]2=2) 1/61/2 1
2|z =

S pa=1)q@E = 2

) 16 1 2



Metropolis-Hastings Example: Rolling Dice with Coins

@ So Metropolis-Hastings modifies random walk probabilities:

o If you're at the end (1 or 6), stay there half the time.
o This accounts for the fact that 1 and 6 have only one neighbour.

@ Which means they aren't visited as often by the random walk.

@ Could also be viewed as a random surfer in a different graph:

OO O
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@ You can think of Metropolis-Hastings as the modification that
“makes the random walk have the right probabilities”.

e For any (reasonable) proposal distribution g.



Metropolis-Hastings

@ Simple choices for proposal distribution g:
o Metropolis originally used random walks: z! = 2'=! + € for e ~ N(0, X).
o Hastings originally used independent proposal: q(z! | 2'~1) = g(a).
o Gibbs sampling updates single variable based on conditional:
o In this case the acceptance rate is 1 so we never reject.
e Mixture model for ¢: e.g., between big and small moves.

o “Adaptive MCMC": tries to update g as we go: needs to be done carefully.
“Particle MCMC": use particle filter to make proposal.

@ Unlike rejection sampling, we don't want acceptance rate as high as possible:

e High acceptance rate may mean we're not moving very much.

o Low acceptance rate definitely means we're not moving very much.
o Designing ¢ is an “art”.



Mixture Proposal Distribution
Metropolis-Hastings for sampling from mixture of Gaussians:

1000 iterations

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

@ With a random walk ¢ we may get stuck in one mode.

@ We could have proposal be mixture between random walk and “mode jumping”.


http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

Advanced Monte Carlo Methods

@ Some other more-powerful MCMC methods:
o Block Gibbs sampling improves over single-variable Gibb sampling.

o Collapsed Gibbs sampling (Rao-Blackwellization): integrate out variables that are
not of interest.
o E.g., integrate out hidden states in Bayesian hidden Markov model.
o E.g., integrate over different components in topic models.
o Provably decreases variance of sampler (if you can do it, you should do it).

e Auxiliary-variable sampling: introduce variables to sample bigger blocks:

e E.g., introduce z variables in mixture models.
o Also used in Bayesian logistic regression (beginning with Albert and Chib).



Advanced Monte Carlo Methods

@ Trans-dimensional MCMC:

o Needed when dimensionality of problem can change on different iterations.
e Most important application is probably Bayesian feature selection.

@ Hamiltonian Monte Carlo:
e Faster-converging method based on Hamiltonian dynamics.

@ Population MCMC:

e Run multiple MCMC methods, each having different “move” size.
o Large moves do exploration and small moves refine good estimates.

@ With mechanism to exchange samples between chains.



Summary

@ Markov chain Monte Carlo generates a sequence of dependent samples:
e But asymptotically these samples look like they come from the posterior.

@ Metropolis-Hastings allows arbitrary “proposals”.
e With good proposals works much better than Gibbs sampling.

@ Next time: generating poetry, music, and dance moves.



Metropolis Algorithm Analysis

@ Metropolis algorithm has ¢ss > 0 (sufficient to guarantee stationary distribution is
unique and we reach it) and satisfies detailed balance with target distribution p,

p(S)QSs’ = p(s,)QS’s-

@ We can show this by defining transition probabilities

= min ﬁ(S/)
Qss’ = {17 ]5(8) }7
and observing that
S » = p(s) min ﬁ(S/) = p(s) min %ﬁ(S/)
p(5)qssr = p(s) {1, ) } = p(s) {1, 15(s) }




