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Motivation: Controlling Complexity

@ For many structured prediction tasks, we need very complicated models.
e We require multiple forms of regularization to prevent overfitting.

@ In 340 we saw two ways to reduce complexity of a model:

o Model averaging (ensemble methods).
o Regularization (linear models).

@ Bayesian methods combine both of these.

o Average over models, weighted by posterior (which includes regularizer).
e Allows you to fit extremely-complicated models without overfitting.



Current Hot Topics in Machine Learning

Bayesian learning includes:
@ Gaussian processes.
@ Approximate inference.
o Bayesian nonparametrics.



Why Bayesian Learning?

@ Standard L2-regularized logistic regression steup:
e Given finite dataset containing IID samples.
o E.g., samples (z*,y") with z* € R? and ¢* € {~1,1}.
e Find “best” w by minimizing NLL with a regularizer to “prevent overfitting”.

. . n o by
W e arglrumn —;bgp(gf | 2*,w) + §||w||2~
e Predict labels of new example Z using single weights w0,
i = sgn(w’'z).
@ But data was random, so weight w is a random variables.

e This might put our trust in a w where posterior p(w | X, y) is tiny.

@ Bayesian approach: “all parameters are nuissance parameters”.
o Treat w as random and predict based on rules of probability.



Problems with MAP Estimation

@ Does MAP make the right decision?

o Consider three hypothesese H = {“lands”, “crashes”, “explodes} with posteriors:

)

p(“lands” | D) = 0.4, p(“crashes” | D) = 0.3, p(“explodes” | D) = 0.3.

e The MAP estimate is “plane lands”, with posterior probability 0.4.
@ But probability of dying is 0.6.
o If we want to live, MAP estimate doesn’t give us what we should do.

@ Bayesian approach considers all models: says don't take plane.

@ Bayesian decision theory: accounts for costs of different errors.



MAP vs. Bayes

e MAP (regularized optimization) approach maximizes over w:

w € argmaxp(w | X, y)
w
= argmaxp(y | X, w)p(w) (Bayes’ rule, w L X)
w
y € argmaxp(y | Z,w).
y

@ Bayesian approach predicts by integrating over possible w:

Py |7, X,y) = / p(y,w |z, X,y)dw marginalization rule
w

= / P | w, 2z, X, y)p(w | &, X,y)dw product rule
w

— [ 9l w.D)plw | X, y)dw 71Xy 5w
w

@ Considers all possible w, and weights prediction by posterior for w.



Motivation for Bayesian Learning

@ Motivation for studying Bayesian learning:

@ Optimal decisions using rules of probability (and possibly error costs).
@ Gives estimates of variability/confidence.

o E.g., this gene has a 70% chance of being relevant.
© Elegant approaches for model selection and model averaging.

e E.g., optimize A or optimize grouping of w elements.
© Easy to relax IID assumption.

o E.g., hierarchical Bayesian models for data from different sources.
© Bayesian optimization: fastest rates for some non-convex problems.
@ Allows models with unknown/infinite number of parameters.

o E.g., number of clusters or number of states in hidden Markov model.

@ Why isn't everyone using this?
o Philosophical: Some people don't like “subjective” prior.
e Computational: Typically leads to nasty integration problems.



Coin Flipping Example: MAP Approach

@ MAP vs. Bayesian for a simple coin flipping scenario:
@ Our likelihood is a Bernoulli,
p(H | 0)=90.
@ Our prior assumes that we are in one of two scenarios:

@ The coin has a 50% chance of being fair (6 = 0.5).
@ The coin has a 50% chance of being rigged (6 = 1).

@ Our data consists of three consecutive heads: ‘HHH'.

@ What is the probability that the next toss is a head?
o MAP estimate is § = 1, since p(§ =1 | HHH) > p(0 = 0.5 | HHH).
e So MAP says the probability is 1.

o But MAP overfits: we believed there was a 50% chance the coin is fair.



Coin Flipping Example: Posterior Distribution

Bayesian method needs posterior probability over 6,

p(HHH |0 =1)p(6 =1)
p(HHH)
p(HHH |0 =1)p(6 = 1)
(HHH |6 =0.5)p(6 = 0.5) + p(HHH |6 = 1)p(6 = 1)
(1)(0.5) 8

(1/8)(0.5) + (1)(0.5) 9’

p(@0=1|HHH) = (Bayes rule)

(marg and prod rule) =
p

and similarly we have p(§ = 0.5 | HHH) = §.

So given the data, we should believe with probability % that coin is rigged.
o There is still a % probability that it is fair that MAP is ignoring.



Coin Flipping Example: Posterior Predictive
Posterior predictive gives probability of head given data and prior,

p(H|HHH)=p(H,0 =1|HHH)+p(H,0 =0.5| HHH)

=pH|0=1,HHH)p(6 =1| HHH)

+p(H|0=05HHH)p(0 =0.5| HHH)

= (1)(8/9) + (0.5)(1/9) = 0.94.

So the correct probability given our assumptions/data is 0.94, and not 1.
e Though with a different prior we would get a different answer.

Notice that there was no optimization of the parameter 6:
o In Bayesian stats we condition on data and integrate over unknowns.

In Bayesian stats/ML: “all parameters are nuissance parameters” .



Coin Flipping Example: Discussion

Comments on coin flipping example:
@ Bayesian prediction uses that HHH could come from fair coin.

