CPSC 540: Machine Learning Convex Optimization

Mark Schmidt

University of British Columbia

Winter 2020

Admin

• Registration forms:

- I will sign them at the end of class (need to submit prereq form first).
- Website/Piazza:
 - https://www.cs.ubc.ca/~schmidtm/Courses/540-W20.
 - https://piazza.com/ubc.ca/winterterm22019/cpsc540.
- Tutorials: start Monday after class.
- Assignment 1 due next Friday.
 - All questions now posted, see Piazza update thread for changes.
 - Gradescope submission instructions coming soon.

Machine Learning and Optimization

• In machine learning, training is typically written as an optimization problem:

• We optimize parameters w of model, given data.

- There are some exceptions:
 - Methods based on counting and distances (KNN, random forests).
 - See CPSC 340.
 - **2** Methods based on averaging and integration (Bayesian learning).
 - Later in course.

But even these models have parameters to optimize.

• Important class of optimization problems: convex optimization problems.

Convex Optimization

• Consider an optimization problem of the form

$$\min_{w\in\mathcal{C}}f(w).$$

where we are minimizing a function f subject to w being in the set C.

- $\bullet\,$ For least squares we have $f(w)=\|Xw-y\|^2$ and $\mathcal{C}\equiv R^d$
- If we had non-negative constraints, we would have $\mathcal{C} \equiv \{w \mid w \ge 0\}$.

• Notation: when I write $w \ge 0$ for a vector w I mean inequality holds for each row.

- We say that this is a convex optimization problem if:
 - The set \mathcal{C} is a convex set.
 - The function f is a convex function.

• This lecture is boring, but convexity ideas will show up throughout the course.

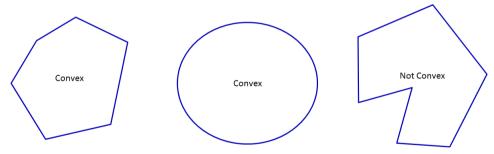
Convex Optimization

• Key property of convex optimization problems:

- All local optima are global optima.
- Convexity is usually a good indicator of tractability:
 - Minimizing convex functions is usually easy.
 - Minimizing non-convex functions is usually hard.
- Off-the-shelf software solves many classes of convex problems (*MathProgBase*).

Definition of Convex Sets

• A set \mathcal{C} is convex if the line between any two points stays also in the set.



Definition of Convex Sets

- To formally define convex sets, we use the notion of convex combination:
 - A convex combination of two variables w and v is given by

$$\theta w + (1 - \theta)v$$
 for any $0 \le \theta \le 1$,

which characterizes the points on the line between w and v.

- A set C is convex if convex combinations of points in the set are also in the set:
 - For all $w \in \mathcal{C}$ and $v \in \mathcal{C}$ we have $\theta w + (1 \theta)v \in \mathcal{C}$ for $0 \le \theta \le 1$.

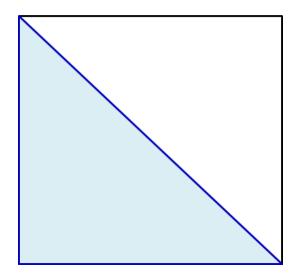
convex comb

• This definition allows us to prove the convexity of many simple sets.

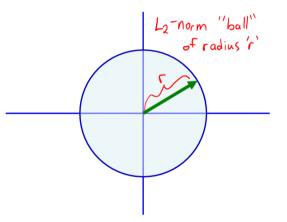
- Real space \mathbb{R}^d .
- Positive orthant $\mathbb{R}^d_+: \{w \mid w \ge 0\}.$
- Hyper-plane: $\{w \mid a^{\top}w = b\}.$
- Half-space: $\{w \mid a^{\top}w \leq b\}.$
- Norm-ball: $\{w \mid ||w||_p \leq \tau\}.$
- Norm-cone: $\{(w, \tau) \mid ||w||_p \le \tau\}.$

- Real space \mathbb{R}^d .
- Positive orthant $\mathbb{R}^d_+ : \{ w \mid w \ge 0 \}.$
- Hyper-plane: $\{w \mid a^{\top}w = b\}.$
- Half-space: $\{w \mid a^{\top}w \leq b\}.$
- Norm-ball: $\{w \mid ||w||_p \leq \tau\}.$
- Norm-cone: $\{(w, \tau) \mid ||w||_p \le \tau\}.$

