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Hierarchical Bayesian Models

Type II maximum likelihood is not really Bayesian:
We’re dealing with w using the rules of probability.
But we’re treating λ as a parameter, not a nuissance variable.

You could overfit λ.

Hierarchical Bayesian models introduce a hyper-prior p(λ | γ).
We can be “very Bayesian” and treat the hyper-parameter as a nuissance parameter.

Now use Bayesian inference for dealing with λ:
Work with posterior over λ, p(λ | X, y, γ), if integral over w is easy.
Or work with posterior over w and λ.
You could also consider a Bayes factor for comparing λ values:

p(λ1 | X, y, γ)/p(λ2 | X, y, γ),

which now account for belief in different hyper-parameter settings.



Model Selection and Averaging: Hyper-Parameters as Variables

Bayesian model selection (“type II MAP”): maximizes hyper-parameter posterior,

λ̂ = argmax
λ

p(λ | X, y, γ)

= argmax
λ

p(y | X,λ)p(λ | γ),

further taking us away from overfitting (thus allowing more complex models).
We could do the same thing to choose order of polynomial basis, σ in RBFs, etc.

Bayesian model averaging considers posterior predictive over hyper-parameters,

ŷi = argmax
ŷ

∫
λ

∫
w
p(ŷ | x̂i, w)p(w, λ | X, y, γ)dwdλ.

Could maximize marginal likelihood of hyper-hyper-parameter γ, (“type III ML”),

γ̂ = argmax
γ

p(y | X, γ) = argmax
γ

∫
λ

∫
w
p(y | X,w)p(w | λ)p(λ | γ)dwdλ.



Application: Automated Statistician

Hierarchical Bayes approach to regression:
1 Put a hyper-prior over possible hyper-parameters.
2 Use type II MAP to optimize hyper-parameters of your regression model.

Can be viewed as an automatic statistician:
http://www.automaticstatistician.com/examples

http://www.automaticstatistician.com/examples


Discussion of Hierarchical Bayes

“Super Bayesian” approach:

Go up the hierarchy until model includes all assumptions about the world.
Some people try to do this, and have argued that this may be how humans reason.

Key advantage:
Mathematically simple to know what to do as you go up the hierarchy:

Same math for w, z, λ, γ, and so on (all are nuissance parameters).

Key disadvantages:

It can be hard to exactly encode your prior beliefs.
The integrals get ugly very quickly.



Hierarchical Bayes as a Graphical Model

Let xi be a binary variable, representing if treatment works on patient i,

xi ∼ Ber(θ).

As before, let’s assume that θ comes from a beta distribution,

θ ∼ B(α, β).

We can visualize this as a graphical model:



Hierarchical Bayes for Non-IID Data

Now let xi represent if treatment works on patient i in hospital j.

Let’s assume that treatment depends on hospital,

xij ∼ Ber(θj).

So the xij are only IID given the hospital.

Problem: we may not have a lot of data for each hospital.

Can we use data from one hospital to learn about others?
Can we say anything about a hospital with no data?



Hierarchical Bayes for Non-IID Data

Common approach: assume the θj are drawn from common prior,

θj ∼ B(α, β).

This introduces dependency between parameters at different hospitals:

But, if you fix α and β then you can’t learn across hospitals:
The θj and d-separated given α and β.

Type II MLE would optimize α and β given non-IID data.



Hierarchical Bayes for Non-IID Data

Consider treating α and β as random variables and using a hyperprior:

Now there is a dependency between the different θj (for unknown α and β).

Now you can combine the non-IID data across different hospitals.

Data-rich hospitals inform posterior for data-poor hospitals.
You even consider the posterior for new hospitals with no data.



Summary

Hierarchical Bayes goes even more Bayesian with prior on hyper-parameters.

Leads to Bayesian model selection and Bayesian model averaging.

Relaxing IID assumption with hierarchical Bayes.

Next time: modeling cancer mutation signatures.


