CPSC 540: Machine Learning
Rejection/Importance Sampling

Mark Schmidt

University of British Columbia

Winter 2020
Overview of Bayesian Inference Tasks

- In **Bayesian** approach, we typically work with the posterior

\[
p(\theta \mid x) = \frac{1}{Z} p(x \mid \theta)p(\theta),
\]

where \(Z \) makes the distribution sum/integrate to 1.

- Typically, we need to compute expectation of some \(f \) with respect to posterior,

\[
E[f(\theta)] = \int_\theta f(\theta)p(\theta \mid x)d\theta.
\]

- **Examples:**
 - If \(f(\theta) = \theta \), we get **posterior mean** of \(\theta \).
 - If \(f(\theta) = p(\hat{x} \mid \theta) \), we get **posterior predictive**.
 - If \(f(\theta) = \mathbb{I}(\theta \in S) \) we get probability of \(S \) (e.g., **marginals** or **conditionals**).
 - If \(f(\theta) = 1 \) and we use \(\tilde{p}(\theta \mid x) \), we get **marginal likelihood** \(Z \).
Need for Approximate Integration

- Bayesian models allow things that aren’t possible in other frameworks:
 - Optimize the regularizer (empirical Bayes).
 - Relax IID assumption (hierarchical Bayes).
 - Have clustering happen on multiple levels (topic models).

- But posterior often doesn’t have a closed-form expression.
 - We don’t just want to flip coins and multiply Gaussians.

- We once again need approximate inference:
 1. Variational methods.
 2. Monte Carlo methods.

- Classic ideas from statistical physics, that revolutionized Bayesian stats/ML.
Variational Inference vs. Monte Carlo

Two main strategies for approximate inference:

1. **Variational methods:**
 - Approximate p with "closest" distribution q from a tractable family,
 \[p(x) \approx q(x). \]
 - Turns inference into optimization (need to find best q).
 - Called variational Bayes.

2. **Monte Carlo** methods:
 - Approximate p with empirical distribution over samples,
 \[p(x) \approx \frac{1}{n} \sum_{i=1}^{n} I[x^i = x]. \]
 - Turns inference into sampling.
 - For Bayesian methods, we’ll typically need to sample from posterior.
For **conjugate DAGs**, we can use **ancestral sampling** for unconditional sampling.
- By using **inverse transform** to sample 1D conditionals.

Examples:
- For Markov chains, sample x_1 then x_2 and so on.
- For HMMs, sample the hidden z_j then sample the x_j.
- For LDA, sample π then sample the z_j then sample the x_j.

We can also often use **Gibbs sampling** as an **approximate sampler**.
- If neighbours are conjugate in UGMs.
- To generate conditional samples in conjugate DAGs.

However, **without conjugacy our inverse transform trick doesn't work**.
- We can’t even sample from the 1D conditionals with this method.
Beyond Inverse Transform and Conjugacy

- We want to use **simple distributions to sample from complex distributions**.
 - Two common strategies are **rejection sampling** and **importance sampling**.

- We’ve previously seen **rejection sampling** to do conditional sampling:
 - Example: sampling from a Gaussian subject to $x \in [-1, 1]$.

- Generate unconditional samples, throw out (“reject”) the ones that aren’t in $[-1, 1]$.
General Rejection Sampling Algorithm

Want to sample from complicated target \(\gamma(x) \).
General Rejection Sampling Algorithm

We can sample from $q(x)$

Want to sample from complicated target $p(x)$.
We can sample from \(q(x) \) \(g(x) \) times 'M' such that \(Mq(x) \geq \hat{p}(x) \) for all \(x \).

Want to sample from complicated target \(\hat{p}(x) \).
General Rejection Sampling Algorithm

We can sample from \(g(x) \)

\[q(x) \text{ times } 'M' \text{ such that } Mq(x) \geq \hat{p}(x) \text{ for all } x. \]

Want to sample from complicated target \(\hat{p}(x) \).

