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Last Time: Bayesian Predictions and Empirical Bayes

@ We've discussed making predictions using posterior predictive,

g€ arg[naX/ p(7 | Z, w)p(w | X, y, \)dw,
g w

which gives optimal predictions given your assumptions.

e We considered empirical Bayes (type Il MLE),

A argmaxply | X ). where p(y | X.0) = [ ply | X.uwlp(w| Mo,
A

w

where we optimize marginal likelihood to select model and/or hyper-parameters.
Allows a huge number of hyper-parameters with less over-fitting than MLE.

Can use gradient descent to optimize continuous hyper-parameters.

Ratio of marginal likelihoods (Bayes factor) can be used for hypothesis testing.

In many settings, naturally encourages sparsity (in parameters, data, clusters, etc.).



Beta-Bernoulli Model

Consider again a coin-flipping example with a Bernoulli variable,
x ~ Ber(6).

Previously we considered that either # =1 or 6 = 0.5.

Today: 6 is a continuous variable coming from a beta distribution,
0 ~ B(a, ).

The parameters « and 3 of the prior are called hyper-parameters.
e Similar to A in regression, o and [3 are parameters of the prior.



Beta-Bernoulli Prior
Why the beta as a prior distribution?
@ “It's a flexible distribution that includes uniform as special case”.
@ "It makes the integrals easy”.
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https://en.wikipedia.org/wiki/Beta_distribution
o Uniform distribution if « =1 and g = 1.
@ “Laplace smoothing” corresponds to MAP with a = 2 and § = 2.
o Biased towards 0.5.


https://en.wikipedia.org/wiki/Beta_distribution

Beta-Bernoulli Posterior

@ The PDF for the beta distribution has similar form to Bernoulli,
(0] a,B) oc (1~ )7
@ Observing HTH under Bernoulli likelihood and beta prior gives posterior of
p(0 | HTH,a, ) x p(HTH | 0, B)p(0 | «, 5)

~ (92(1 —g)lgei1 - 9)6*1)

= 9@+l — )AL,
@ Since proportionality (<) constant is unique for probabilities, posterior is a beta:

0| HTH, o, ~ B2+ a,1+45).

@ When the prior and posterior come from same family, it's called a conjugate prior.



Conjugate Priors

@ Conjugate priors make Bayesian inference easier:

@ Posterior involves updating parameters of prior.

e For Bernoulli-beta, if we observe h heads and ¢ tails then posterior is B(a + h, 8 + t).
@ Hyper-parameters o and 3 are “pseudo-counts” in our mind before we flip.

@ We can update posterior sequentially as data comes in.
o For Bernoulli-beta, just update counts h and ¢.



Conjugate Priors

@ Conjugate priors make Bayesian inference easier:

© Marginal likelihood has closed-form, proportional to ratio of normalizing constants.
o The beta distribution is written in terms of the beta function B,

1 a—1 B—1 / a— 1 ,8 1
0| «, —0 -0 ,  where 0 de.
PO 0.8) = pro 50" (1-0)
and using the form of the posterior the marginal likelihood
1 hta)—1 (t+B8)—1 B(h+a,t+8)
HTH a,ﬁ:/iﬁ( 1-6 df = —————~
PUHTH D) = | Ba,5) (=0 B(a, B)

o Empirical Bayes (type Il MLE) would optimize this in terms of « and S.

@ In many cases posterior predictive also has a nice form...



Bernoulli-Beta Posterior Predictive

If we observe "HHH' then our different estimates are:
e MAP with uniform Beta(1,1) prior (maximum likelihood),

B+a)+B8-2 3

e MAP Beta(2,2) prior (Laplace smoothing),

j_ Bta-1 4 2
- B+a)+pB-2 6 3




Bernoulli-Beta Posterior Predictive

If we observe "HHH' then our different estimates are:
@ Posterior predictive (Bayesian) with uniform Beta(1,1) prior,

1
p(H | HHH) = /0 p(H | 0)p(0 | HHH)do
:/lBer(H | 0)Beta(d | 3+ a, B)d6
0

1
- / OBeta(d | 3+ o, B)d0 = E[0]
0

(SR

(mean of beta is a/(a + B))

@ Notice Laplace smoothing is not needed to avoid degeneracy under uniform prior.



