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Last Time: Bayesian Statistics
For most of the course, we considered MAP estimation:
w = argmaxp(w | X,y) (train)
w
§' = argmaxp(y | 2%, ) (test).
¥
But w was random: | have no justification to only base decision on .
e lIgnores other reasonable values of w that could make opposite decision.

Last time we introduced Bayesian approach:
e Treat w as a random variable, and define probability over what we want given data:

g = argmaxp(j | #', X, y)
J

— argmax / p(§ | &, w)p(w | X, y)dw.
g w

Directly follows from rules of probability, and no separate training/testing.



Bayesian Linear Regression
We know that L2-regularized linear regression,
1 A
argmin 5 [Xw — g2+ 5w
corresponds to MAP estimation in the model
Y~ Nzt o?), wj~ N0,

By some tedious Gaussian identities, the posterior has the form
L1 o - T L o7 -
w| X,y~N | = | X X+ X'y, | X" X+ :
o? \o o

Notice that mean of posterior is the MAP estimate (not true in general).
Bayesian perspective gives us variability in w and optimal predictions given prior.
But it also gives different ways to choose A and choose basis.



Learning the Prior from Data?

@ Can we use the training data to set the hyper-parameters?

@ In theory: No!

e It would not be a “prior".
e It's no longer the right thing to do.

@ In practice: Yes!
o Approach 1: split into training/validation set or use cross-validation as before.

o Approach 2: optimize the marginal likelihood (“evidence”):

ply | X,A) = / p(y | X, w)p(w | N\)dw.

w

e Also called type Il maximum likelihood or evidence maximization or empirical Bayes.



Digression: Marginal Likelihood in Gaussian-Gaussian Model

Suppose we have a Gaussian likelihood and Gaussian prior,
Y~ Nzt o?), wj~N(O,A).
The joint probability of 3* and wj is given by
1 2 A 2
Pl | X0 xexp (5o Xu =yl = ul?).
The marginal likelihood integrates the joint over the nuissance parameter w,
Py 1 X.3) = [ plw | X, N)dw

Solving the Gaussian integral gives a marginal likelihood of

T—1 1
ply | X, A) o |C|7Y2 exp (_yCQy> , C=0"T+ XXXT.



Type Il Maximum Likelihood for Basis Parameter

o Consider polynomial basis, and treat degree M as a hyper-parameter:
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http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf

e Marginal likelihood (evidence) is highest for M = 2.

“Bayesian Occam'’s Razor":

prefers simpler models that fit data well.
p(y | X, ) is small for M =7, since 7-degree polynomials can fit many datasets.

It's actually non-monotonic in M: it prefers M =0 and M =2 over M = 1.
Model selection criteria like BIC are approximations to marginal likelihood as n — oc.


http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf

Type Il Maximum Likelihood for Polynomial Basis

@ Why is the marginal likelihood high for degree 2 but not degree 77
e Marginal likelihood for degree 2:

w1 X0 = [ [ [ byl Xewpptw | Ndu
wo w1 wo
e Marginal likelihood for degree 7:

P(y|X7)\)_/wo/1Ul/luz/w3/w4/w5/luﬁ/w7P(y|X,w)p(w|)\)dw.

o Higher-degree integrates over high-dimensional volume:
@ A non-trivial proportion of degree 2 functions fit the data really well.

@ There are many degree 7 functions that fit the data even better,
but they are a much smaller proportion of all degree 7 functions.

e Warning: this doesn't always work, sometimes becomes degenerate.
@ May need a prior on the hyper-parameters.



Bayes Factors for Bayesian Hypothesis Testing
@ Suppose we want to compare hypotheses:
o E.g., “this data is best fit with linear model” vs. a degree-2 polynomial.
@ Bayes factor is ratio of marginal likelihoods,

p(y | X, degree 2)

p(y | X, degree 1)

o If very large then data is much more consistent with degree 2.
e A common variation also puts prior on degree.

@ A more direct method of hypothesis testing:

e No need for null hypothesis, “power" of test, p-values, and so on.
e As usual can only tell you which model is likely, not whether any are correct.



American Statistical Assocation:

e “Statement on Statistical Significance and P-Values”.
@ http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

“Hack Your Way To Scientific Glory":

@ https://fivethirtyeight.com/features/science-isnt-broken

“Replicability crisis” in social psychology and many other fields:
@ https://en.wikipedia.org/wiki/Replication_crisis

@ http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375

“T-Tests Aren't Monotonic”: https://www.naftaliharris.com/blog/t-test-non-monotonic

Bayes factors don't solve problems with p-values and multiple testing.
e But they give an alternative view, are more intuitive, and make assumptions clear.

