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Last Time: Bayesian Predictions and Empirical Bayes

We’ve discussed making predictions using posterior predictive,

ŷ ∈ argmax
ỹ

∫
w
p(ỹ | x̃, w)p(w | X, y, λ)dw,

which gives optimal predictions given your assumptions.

We considered empirical Bayes (type II MLE),

λ̂ ∈ argmax
λ

p(y | X,λ), where p(y | X,λ) =

∫
w
p(y | X,w)p(w | λ)dw,

where we optimize marginal likelihood to select model and/or hyper-parameters.

Allows a huge number of hyper-parameters with less over-fitting than MLE.
Can use gradient descent to optimize continuous hyper-parameters.
Ratio of marginal likelihoods (Bayes factor) can be used for hypothesis testing.
In many settings, naturally encourages sparsity (in parameters, data, clusters, etc.).



Beta-Bernoulli Model

Consider again a coin-flipping example with a Bernoulli variable,

x ∼ Ber(θ).

Previously we considered that either θ = 1 or θ = 0.5.

Today: θ is a continuous variable coming from a beta distribution,

θ ∼ B(α, β).

The parameters α and β of the prior are called hyper-parameters.

Similar to λ in regression, α and β are parameters of the prior.



Beta-Bernoulli Prior
Why the beta as a prior distribution?

“It’s a flexible distribution that includes uniform as special case”.

“It makes the integrals easy”.

https://en.wikipedia.org/wiki/Beta_distribution

Uniform distribution if α = 1 and β = 1.
“Laplace smoothing” corresponds to MAP with α = 2 and β = 2.

Biased towards 0.5.

https://en.wikipedia.org/wiki/Beta_distribution


Beta-Bernoulli Posterior

The PDF for the beta distribution has similar form to Bernoulli,

p(θ | α, β) ∝ θα−1(1− θ)β−1.

Observing HTH under Bernoulli likelihood and beta prior gives posterior of

p(θ | HTH,α, β) ∝ p(HTH | θ, α, β)p(θ | α, β)

∝
(
θ2(1− θ)1θα−1(1− θ)β−1

)
= θ(2+α)−1(1− θ)(1+β)−1.

Since proportionality (∝) constant is unique for probabilities, posterior is a beta:

θ | HTH,α, β ∼ B(2 + α, 1 + β).

When the prior and posterior come from same family, it’s called a conjugate prior.



Conjugate Priors

Conjugate priors make Bayesian inference easier:

1 Posterior involves updating parameters of prior.

For Bernoulli-beta, if we observe h heads and t tails then posterior is B(α+ h, β + t).
Hyper-parameters α and β are “pseudo-counts” in our mind before we flip.

2 We can update posterior sequentially as data comes in.

For Bernoulli-beta, just update counts h and t.



Conjugate Priors

Conjugate priors make Bayesian inference easier:

3 Marginal likelihood has closed-form, proportional to ratio of normalizing constants.

The beta distribution is written in terms of the beta function B,

p(θ | α, β) = 1

B(α, β)
θα−1(1− θ)β−1, where B(α, β) =

∫
θ

θα−1(1− θ)β−1dθ.

and using the form of the posterior the marginal likelihood

p(HTH | α, β) =
∫
θ

1

B(α, β)
θ(h+α)−1(1− θ)(t+β)−1dθ =

B(h+ α, t+ β)

B(α, β)
.

Empirical Bayes (type II MLE) would optimize this in terms of α and β.

4 In many cases posterior predictive also has a nice form...



Bernoulli-Beta Posterior Predictive

If we observe ‘HHH’ then our different estimates are:

MAP with uniform Beta(1,1) prior (maximum likelihood),

θ̂ =
(3 + α)− 1

(3 + α) + β − 2
=

3

3
= 1.

MAP Beta(2,2) prior (Laplace smoothing),

θ̂ =
(3 + α)− 1

(3 + α) + β − 2
=

4

6
=

2

3
.



Bernoulli-Beta Posterior Predictive

If we observe ‘HHH’ then our different estimates are:
Posterior predictive (Bayesian) with uniform Beta(1,1) prior,

p(H | HHH) =

∫ 1

0
p(H | θ)p(θ | HHH)dθ

=

∫ 1

0
Ber(H | θ)Beta(θ | 3 + α, β)dθ

=

∫ 1

0
θBeta(θ | 3 + α, β)dθ = E[θ]

=
4

5
. (mean of beta is α/(α+ β))

Notice Laplace smoothing is not needed to avoid degeneracy under uniform prior.



