CPSC 540: Machine Learning

Rejection/Importance Sampling

Mark Schmidt

University of British Columbia

Winter 2020

Overview of Bayesian Inference Tasks

In Bayesian approach, we typically work with the posterior

$$p(\theta \mid x) = \frac{1}{Z}p(x \mid \theta)p(\theta),$$

where Z makes the distribution sum/integrate to 1.

ullet Typically, we need to compute expectation of some f with respect to posterior,

$$E[f(\theta)] = \int_{\theta} f(\theta) p(\theta \mid x) d\theta.$$

- Examples:
 - If $f(\theta) = \theta$, we get posterior mean of θ .
 - If $f(\theta) = p(\tilde{x} \mid \theta)$, we get posterior predictive.
 - If $f(\theta) = \mathbb{I}(\theta \in S)$ we get probability of S (e.g., marginals or conditionals).
 - If $f(\theta) = 1$ and we use $\tilde{p}(\theta \mid x)$, we get marginal likelihood Z.

Need for Approximate Integration

- Bayesian models allow things that aren't possible in other frameworks:
 - Optimize the regularizer (empirical Bayes).
 - Relax IID assumption (hierarchical Bayes).
 - Have clustering happen on multiple levels (topic models).
- But posterior often doesn't have a closed-form expression.
 - We don't just want to flip coins and multiply Gaussians.
- We once again need approximate inference:
 - Variational methods.
 - Monte Carlo methods.
- Classic ideas from statistical physics, that revolutionized Bayesian stats/ML.

Variational Inference vs. Monte Carlo

Two main strategies for approximate inference:

- Variational methods:
 - ullet Approximate p with "closest" distribution q from a tractable family,

$$p(x) \approx q(x)$$
.

- Turns inference into optimization (need to find best q).
 - Called variational Bayes.
- Monte Carlo methods:
 - \bullet Approximate p with empirical distribution over samples,

$$p(x) \approx \frac{1}{n} \sum_{i=1}^{n} \mathcal{I}[x^i = x].$$

- Turns inference into sampling.
 - For Bayesian methods, we'll typically need to sample from posterior.

Conjugate Graphical Models: Ancestral and Gibbs Sampling

- For conjugate DAGs, we can use ancestral sampling for unconditional sampling.
 - By using inverse transform to sample 1D conditionals.
- Examples:
 - For Markov chains, sample x_1 then x_2 and so on.
 - For HMMs, sample the hidden z_j then sample the x_j .
 - ullet For LDA, sample π then sample the z_j then sample the x_j .
- We can also often use Gibbs sampling as an approximate sampler.
 - If neighbours are conjugate in UGMs.
 - To generate conditional samples in conjugate DAGs.
- However, without conjugacy our inverse transform trick doesn't work.
 - We can't even sample from the 1D conditionals with this method.

Beyond Inverse Transform and Conjugacy

- We want to use simple distributions to sample from complex distributions.
 - Two common strategies are rejection sampling and importance sampling.
- We've previously seen rejection sampling to do conditional sampling:
 - Example: sampling from a Gaussian subject to $x \in [-1, 1]$.

• Generate unconditional samples, throw out ("reject") the ones that aren't in [-1,1].

- Ingredients of a more general rejection sampling algorithm:
 - **①** Ability to evaluate unnormalized $\tilde{p}(x)$,

$$p(x) = \frac{\tilde{p}(x)}{Z}.$$

- $ext{ 4 }$ A distribution q that is easy to sample from.
- **3** An upper bound M on $\tilde{p}(x)/q(x)$.
- Rejection sampling algorithm:
 - **1** Sample x from q(x).
 - ② Sample u from $\mathcal{U}(0,1)$.
 - **3** Keep the sample if $u \leq \frac{\tilde{p}(x)}{Mq(x)}$.
- The accepted samples will be from p(x).

- We can use general rejection sampling for:
 - ullet Sample from Gaussian q to sample from student t.
 - Sample from prior to sample from posterior (M = 1 for discrete x),

$$\tilde{p}(\theta \mid x) = \underbrace{p(x \mid \theta)}_{\leq 1} p(\theta).$$

- Drawbacks:
 - You may reject a large number of samples.
 - Most samples are rejected for high-dimensional complex distributions.
 - You need to know M.
- If $-\log p(x)$ is convex and x is 1D there is a funcier version:
 - ullet Adaptive rejection sampling refines piecewise-linear q after each rejection.

Importance Sampling

- Importance sampling is a variation that accepts all samples.
 - Key idea is similar to EM,

$$\mathbb{E}_{p}[f(x)] = \sum_{x} p(x)f(x)$$

$$= \sum_{x} q(x) \frac{p(x)f(x)}{q(x)}$$

$$= \mathbb{E}_{q} \left[\frac{p(x)}{q(x)} f(x) \right],$$

and similarly for continuous distributions.

- We can sample from q but reweight by p(x)/q(x) to sample from p.
- ullet Only assumption is that q is non-zero when p is non-zero.
- If you only know unnormalized $\tilde{p}(x)$, a variant gives approximation of Z.

Importance Sampling

- As with rejection sampling, only efficient if q is close to p.
- Otherwise, weights will be huge for a small number of samples.
 - Even though unbiased, variance can be huge.
- Can be problematic if q has lighter "tails" than p:
 - You rarely sample the tails, so those samples get huge weights.

- As with rejection sampling, doesn't tend to work well in high dimensions.
 - Though there is room to cleverly design q, like using mixtures.
 - For example, q could sample from mixture of Gaussians with different variances.

Summary

- Rejection sampling: generate exact samples from complicated distributions.
 - Tends to reject too many samples in high dimensions.
- Importance sampling: reweights samples from the wrong distribution.
 - Tends to have high variance in high dimensions.
- Back to MCMC.