Some notes on various issues associated with Bayes factors:

@ http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf


http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108
https://fivethirtyeight.com/features/science-isnt-broken
https://en.wikipedia.org/wiki/Replication_crisis
http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375
https://www.naftaliharris.com/blog/t-test-non-monotonic
http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf

Learning Principles

Maximum likelihood:

w € argmax p(y | X, w) g € argmaxp(y | Z,w).
w 9
MAP:
w € argmaxp(w | X,y, \) g € argmaxp(y | Z,0).
w ]
e Optimizing A in this setting does not work: sets A = 0.
Bayesian (no “learning”):

UES argmaX/ p(y |z, w)p(w | X,y,\)dw.
Y w

Type Il maximum likelihood ( “learn hyper-parameters”):

\e argmaxp(y | X, \) 7€ argmax/ p(y | z,w)p(w | X,y, S\)dw.
A Y w



Type Il Maximum Likelihood for Regularization Parameter

@ Type Il maximum likelihood maximizes probability of data given hyper-parameters,
e argmaxply | X ). where p(y | X0 = [ ply | X.ulp(w | Mo,
A w

and the integral has closed-form solution if everything is Gaussian.
e You can run gradient descent to choose .

@ We are using the data to optimize the prior (empirical Bayes).
@ Even if we have a complicated model, much less likely to overfit than MLE:
e Complicated models need to integrate over many more alternative hypotheses.



Type Il Maximum Likelihood for Individual Regularization Parameter

o Consider having a hyper-parameter \; for each wj,
y' ~ Nz, o?T), w; NN(O,)\Jl).

@ Too expensive for cross-validation, but type Il MLE works.
e You can do gradient descent to optimize the ;.

@ Weird fact: this yields sparse solutions.

o "Automatic relevance determination” (ARD)
o Can send A\; — oo, concentrating posterior for w; at exactly 0.

o It tries to “remove some of the integrals”.
e This is L2-regularization, but empirical Bayes naturally encourages sparsity.

@ Non-convex and theory not well understood:
e Tends to yield much sparser solutions than L1-regularization.



Type Il Maximum Likelihood for Other Hyper-Parameters

Consider also having a hyper-parameter o; for each 1,
Y~ N(wlzl o?), w; NN(O,)\Jl).

You can also use type |l MLE to optimize these values.

The “automatic relevance determination” selects training examples (o; — 00).
e This is like the support vectors in SVMs, but tends to be much more sparse.

Type Il MLE can also be used to learn kernel parameters like RBF variance.
e Do gradient descent on the ¢ values in the Gaussian kernel.

It may also do something sensible if you use it to choose number of clusters k.
o Or number of states in hidden Markov model, number of latent factors in PCA, etc.

Bonus slides: Bayesian feature selection gives probability that w; is non-zero.
e Posterior is much more informative than standard sparse MAP methods.



Summary

@ Marginal likelihood is probability seeing data given hyper-parameters.

@ Empirical Bayes optimizes marginal likelihood to set hyper-parameters:

o Allows tuning a large number of hyper-parameters.
e Bayesian Occam’s razor: naturally encourages sparsity and simplicity.

@ Next time: which priors yield closed-form solutions?



Gradient on Validation/Cross-Validation Error

It's also possible to do gradient descent on A to optimize
validation /cross-validation error of model fit on the training data.

For L2-regularized least squares, define w(\) = (XTX + AI)~tXTy.

You can use chain rule to get derivative of validation error E,jiq with respect to A:
d / /
ﬁEvalid (w(A)) = Ejalig(w(A))w' (A).

For more complicated models, you can use total derivative to get gradient with
respect to A in terms of gradient/Hessian with respect to w.

However, this is often more sensitive to over-fitting than empirical Bayes approach.



Bayesian Feature Selection

@ Classic feature selection methods don't work when d >> n:
o AIC, BIC, Mallow's, adjusted-R?, and L1-regularization return very different results.

@ Here maybe all we can hope for is posterior probability of w; = 0.
o Consider all models, and weight by posterior the ones where w; = 0.

@ If we fix A and use L1-regularization, posterior is not sparse.

e Probability that a variable is exactly 0 is zero.
o L1-regularization only leads to sparse MAP, not sparse posterior.



Bayesian Feature Selection

o Type Il MLE gives sparsity because posterior variance goes to zero.
e But this doesn't give probabiliy of being 0.

@ We can encourage sparsity in Bayesian models using a spike and slab prior:

V)

e Mixture of Dirac delta function at 0 and another prior with non-zero variance.
o Places non-zero posterior weight at exactly 0.
o Posterior is still non-sparse, but answers the question:

e “What is the probability that variable is non-zero”?



Bayesian Feature Selection

Monte Carlo samples of w; for 18 features when classifying 2" vs. ‘3"
o Requires “trans-dimensional” MCMC since dimension of w is changing.
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o “Positive” variables had w; > 0 when fit with L1-regularization.
o “Negative” variables had w; < 0 when fit with L1-regularization.
o “Neutral’ variables had w; = 0 when fit with L1-regularization.