Effect of Prior and Improper Priors

We obtain different predictions under different priors:

B(3, 3) prior is like seeing 3 heads and 3 tails (stronger prior towards 0.5),

For HHH, posterior predictive is 0.667.

B(100, 1) prior is like seeing 100 heads and 1 tail (biased),

For HHH, posterior predictive is 0.990.

B(.01, .01) biases towards having unfair coin (head or tail),

For HHH, posterior predictive is 0.997.
Called “improper” prior (does not integrate to 1), but posterior can be “proper”.

We might hope to use an uninformative prior to not bias results.

But this is often hard/ambiguous/impossible to do (bonus slide).



Back to Conjugate Priors

Basic idea of conjugate priors:

x ∼ D(θ), θ ∼ P (λ) ⇒ θ | x ∼ P (λ′).

Beta-bernoulli example (beta is also conjugate for binomial and geometric):

x ∼ Ber(θ), θ ∼ B(α, β), ⇒ θ | x ∼ B(α′, β′),

Gaussian-Gaussian example:

x ∼ N (µ,Σ), µ ∼ N (µ0,Σ0), ⇒ µ | x ∼ N (µ′,Σ′),

and posterior predictive is also a Gaussian.

If Σ is also a random variable:
Conjugate prior is normal-inverse-Wishart, posterior predictive is a student t.

For the conjugate priors of many standard distributions, see:
https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions

https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions


Back to Conjugate Priors

Conjugate priors make things easy because we have closed-form posterior.

Some “non-named” conjugate priors:
Discrete priors are “conjugate” to all likelihoods:

Posterior will be discrete, although it still might be NP-hard to use.

Mixtures of conjugate priors are also conjugate priors.

Do conjugate priors always exist?

No, they only exist for exponential family likelihoods (next slides).

Bayesian inference is ugly when you leave exponential family (e.g., student t).

Can use numerical integration for low-dimensional integrals.
For high-dimensional integrals, need Monte Carlo methods or variational inference.



Digression: Exponential Family

Exponential family distributions can be written in the form

p(x | w) ∝ h(x) exp(wTF (x)).

We often have h(x) = 1, or an indicator that x satisfies constraints.

F (x) is called the sufficient statistics.

F (x) tells us everything that is relevant about data x.

If F (x) = x, we say that the w are cannonical parameters.

Exponential family distributions can be derived from maximum entropy principle.

Distribution that is “most random” that agrees with the sufficient statistics F (x).
Argument is based on “convex conjugate” of − log p.



Digression: Bernoulli Distribution as Exponential Family

We often define linear models by setting wTxi equal to cannonical parameters.

If we start with the Gaussian (fixed variance), we obtain least squares.

For Bernoulli, the cannonical parameterization is in terms of “log-odds”,

p(x | θ) = θx(1− θ)1−x = exp(log(θx(1− θ)1−x))

= exp(x log θ + (1− x) log(1− θ))

∝ exp

(
x log

(
θ

1− θ

))
.

Setting wTxi = log(yi/(1− yi)) and solving for yi yields logistic regression.

You can obtain regression models for other settings using this approach.



Conjugate Graphical Models

DAG computations simplify if parents are conjugate to children.

Examples:

Bernoulli child with Beta parent.
Gaussian belief networks.
Discrete DAG models.
Hybrid Gaussian/discrete, where discrete nodes can’t have Gaussian parents.
Gaussian graphical model with normal-inverse-Wishart parents.



Summary

Conjugate priors are priors that lead to posteriors of the same form.

They make Bayesian inference much easier.

Exponential family distributions are the only distributions with conjugate priors.

Next time: putting a prior on the prior and relaxing IID.



Uninformative Priors and Jeffreys Prior

We might want to use an uninformative prior to not bias results.

But this is often hard/impossible to do.

We might think the uniform distribution, B(1, 1), is uninformative.

But posterior will be biased towards 0.5 compared to MLE.
And if you re-parameterize distribution it won’t stay uniform.

We might think to use “pseudo-count” of 0, B(0, 0), as uninformative.

But posterior isn’t a probability until we see at least one head and one tail.

Some argue that the “correct” uninformative prior is B(0.5, 0.5).

This prior is invariant to the parameterization, which is called a Jeffreys prior.