- Real space \mathbb{R}^d .
- Positive orthant $\mathbb{R}^d_+ : \{ w \mid w \ge 0 \}.$
- Hyper-plane: $\{w \mid a^{\top}w = b\}.$
- Half-space: $\{w \mid a^{\top}w \leq b\}.$
- Norm-ball: $\{w \mid ||w||_p \leq \tau\}.$
- Norm-cone: $\{(w, \tau) \mid ||w||_p \le \tau\}.$



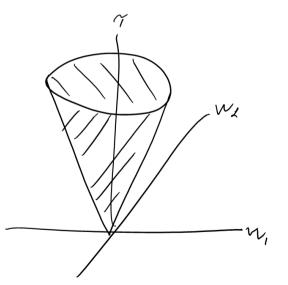
- Real space \mathbb{R}^d .
- Positive orthant $\mathbb{R}^d_+: \{w \mid w \ge 0\}.$
- Hyper-plane: $\{w \mid a^{\top}w = b\}.$
- Half-space: $\{w \mid a^{\top}w \leq b\}.$
- Norm-ball: $\{w \mid ||w||_p \leq \tau\}.$
- Norm-cone: $\{(w, \tau) \mid ||w||_p \le \tau\}.$



- Real space \mathbb{R}^d .
- Positive orthant $\mathbb{R}^d_+: \{w \mid w \ge 0\}.$
- Hyper-plane: $\{w \mid a^{\top}w = b\}.$
- Half-space: $\{w \mid a^{\top}w \leq b\}.$
- Norm-ball: $\{w \mid ||w||_p \leq \tau\}.$
- Norm-cone: $\{(w, \tau) \mid ||w||_p \le \tau\}.$

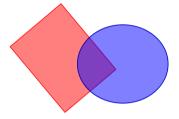
Loo-norm "ball" of radius 'r'

- Real space \mathbb{R}^d .
- Positive orthant $\mathbb{R}^d_+ : \{ w \mid w \ge 0 \}.$
- Hyper-plane: $\{w \mid a^{\top}w = b\}.$
- Half-space: $\{w \mid a^{\top}w \leq b\}.$
- Norm-ball: $\{w \mid ||w||_p \leq \tau\}.$
- Norm-cone: $\{(w, \tau) \mid ||w||_p \le \tau\}.$



Showing a Set is Convex from Intersections

• Useful property: the intersection of convex sets is convex.



- We can prove convexity of a set by showing it's an intersection of convex sets.
- Example: "linear programs" have constraints of the form $Aw \leq b$.
 - Each constraints $a_i^{\top} b_i$ defines a half-space.
 - Half-spaces are convex sets.
 - So the set of w satisfying $Aw \leq b$ is the intersection of convex sets.

Showing a Set is Convex from a Convex Function

 $\bullet\,$ The set ${\mathcal C}$ is often the intersection of a set of inequalities of the form

 $\{w\mid g(w)\leq\tau\},$

for some function g and some number τ .

- Sets defined like this are convex if g is a convex function (see bonus).
 - This follows from the definition of a convex function (next topic).
- Example:
 - The set of w where $w^2 \leq 10$ forms a convex set by convexity of $w^2.$
 - Specifically, the set is $[-\sqrt{10},\sqrt{10}].$

Digression: k-way Convex Combinations and Differentiability Classes

• A convex combiniton of k vectors $\{w_1, w_2, \ldots, w_k\}$ is given by

$$\sum_{c=1}^k heta_c w_c$$
 where $\sum_{c=1}^k heta_c = 1, \ heta_c \ge 0.$

• We'll define convex functions for different differentiability classes:

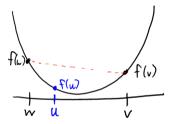
- C^0 is the set of continuous functions.
- $\bullet \ C^1$ is the set of continuous functions with continuous first-derivatives.
- C^2 is the set of continuous functions with continuous first- and second-derivatives.

Definitions of Convex Functions

- Four quivalent definitions of convex functions (depending on differentiability):
 - **(**) A C^0 function is convex if the area above the function is a convex set.
 - **2** A C^0 function is convex if the function is always below its "chords" between points.
 - **(3)** A C_{-}^{1} function is convex if the function is always above its tangent planes.
 - **(** A C^2 function is convex if it is curved upwards everwhere.
 - If the function is univariate this means $f''(w) \ge 0$ for all w.
- Univariate examples where you can show $f''(w) \ge 0$ for all w:
 - Quadratic $w^2 + bw + c$ with $a \ge 0$.
 - Linear: aw + b.
 - Constant: *b*.
 - Exponential: $\exp(aw)$.
 - Negative logarithm: $-\log(w)$.
 - Negative entropy: $w \log w$, for w > 0.
 - Logistic loss: $\log(1 + \exp(-w))$.