Effect of Prior and Improper Priors

@ We obtain different predictions under different priors:

o (3, 3) prior is like seeing 3 heads and 3 tails (stronger prior towards 0.5),
e For HHH, posterior predictive is 0.667.

e (100, 1) prior is like seeing 100 heads and 1 tail (biased),
e For HHH, posterior predictive is 0.990.

e B(.01,.01) biases towards having unfair coin (head or tail),

o For HHH, posterior predictive is 0.997.
o Called “improper” prior (does not integrate to 1), but posterior can be “proper”.

@ We might hope to use an uninformative prior to not bias results.
e But this is often hard/ambiguous/impossible to do (bonus slide).



Back to Conjugate Priors
Basic idea of conjugate priors:
r~D@®), 0~PN = 0|z~PWN\).
Beta-bernoulli example (beta is also conjugate for binomial and geometric):
xr~Ber(d), 0~B(a,p), = 0|x~DB,p3),
Gaussian-Gaussian example:
e~ N, X),  p~N(po, %), = plo~NW, Y,

and posterior predictive is also a Gaussian.
If X is also a random variable:

e Conjugate prior is normal-inverse-Wishart, posterior predictive is a student t.
For the conjugate priors of many standard distributions, see:

https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions


https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions

Back to Conjugate Priors
Conjugate priors make things easy because we have closed-form posterior.

Some “non-named” conjugate priors:
e Discrete priors are “conjugate” to all likelihoods:
@ Posterior will be discrete, although it still might be NP-hard to use.
e Mixtures of conjugate priors are also conjugate priors.

Do conjugate priors always exist?
o No, they only exist for exponential family likelihoods (next slides).

Bayesian inference is ugly when you leave exponential family (e.g., student t).

e Can use numerical integration for low-dimensional integrals.
e For high-dimensional integrals, need Monte Carlo methods or variational inference.



Digression: Exponential Family
Exponential family distributions can be written in the form
p(a | w) o< h(z) exp(w’ F(x)).

We often have h(x) = 1, or an indicator that x satisfies constraints.

F(z) is called the sufficient statistics.
o F(z) tells us everything that is relevant about data x.

If F(z) =z, we say that the w are cannonical parameters.

Exponential family distributions can be derived from maximum entropy principle.

o Distribution that is “most random"” that agrees with the sufficient statistics F'(z).
e Argument is based on “convex conjugate” of — log p.



Digression: Bernoulli Distribution as Exponential Family

@ We often define linear models by setting w” z* equal to cannonical parameters.
o If we start with the Gaussian (fixed variance), we obtain least squares.

@ For Bernoulli, the cannonical parameterization is in terms of “log-odds”,

p(x | 0) = 6°(1 - 6)'~* = exp(log(6”(1 - 6)' %))
= exp(zlogb + (1 — z)log(1 — 0))

e (o102 (125

o Setting w’z’ = log(y’/(1 —y")) and solving for 4 yields logistic regression.
e You can obtain regression models for other settings using this approach.



Conjugate Graphical Models

@ DAG computations simplify if parents are conjugate to children.

@ Examples:

e Bernoulli child with Beta parent.

Gaussian belief networks.

Discrete DAG models.

Hybrid Gaussian/discrete, where discrete nodes can't have Gaussian parents.
Gaussian graphical model with normal-inverse-Wishart parents.

@ ”/\ 0 @



Summary

@ Conjugate priors are priors that lead to posteriors of the same form.
o They make Bayesian inference much easier.

@ Exponential family distributions are the only distributions with conjugate priors.

@ Next time: putting a prior on the prior and relaxing IID.



Uninformative Priors and Jeffreys Prior

@ We might want to use an uninformative prior to not bias results.
e But this is often hard/impossible to do.

@ We might think the uniform distribution, B(1,1), is uninformative.

e But posterior will be biased towards 0.5 compared to MLE.
e And if you re-parameterize distribution it won't stay uniform.

@ We might think to use “pseudo-count” of 0, B(0,0), as uninformative.
e But posterior isn't a probability until we see at least one head and one tail.

@ Some argue that the “correct” uninformative prior is 5(0.5,0.5).

e This prior is invariant to the parameterization, which is called a Jeffreys prior.