@ As we see more heads, posterior converges to 1.
o MLE/MAP/Bayes usually agree as data size increases.

If we ever see a tail, posterior of § = 1 becomes 0.

@ If the prior is correct, then Bayesian estimate is optimal:
e Bayesian decision theory gives optimal action incorporating costs.

If the prior is incorrect, Bayesian estimate may be worse.
e This is where people get uncomfortable about “subjective” priors.

But MLE/MAP are also based on “subjective” assumptions.



Bayesian Model Averaging

@ In 340 we saw that model averaging can improve performance.
e E.g., random forests average over random trees that overfit.

@ But should all models get equal weight?
e What if we find a random decision stump that fits the data perfectly?
@ Should this get the same weight as deep random trees that likely overfit?

e In science, research may be fraudulent or not based on evidence.
@ Should “vaccines cause autism” or “climate change denial” models get equal weight?

@ In these cases, naive averaging may do worse.



Bayesian Model Averaging

@ Suppose we have a set of m probabilistic classifiers w;
e Previously our ensemble method gave all models equal weights,

1 1 1
p(yl:E)=Ep(ylw,w1)+gp(yIx,wz)+-~-+fp(y|m»wm)~

@ Bayesian model averaging (following rules of probability) weights by posterior,

p(F1Z) =plw | X,y)p(7 | T, w1) +plws | X,9)(F | T, w2)+
T +p(wm | va)p(g ’ j7wm)‘

@ So we should weight by probability that w; is the correct model.
e Equal weights assume all models are equally probable and fit data equally well.



Bayesian Model Averaging

@ Weights are posterior, so proportional to likelihood times prior:

p(w; | X,y) o< p(y | X, w;) p(wy) .
—_————

likelihood prior

@ Likelihood gives more weight to models that predict 3 well.

@ Prior should gives less weight to models that are likely to overfit.

@ This is how rules of probability say we should weight models.

e It's annoying that it requires a “prior” belief over models.
e But as n — oo, all weight goes to “correct” model[s] w* as long as p(w*) > 0.



Bayes for Density Estimation and Generative/Discriminative

@ We can use Bayesian approach for density estimation:
e With data D and parameters 6 we have:
@ Likelihood p(D | 6).

@ Prior p(6).
@ Posterior p(6 | D).

@ We can use Bayesian approach for supervised learning:
o Generative approach (naive Bayes, GDA) are density estimation on X and y:
@ Likelihood p(y, X | w).

@ Prior p(w).
© Posterior p(w | X, y).

o Discriminative approach (logistic regression, neural nets) just conditions on X:
@ Likelihood p(y | X, w).

@ Prior p(w).
@ Posterior p(w | X, y).



7 Ingredients of Bayesian Inference (MEMORIZE)

Q Likelihood p(y | X, w).

o Probability of seeing data given parameters.

@ Prior p(w | A).

o Belief that parameters are correct before we've seen data.

@ Posterior p(w | X,y, A).
o Probability that parameters are correct after we've seen data.
e We won't use the MAP “point estimate”, we want the whole distribution.

© Predictive p(7 | ,w).
e Probability of test label § given parameters w and test features Z.
o For example, sigmoid function for logistic regression.



7 Ingredients of Bayesian Inference (MEMORIZE)

@ Posterior predictive p(g | T, X, y, A).
o Probability of new data given old, integrating over parameters.
e This tells us which prediction is most likely given data and prior.

O Marginal likelihood p(y | X, \) (also called “evidence”).

o Probability of seeing data given hyper-parameters (integrating over parameters).
o We'll use this later for hypothesis testing and setting hyper-parameters.

@ Cost C(7 | 9).

e The penalty you pay for predicting § when it was really was 3.
e Leads to Bayesian decision theory: predict to minimize expected cost.



Review: Decision Theory

@ Are we equally concerned about “spam” vs. “not spam”

@ Consider a scenario where different predictions have different costs:
Predict / True True “spam”  True “not spam”
Predict “spam” 0 100
Predict “not spam” 10 0

@ In 340 we discussed predictin § given w by minimizing expected cost:
E[Cost(y = “spam”)] = p(y = “spam” | z,w)C(y = “spam” | § = “spam”)
+ p(g = “not spam” | Z,w)C(y = “spam” | § = "not spam”).

e Consider a case where p(y = “spam” | Z,w) > p(g = "not spam” | Z, ).

o We might still predict “not spam” if expected cost is lower.



Bayesian Decision Theory

@ Bayesian decision theory:
o Instead of using a MAP estimate w, we should use posterior predictive,

E[Cost(j = “spam”)] = p(g = “spam” | Z, X,y)C(§ = “spam” | § = “spam”)

(0
+ p(g = “not spam” | Z, X, y)C(§ = “spam” | § = “not spam”).

e Minimizing this expected cost is the optimal action.

@ Note that there is a lot going on here:
o Expected cost depends on cost and posterior predictive.
o Posterior predictive depends on predictive and posterior
e Posterior depends on likelihood and prior.



Summary

o Bayesian statistics:

o Condition on the data, integrate (rather than maximize) over posterior.
e "All parameters are nuissance parameters”.

@ Bayesian model averaging and decision theory:
e Model averaging and decision theory based on rules of probability.

@ Next time: learning the prior?