C^0 Definitions of Convex Functions

• A function f is convex iff the area above the function is a convex set.



• Equivalently, the function is always below its "chords" between points.

$$f(\underbrace{\theta w + (1 - \theta)v}_{\text{convex comb}}) \leq \underbrace{\theta f(w) + (1 - \theta)f(v)}_{\text{``chord''}}, \quad \text{for all } w \in \mathcal{C}, v \in \mathcal{C}, 0 \leq \theta \leq 1.$$

- Implies all local minima of convex functions are global minima.
 - Indeed, $\nabla f(w) = 0$ means w is a global minima.

Convexity of Norms

- The C^0 definition can be used to show that all norms are convex:
 - If $f(w) = \|w\|_p$ for a generic norm, then we have

$$\begin{split} f(\theta w + (1 - \theta)v) &= \|\theta w + (1 - \theta)v\|_p \\ &\leq \|\theta w\|_p + \|(1 - \theta)v\|_p \qquad \text{(triangle inequality)} \\ &= |\theta| \cdot \|w\|_p + |1 - \theta| \cdot \|v\|_p \qquad \text{(absolute homogeneity)} \\ &= \theta \|w\|_p + (1 - \theta)\|v\|_p \qquad (0 \leq \theta \leq 1) \\ &= \theta f(w) + (1 - \theta)f(v), \qquad \text{(definition of } f) \end{split}$$

so f is always below the "chord".

- See course webpage notes on norms if the above steps aren't familiar.
- Also note that all squared norms are convex.
 - These are all convex: $|w|, ||w||, ||w||_1, ||w||^2, ||w_1||^2, ||w||_{\infty}, \dots$

Operations that Preserve Convexity

- There are a few operations that preserve convexity.
 - Can show convexity by writing as sequence of convexity-preserving operations.
- If f and g are convex functions, the following preserve convexity:
 Non-negative scaling: h(w) = αf(w).
 - Sum: h(w) = f(w) + g(w).
 - Solution Maximum: $h(w) = \max\{f(w), g(w)\}.$
 - Ocomposition with linear: h(w) = f(Aw),

where A is a matrix (or another linear operator).

• But note that composition f(g(w)) of convex f and g is not convex in general.

Convexity of SVMs

- If f and g are convex functions, the following preserve convexity:
 - Non-negative scaling.
 - 2 Sum.
 - Maximum.
 - Omposition with linear.
- We can use these to quickly show that SVMs are convex,

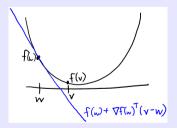
$$f(w) = \sum_{i=1}^{n} \max\{0, 1 - y^{i} w^{\top} x^{i}\} + \frac{\lambda}{2} \|w\|^{2}.$$

- Second term is squared norm multiplied by non-negative $\frac{\lambda}{2}$.
 - Squared norms are convex, and non-negative scaling perserves convexity.
- First term is sum(max(linear)). Linear is convex and sum/max preserve convexity.
- Since both terms are convex, and sums preserve convexity, SVMs are convex.

C^1 Definition of Convex Functions

- Convex functions must be continuous, and have a domain that is a convex set.
 But they may be non-differentiable.
- A differentiable (C^1) function f is convex iff f is always above tangent planes.

$$f(v) \ge f(w) + \nabla f(w)^{\top} (v - w), \quad \forall w \in \mathcal{C}, v \in \mathcal{C}.$$



• Notice that $\nabla f(w) = 0$ implies $f(v) \ge f(w)$ for all v, so w is a global minimizer.

C^2 Definition of Convex Functions

• The multivariate C^2 definition is based on the Hessian matrix, $\nabla^2 f(w)$.

• The matrix of second partial derivatives,

$$\nabla^2 f(w) = \begin{bmatrix} \frac{\partial}{\partial w_1 \partial w_1} f(w) & \frac{\partial}{\partial w_1 \partial w_2} f(w) & \cdots & \frac{\partial}{\partial w_1 \partial w_d} f(w) \\ \frac{\partial}{\partial w_2 \partial w_1} f(w) & \frac{\partial}{\partial w_2 \partial w_2} f(w) & \cdots & \frac{\partial}{\partial w_2 \partial w_d} f(w) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial}{\partial w_d \partial w_1} f(w) & \frac{\partial}{\partial w_d \partial w_2} f(w) & \cdots & \frac{\partial}{\partial w_d \partial w_d} f(w) \end{bmatrix}$$

 $\bullet\,$ In the case of least squares, we can write the Hessian for any w as

$$\nabla^2 f(w) = X^\top X,$$

see course webpage notes on the gradients/Hessians of linear/quadratic functions.