\(\xrightarrow{\text{Sample from } g(x)} \)
General Rejection Sampling Algorithm

We can sample from \(g(x) \)

Accept if random sample from \([0, M g(x)]\) is less than \(\hat{p}(x) \)

\(g(x) \) times 'M' such that \(M g(x) \geq \hat{p}(x) \) for all \(x \).

Want to sample from complicated target \(\hat{p}(x) \).
General Rejection Sampling Algorithm

We can sample from \(g(x) \).

Accept if random sample from \([0, M g(x)] \) is less than \(\tilde{p}(x) \).

\(\tilde{p}(x) \) times 'M' such that \(M g(x) \geq \tilde{p}(x) \) for all \(x \).

Want to sample from complicated target \(p(x) \).
General Rejection Sampling Algorithm

We can sample from $g(x)$.

Accept if random sample from $[0, M g(x)]$ is less than $\hat{p}(x)$.

X \rightarrow$ Sample likely to be accepted.

X \rightarrow$ Sample from $g(x)$.

Reject otherwise.

$g(x)$ times ‘M’ such that $M g(x) \geq \hat{p}(x)$ for all x.

Want to sample from complicated target $\hat{p}(x)$.
General Rejection Sampling Algorithm

We can sample from \(g(x) \).

Sample likely to be rejected.

Accept if random sample from \([0, M g(x)]\) is less than \(\tilde{p}(x) \).

\(\tilde{p}(x) \) times 'M' such that \(M g(x) \geq \tilde{p}(x) \) for all \(x \).

Want to sample from complicated target \(\tilde{p}(x) \).

Sample likely to be accepted.
General Rejection Sampling Algorithm

Ingredients of a more general rejection sampling algorithm:

1. Ability to evaluate unnormalized $\tilde{p}(x)$,

 $$p(x) = \frac{\tilde{p}(x)}{Z}.$$

2. A distribution q that is easy to sample from.
3. An upper bound M on $\frac{\tilde{p}(x)}{q(x)}$.

Rejection sampling algorithm:

1. Sample x from $q(x)$.
2. Sample u from $U(0, 1)$.
3. Keep the sample if $u \leq \frac{\tilde{p}(x)}{Mq(x)}$.

The accepted samples will be from $p(x)$.
General Rejection Sampling Algorithm

- We can use general rejection sampling for:
 - Sample from Gaussian q to sample from student t.
 - Sample from prior to sample from posterior ($M = 1$ for discrete x),
 \[
 \tilde{p}(\theta \mid x) = p(x \mid \theta) p(\theta) \leq 1
 \]

- Drawbacks:
 - You may reject a large number of samples.
 - Most samples are rejected for high-dimensional complex distributions.
 - You need to know M.

- If $-\log p(x)$ is convex and x is 1D there is a fancier version:
 - Adaptive rejection sampling refines piecewise-linear q after each rejection.
Importance Sampling

- **Importance sampling** is a variation that accepts all samples.
 - Key idea is similar to EM,

 $$
 \mathbb{E}_p[f(x)] = \sum_x p(x)f(x)
 = \sum_x q(x) \frac{p(x)f(x)}{q(x)}
 = \mathbb{E}_q \left[\frac{p(x)}{q(x)} f(x) \right],
 $$

 and similarly for continuous distributions.

- We can sample from q but reweight by $p(x)/q(x)$ to sample from p.
- Only assumption is that q is non-zero when p is non-zero.
- If you only know unnormalized $\tilde{p}(x)$, a variant gives approximation of Z.
Importance Sampling

- As with rejection sampling, only efficient if q is close to p.
 - Otherwise, weights will be huge for a small number of samples.
 - Even though unbiased, variance can be huge.

- Can be problematic if q has lighter “tails” than p:
 - You rarely sample the tails, so those samples get huge weights.

- As with rejection sampling, doesn't tend to work well in high dimensions.
 - Though there is room to cleverly design q, like using mixtures.
 - For example, q could sample from mixture of Gaussians with different variances.
Summary

- **Rejection sampling**: generate exact samples from complicated distributions.
 - Tends to reject too many samples in high dimensions.

- **Importance sampling**: reweights samples from the wrong distribution.
 - Tends to have high variance in high dimensions.

- Back to MCMC.