Convexity of Twice-Differentiable Functions

• A C^2 function is convex iff:

 $\nabla^2 f(w) \succeq 0,$

for all w in the domain ("curved upwards" in every direction).

- This notation $A \succeq 0$ means that A is positive semidefinite.
- Two equivalent definitions of a positive semidefinite matrix A:
 - **()** All eigenvalues of A are non-negative.
 - **2** The quadratic $v^{\top}Av$ is non-negative for all vectors v.

Example: Convexity and Least Squares

• We can use twice-differentiable condition to show convexity of least squares,

$$f(w) = \frac{1}{2} \|Xw - y\|^2.$$

• The Hessian of this objective for any \boldsymbol{w} is given by

$$\nabla^2 f(w) = X^\top X.$$

- So we want to show that $X^{\top}X \succeq 0$ or equivalently that $v^{\top}X^{\top}Xv \ge 0$ for all v.
- We can show this by non-negativity of norms,

$$v^{\top}X^{\top}Xv = \underbrace{(v^{\top}X^{\top})}_{(Xv)^{\top}}Xw = \underbrace{(Xv)^{\top}(Xv)}_{u^{\top}u} = \underbrace{\|Xv\|^2}_{\|u\|^2} \ge 0,$$

so least squares is convex (and solving $\nabla f(w) = 0$ gives global minimum).

Showing that Function is Convex

- Most common approaches for showing that a function is convex:
 - **()** Show that *f* is constructed from operations that preserve convexity.
 - Non-negative scaling, sum, max, composition with linear.
 - 2 Show that $\nabla^2 f(w)$ is positive semi-definite for all w (for C^2 functions),

 $abla^2 f(w) \succeq 0$ (zero matrix).

③ Show that f is below chord for any convex combination of points.

$$f(\theta w + (1 - \theta)v \le \theta f(w) + (1 - \theta)f(v).$$

- Post-lecture slides: convexity of logistic regression from C^2 definition.
 - And how to write logistic regression gradient and Hessian in matrix notation.

Outline

Convex Sets and Functions

2 Strict-Convexity and Strong-Convexity

Positive Semi-Definite, Positive Definite, Generalized Inequality

- The notation $A \succeq 0$ indicates that A is positive semi-definite.
 - $\bullet\,$ The eigenvalues of A are all non-negative.
 - $v^{\top}Av \ge 0$ for all vectors v.
- The notation $A \succ 0$ indicates that A is positive definite.
 - The eigenvalues of \boldsymbol{A} are all positive.
 - $v^{\top}Av > 0$ for all vectors $v \neq 0$.
 - This implies that A is invertible (bonus).
- The notation $A \succeq B$ indicates that A B is positive semi-definite.
 - The eigenvalues of A B are all non-negative.
 - $v^{\top}Av \ge v^{\top}Bv$ for all vectors v.

MEMORIZE!

More Examples of Convex Functions

• Some convex sets based on these defintions that we'll use (for covariances):

- The set of positive semidefinite matrices, $\{W \mid W \succeq 0\}$.
- The set of positive definite matrices, $\{W \mid W \succ 0\}$.
- Some more exotic examples of convex functions we'll use in this course:
 - $f(W) = -\log \det W$ for $W \succ 0$ (negative log-determinant).
 - $f(W,v) = v^{\top}W^{-1}v$ for $W \succ 0$.
 - $f(w) = \log(\sum_{j=1}^{d} \exp(w_j))$ (log-sum-exp function).

Positive Semi-Definite, Positive Definite, Generalized Inequality

- Note that not every matrix can be compared.
- With these matrices:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$,

neither $A \succeq B$ nor $B \succeq A$ (the "generalized inequality" defines a "partial order").

- It's often useful to compare to the identity matrix I, which has eigenvalues 1.
 - So a matrix of the form μI for a scalar μ has all eigenvalues equal to $\mu.$
- Writing $LI \succeq A \succeq \mu I$ means "eigenvalues of A are between μ and L".

Convexity, Strict Convexity, and Strong Convexity

• We say that a C^2 function is convex if for all w,

$$\nabla^2 f(w) \succeq 0,$$

and this implies any stationary point $(\nabla f(w) = 0)$ is a global minimum.

• We say that a C^2 function is strictly convex if for all w,

$$\nabla^2 f(w) \succ 0,$$

and this implies there is at most one stationary point (and $\nabla^2 f(w)$ is invertible). • We say that a C^2 function is strongly convex if for all w.

$$\nabla^2 f(w) \succeq \ \mu I, \quad \text{for some } \mu > 0,$$

and this implies there exists a stationary point (if domain C is closed).

• Strong convxity affects speed of gradient descent, and how much data you need.

Convexity, Strict Convexity, and Strong Convexity

- These definitions simplify for univariate functions:
 - Convex: $f''(w) \ge 0$.
 - Strictly convex: f''(w) > 0.
 - Strongly convex: $f''(w) \ge \mu$ for $\mu > 0$.
- Examples:
 - Convex: f(w) = w.
 - Since f''(w) = 0.
 - Strictly convex: $f(w) = \exp(w)$.
 - Since $f''(w) = \exp(w) > 0$.
 - Strongly convex: $f(w) = \frac{1}{2}w^2$.
 - Since f''(w) = 1 so it is strongly convex with $\mu = 1$.

Strict Convexity of L2-Regularized Least Squares

• In L2-regularized least squares, the Hessian matrix is

$$\nabla^2 f(w) = (X^\top X + \lambda I).$$

• We can show that this is positive-definite, so the problem is strictly convex,

$$v^{\top} \nabla^2 f(w) v = v^{\top} (X^{\top} X + \lambda I) v = \underbrace{\|Xv\|^2}_{\geq 0} + \underbrace{\lambda \|v\|^2}_{> 0} > 0,$$

where we used that $\lambda > 0$ and ||v|| > 0 for $v \neq 0$.

- This implies that the matrix $(X^{\top}X + \lambda I)$ is invertible, and solution is unique.
 - Similar argument shows it's strongly-convex with $\mu = \lambda$.
 - Value μ can be larger if columns of X are independent (no collinearity).
 - In this case, $||Xv|| \neq 0$ for $v \neq 0$ so even least squares is strongly-convex.

Strong-Convexity Discussion

• We can also define strict and strong convexity for C^1 and C^0 functions (bonus).

• For example, we say that a C^0 function f is strongly convex if the function

$$f(w) - rac{\mu}{2} \|w\|^2$$

is a convex function for some $\mu > 0$.

- "If you 'un-regularize' by μ then it's still convex."
- If we have a convex loss f, adding L2-regularization makes it strongly-convex,

$$f(w) + \frac{\lambda}{2} \|w\|^2,$$

with μ being at least λ .

• So L2-regularization guarantees a solution exists, and that it is unique.

Summary

- Convex optimization problems are a class that we can usually efficiently solve.
- Showing functions and sets are convex.
 - Either from definitions or convexity-preserving operations.
- C^2 definition of convex functions that the Hessian is positive semidefinite.

 $\nabla^2 f(w) \succeq 0.$

- Strict and strong convexity guarantee uniqueness and existense of solutions.
 - Adding L2-regularization to a convex function gives you these.
- Post-lecture slides: matrix notationa and convexity of logistic regerssion.
 - This will help with your assignments.
- How much data do we need?

Example: Convexity of Logistic Regression

• Consider the binary logistic regression model,

$$f(w) = \sum_{i=1}^{n} \log(1 + \exp(-y^{i}w^{T}x^{i})).$$

• With some tedious manipulations, gradient in matrix notation is

$$\nabla f(w) = X^T r.$$

where the vector r has elements $r_i = -y^i h(-y^i w^T x^i)$.

- And h is the sigmoid function, $h(\alpha) = 1/1 + \exp(-\alpha)$.
- We know the gradient has this form from the multivariate chain rule.
 - Functions for the form f(Xw) always have $\nabla f(w) = X^T r$ (see bonus slide).

Example: Convexity of Logistic Regression

• With ome more tedious manipulations we get the Hessian in matrix notation as

$$\nabla^2 f(w) = X^T D X.$$

where D is a diagonal matrix with $d_{ii} = h(y_i w^T x^i) h(-y^i w^T x^i)$.

- The f(Xw) structure leads to a X^TDX Hessian structure.
- For other problems *D* may not be diagonal.
- Since the sigmoid function h is non-negative, we can compute $D^{\frac{1}{2}},$ and

$$v^{T}X^{T}DXv = v^{T}X^{T}D^{\frac{1}{2}}D^{\frac{1}{2}}Xv = (D^{\frac{1}{2}}Xv)^{T}(D^{\frac{1}{2}}Xv) = \|XD^{\frac{1}{2}}v\|^{2} \ge 0,$$

so $X^T D X$ is positive semidefinite and logistic regression is convex.

Showing that Hyper-Planes are Convex

- Hyper-plane: $C = \{w \mid a^{\top}w = b\}.$
 - If $w \in \mathcal{C}$ and $v \in \mathcal{C}$, then we have $a^{\top}w = b$ and $a^{\top}v = b$.
 - To show C is convex, we can show that $a^{\top}u = b$ for u between w and v.

$$a^{\top}u = a^{\top}(\theta w + (1 - \theta)v)$$
$$= \theta(a^{\top}w) + (1 - \theta)(a^{\top}v)$$
$$= \theta b + (1 - \theta)b = b.$$

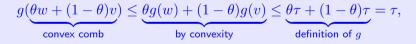
• Alternately, if you knew that linear functions $a^{\top}w$ are convex, then C is the intersection of $\{w \mid a^{\top}w \leq b\}$ and $\{w \mid a^{\top}w \geq b\}$.

Convex Sets from Functions

• For sets of the form

$$\mathcal{C} = \{ w \mid g(w) \le \tau \},\$$

If g is a convex function, then C is a convex set:



which means convex combinations are in the set.

Multivariate Chain Rule

• If $g: \mathbb{R}^d \mapsto \mathbb{R}^n$ and $f: \mathbb{R}^n \mapsto \mathbb{R}$, then h(x) = f(g(x)) has gradient

$$\nabla h(x) = \nabla g(x)^T \nabla f(g(x)),$$

where $\nabla g(x)$ is the Jacobian (since g is multi-output).

• If g is an affine map $x \mapsto Ax + b$ so that h(x) = f(Ax + b) then we obtain

$$\nabla h(x) = A^T \nabla f(Ax + b).$$

• Further, for the Hessian we have

$$\nabla^2 h(x) = A^T \nabla^2 f(Ax + b) A.$$

Positive-Definite implies Invertibility

- If $A \succ 0$, then all the eigenvalues of A are positive.
- If each eigenvalue is positive, the product of the eigenvalues is positive.
- The product of the eigenvalues is equal to the determinant.
- Thus, the determinant is positive.
- The determinant not being 0 implies the matrix is invertible.

Strong Convexity of L2-Regularized Least Squares

• In L2-regularized least squares, the Hessian matrix is

$$\nabla^2 f(w) = (X^\top X + \lambda I).$$
$$v^\top \nabla^2 f(w)v = v^\top (X^\top X + \lambda I)v = \underbrace{\|Xv\|^2}_{} + v^\top (\lambda I)v \ge v^\top (\lambda I)v,$$

so we've shown that $\nabla^2 f(w) \succeq \lambda I$, which implies strong-convexity with $\mu = \lambda$.

- This implies that a solution exists, and that the solution is unique.
- Note that we have strong convexity with μ > λ if X^TX is positive definite.
 Which happens iff the features are independent (not collinear).

Strictly-Convex Functions

• A function is strictly-convex if the convexity definitions hold strictly:

$$f(\theta w + (1 - \theta)v) < \theta f(w) + (1 - \theta)f(v), \quad 0 < \theta < 1$$

$$f(v) > f(w) + \nabla f(w)^{\top}(v - w)$$

$$\nabla^2 f(w) \succ 0$$

$$(C^2)$$

- Function is always strictly below any chord, strictly above any tangent, and curved upwards in every direction.
- Strictly-convex function have at most one global minimum:
 - w and v can't both be global minima if $w \neq v$: it would imply convex combinations u of w and v would have f(u) below the global minimum.

A C^0 Definition of Strict and Strong Convexity

- There are many equivalent definitions of the convexities, here is one set for ${\cal C}^0$ functions:
 - Convex (usual definition):

$$f(\theta w + (1 - \theta)v) \le \theta f(w) + (1 - \theta)f(v).$$

• Strictly convex (strict version, exclusindg $\theta = 0$ or $\theta = 1$):

$$f(\theta w + (1 - \theta)v) < \theta f(w) + (1 - \theta)f(v).$$

• Strong convexity (need an "extra" bit of decrease as you move away from endpoints):

$$f(\theta w + (1 - \theta)v) \le \theta f(w) + (1 - \theta)f(v) - \frac{\theta(1 - \theta)\mu}{2} ||u - v||^2.$$